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The Bernoulli numbers are defined via the coefficients of the power series

expansion of t/(et − 1). Namely, for integers m ≥ 0 we define Bm so that

t

et − 1
=

∞∑
m=0

Bm

m!
tm.

Multiplying both sides above by et−1 and equating coefficients of tm+1 yields:

B0 = 1, (m + 1)Bm = −
m−1∑
k=0

(
m + 1

k

)
Bk

Some authors take the above recurrence to be the definition of the Bernoulli

numbers. This recurrence provides a straightforward method for calculating

Bm and is especially convenient for computing Bm for all m up to some

bound. The first few Bernoulli numbers are:

B0 = 1, B1 = −1

2
B2 =

1

6
, B3 = 0, B4 = − 1

30
,

B5 = 0, B6 =
1

42
, B7 = 0, B8 = − 1

30
, B9 = 0,

B10 =
55

66
, B11 = 0, B12 = − 691

2730
B13 = 0, B14 = −7

6
The values above provide evidence for two basic results regarding Bernoulli

numbers. First, Bm = 0 for odd m ≥ 3, and secondly, for even m ≥ 2,

Bm = (−1)m/2+1 |Bm|. Henceforth we will denote

Bm =
a

d

1



where a, d ∈ Z, d ≥ 1, and (a, d) = 1. From the properties mentioned above,

it is clear that a = (−1)m/2+1 |a| for even m ≥ 2. The goal of this paper is to

compute Bm rapidly, when m is potentially very large. Computing Bm via the

recurrence is slow; it requires us to sum over m(m+1)/2 terms. In addition,

this method requires storing the numbers B0, . . . , Bm−1 in memory. In order

to speed up this computation, we will describe an important connection

between the Bernoulli numbers and the Riemann Zeta Function. Much of

what we will describe was gleaned from the PARI-2.2.11.alpha source code.

The algorithm this version of PARI uses to compute Bernoulli numbers was

written by Henri Cohen and later refined by Karim Belabas; it was originally

designed to speed up the computation of zeta values. For real s > 1, Euler

defined the function

ζ(s) =
∞∑

n=1

n−s ,

for which he proved the product formula

ζ(s) =
∏

p

(1− p−s)−1 .

(Riemann showed that ζ(s) has an analytic continuation to the entire com-

plex plane with a simple pole at s = 1, and hence the function bears his

name.) In addition to giving the product formula, Euler was able to evaluate

the zeta function at the even positive integers. [1] For any integer m ≥ 1,

2ζ(2m) =
(−1)m+1(2π)2m

(2m)!
B2m .

It follows that for any even integer m ≥ 4,

|Bm| =
2m!

(2π)m
ζ(m) .

It is now clear how to compute decimal approximations to Bm; we merely

approximate ζ(m) using the Euler product and plug the result into the above

equation. A priori, this is not enough to compute Bm as a ratio of integers,

but fortunately a theorem of Clausen and von Staudt precisely describes the

denominator of Bm in terms of the divisors of m. [1] For even m ≥ 2,

d := denom(Bm) =
∏

p−1|m

p .
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Now we show how to compute a. First define

K :=
2m!

(2π)m

so that |Bm| = Kζ(m). Using the Euler product, we may approximate

ζ(m) from below with arbitrary precision. Suppose that we have computed

a number z such that

0 ≤ ζ(m)− z < (Kd)−1 ;

then we have

0 ≤ |Bm| − zK < d−1

and hence

0 ≤ |a| − zKd < 1 .

It follows that |a| = dzKde and hence a = (−1)m/2+1 dzKde. It remains to

explicitly compute z. In order to accomplish this, we consider the following

problem: given s > 1 and ε > 0, find N ∈ Z+ so that when we set

z :=
∏
p≤N

(1− p−s)−1 ,

we are guaranteed that 0 ≤ ζ(s) − z < ε. We always have 0 ≤ ζ(s) − z.

Further, it is not hard to see that∑
n≤N

n−s ≤
∏
p≤N

(1− p−s)−1

and therefore

ζ(s)− z ≤
∞∑

n=N+1

n−s

≤
∫ ∞

N

x−s dx

=
1

(s− 1)N s−1
.

If we choose N > ε−1/(s−1), then we have

1

(s− 1)N s−1
≤ 1

N s−1
< ε ,

which implies ζ(s) − z < ε, as required. For our purposes, we have s = m

and ε = (Kd)−1 and therefore it suffices to choose N > (Kd)1/(m−1).
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The Algorithm: Suppose m ≥ 2 is even.

1.

K :=
2m!

(2π)m

2.

d :=
∏

p−1|m

p

3.

N :=
⌈
(Kd)1/(m−1)

⌉
4.

z :=
∏
p≤N

(1− p−m)−1

5.

a := (−1)m/2+1 ddKze

6.

Bm =
a

d

Some remarks are in order. In step (1), we must be careful to compute K to

sufficient precision so that the calculation in (5) gives the desired result. In

order to compute (4), it is useful to first compute all primes p ≤ N ; this may

be done quickly using the Sieve of Eratosthenes. One may also compute the

product in (2) via a sieving process. Finally, for the value of N we may choose

any integer greater than or equal to the one specified in (3), so we need not

worry about computing (Kd)1/(m−1) to much precision. It is interesting to

note that the algorithm above also gives a way of approximating ζ(m) quickly

for even m. Namely, compute Bm as a rational number using this algorithm

and plug it into Euler’s formula for ζ(m) along with an approximation of π

sufficiently many decimal places.
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Example: We use the modest size example of m = 50 for the sake of

readability. Using 50 digits of precision, we compute

K = 7500866746076957704747736.7155247316456403804367604 .

The divisors of m are 1, 2, 5, 10, 25, 50 and hence

d = (2)(3)(11) = 66 .

We find N = 4 and compute

z = 1.0000000000000008881784210930815902983501390146827 .

Finally we compute

dKz = 495057205241079648212477524.99999999442615111210652

and therefore

B50 =
495057205241079648212477525

66
.
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