
Chapter 4

Dirichlet Characters

In this chapter we develop a systematic theory for computing with Dirichlet
characters, which are extremely important to computations with modular forms
for (at least) two reasons:

• To compute the Eisenstein subspace Ek(Γ1(N)) of Mk(Γ1(N)) we explic-
itly write down Eisenstein series attached to pairs of Dirichlet characters
(see Chapter 5).

• To compute Sk(Γ1(N)), we instead compute a decomposition

Mk(Γ1(N)) =
⊕

Mk(Γ1(N), ε)

then compute each factor. Here the sum is over all Dirichlet characters ε
modulo N .

Example 4.0.1. Expanding on the second point, the spaces Mk(Γ1(N), ε) are
frequently much easier to compute with than the full Mk(Γ1(N)). As we will
see, if ε = 1 is the trivial character, then Mk(Γ1(N), 1) = Mk(Γ0(N)), which
has much smaller dimension than Mk(Γ1(N)). For example, M2(Γ1(100)) has
dimension 370, whereasM2(Γ1(100), 1) has dimension only 24, andM2(Γ1(389))
has dimension 6499, whereas M2(Γ1(389), 1) has dimension only 33.

sage: dimension_modular_forms(Gamma1(100),2)

370

sage: dimension_modular_forms(Gamma0(100),2)

24

sage: dimension_modular_forms(Gamma1(389),2)

6499

sage: dimension_modular_forms(Gamma0(389),2)

33
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4.1 The Definition

Fix an integral domain R and a root ζ of unity in R.

Definition 4.1.1 (Dirichlet Character). A Dirichlet character moduloN over R
is a map ε : Z → R such that there is a homomorphism f : (Z/NZ)∗ → 〈ζ〉 for
which

ε(a) =

{

0 if (a,N) > 1,

f (a mod N) if (a,N) = 1.

We denote the group of such Dirichlet characters by D(N,R). Note that
elements of D(N,R) are in bijection with homomorphisms (Z/NZ)∗ → 〈ζ〉.

One familiar example of a Dirichlet characters is the Legendre symbol
(

a
p

)

that appears in quadratic reciprocity theory. It is a Dirichlet character mod-
ulo p that takes the value 1 on integers that are congruent to a nonzero square
modulo p, the value −1 on integers that are congruent to a nonzero non-square
modulo p, and 0 on integers divisible by p.

4.2 Dirichlet Characters in SAGE

To create a Dirichlet character in SAGE you first create the group D(N,R)
of Dirichlet characters, then obtain elements of that group. First we make
D(11,Q):

sage: G = DirichletGroup(11, RationalField())

sage: G

Group of Dirichlet characters of modulus 11 over Rational Field

A Dirichlet character prints as a matrix that gives the values of the character
on canonical generators of (Z/NZ)∗ (as discussed below).

sage: list(G)

[[1], [-1]]

sage: eps = G.0 # 0th generator for Dirichlet group

sage: eps

[-1]

The character takes the value −1 on the unit generator.

sage: G.unit_gens()

[2]

sage: eps(2)

-1

sage: eps(3)

1

It is 0 on any integer not coprime to 11:
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sage: eps(22)

0

We can also create groups of Dirichlet characters taking values in other rings
or fields. For example, we create the cyclotomic field Q(ζ4).

sage: R = CyclotomicField(4)

sage: CyclotomicField(4)

Cyclotomic Field of order 4 and degree 2

Then we define G = D(15,Q(ζ4).

sage: G = DirichletGroup(15, R)

sage: G

Group of Dirichlet characters of modulus 15 over Cyclotomic Field

of order 4 and degree 2

And we list each of its elements.

sage: list(G)

[[1, 1], [-1, 1], [1, zeta_4], [-1, zeta_4], [1, -1], [-1, -1],

[1, -zeta_4], [-1, -zeta_4]]

Now lets evaluate the second generator of G on various integers:

sage: e = G.1

sage: e(4)

-1

sage: e(-1)

-1

sage: e(5)

0

Finally we make a list of all the values of e.

sage: [e(n) for n in range(15)]

[0, 1, zeta_4, 0, -1, 0, 0, zeta_4, -zeta_4,

0, 0, 1, 0, -zeta_4, -1]

We can also compute with groups of Dirichlet characters with values in a
finite field.

sage: G = DirichletGroup(15, GF(5))

sage: G

Group of Dirichlet characters of modulus 15 over Finite field of size 5
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We list all the elements of G, again represented by matrices that give the images
of each unit generator, as an element of F5.

sage: list(G)

[[1, 1], [4, 1], [1, 2], [4, 2], [1, 4], [4, 4], [1, 3], [4, 3]]

We evaluate the second generator of G on several integers.

sage: e = G.1

sage: e(-1)

4

sage: e(2)

2

sage: e(5)

0

sage: print [e(n) for n in range(15)]

[0, 1, 2, 0, 4, 0, 0, 2, 3, 0, 0, 1, 0, 3, 4]

4.3 Representing Dirichlet Characters

Lemma 4.3.1. The groups (Z/NZ)∗ and D(N,C) are non-canonically isomor-

phic.

Proof. This follows from the more general fact that for any finite abelian groupG,
we have that G ≈ Hom(G,C∗). To prove that this latter non-canonical isomor-
phism exists, first reduce to the case when G is cyclic of order n, in which
case the statement follows because C∗ contains the nth root of unity e2πi/n, so
Hom(G,C∗) is also cyclic of order n.

Corollary 4.3.2. We have #D(N,R) | ϕ(N), with equality if and only if the

order of our choice of ζ ∈ R is a multiple of the exponent of the group (Z/NZ)∗.

Example 4.3.3. The groupD(5,C) has elements {[1], [i], [−1], [−i]}, so is cyclic
of order ϕ(5) = 4. In contrast, the group D(5,Q) has only the two elements
[1] and [−1] and order 2. In SAGE the command DirichletGroup(N) with
no second argument create the group of Dirichlet characters with values in the
cyclotomic field Q(ζn), where n is the exponent of the group (Z/NZ)∗. Every
element in D(N,C) takes values in Q(ζn), so D(N,Q(ζn)) ∼= D(N,C).

sage: list(DirichletGroup(5))

[[1], [zeta_4], [-1], [-zeta_4]]

sage: list(DirichletGroup(5, Q))

[[1], [-1]]

Fix a positive integer N , and write N =
∏n
i=0

pei

i where p0 < p1 < · · · < pn
are the prime divisors of N . By Exercise 4.1, each factor (Z/pei

i Z)∗ is a cyclic
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group Ci = 〈gi〉, except if p0 = 2 and e0 ≥ 3, in which case (Z/pe00 Z)∗ is a
product of the cyclic subgroup C0 = 〈−1〉 of order 2 with the cyclic subgroup
C1 = 〈5〉. In all cases we have

(Z/NZ)∗ ∼=
∏

0≤i≤n

Ci =
∏

0≤i≤n

〈gi〉.

For i such that pi > 2, choose the generator gi of Ci to be the element of
{2, 3, . . . , pei

i − 1} that is smallest and generates. Finally, use the Chinese Re-
mainder Theorem (see [Coh93, §1.3.3])) to lift each gi to an element in (Z/NZ)∗,
also denoted gi, that is 1 modulo each p

ej

j for j 6= i.

Algorithm 4.3.4 (Minimal generator for (Z/prZ)∗). Given an odd prime power

pr, this algorithm computes the minimal generator for (Z/prZ)∗.

1. [Factor Group Order] Factor n = φ(pr) = pr−1 ·2 · ((p−1)/2) as a product
∏

pei

i of primes. This is equivalent in difficulty to factoring (p − 1)/2.
(See, e.g., [Coh93, Ch.8, 10] for integer factorization algorithms.)

2. [Initialize] Set g = 2.

3. [Generator?] Using the binary powering algorithm (see [Coh93, §1.2]),
compute gn/pi (mod pr), for each prime divisor pi of n. If any of these
powers are 1, set g = g+ 1 and go to Step 2. If no powers are 1, output g
and terminate.

For the proof, see Exercise 4.2.

Example 4.3.5. A minimal generator for (Z/49Z)∗ is 3. We have n = ϕ(49) =
42 = 2 · 3 · 7, and

2n/2 ≡ 1, 2n/3 ≡ 18, 2n/7 ≡ 15 (mod 49).

so 2 is not a generator for (Z/49Z)∗. (We see this just from 2n/2 ≡ 1 (mod 49).)
However 3 is since

3n/2 ≡ 48, 3n/3 ≡ 30, 3n/7 ≡ 43 (mod 49).

Example 4.3.6. In this example we compute minimal generators for N = 25,
100, and 200:

1. The minimal generator for (Z/25Z)∗ is 2.

2. Minimal generators for (Z/100Z)∗, lifted to numbers modulo 100, are g0 =
51 and g1 = 77. Notice that g0 ≡ −1 (mod 4) and g0 ≡ 1 (mod 25), and
g1 ≡ 2 (mod 25) is the minimal generator modulo 25.

3. Minimal generators for (Z/200Z)∗, lifted to numbers modulo 200, are g0 =
151, g1 = 101, and g2 = 177. Note that g0 ≡ −1 (mod 4), that g1 ≡ 5
(mod 8), and g2 ≡ 2 (mod 25).
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The command Integers(N) creates Z/NZ.

sage: R = Integers(49)

sage: R

Ring of integers modulo 49

The unit gens() command computes the unit generators as defined above.

sage: R.unit_gens()

[3]

sage: Integers(25).unit_gens()

[2]

sage: Integers(100).unit_gens()

[51, 77]

sage: Integers(200).unit_gens()

[151, 101, 177]

sage: Integers(2005).unit_gens()

[402, 1206]

sage: Integers(200000000).unit_gens()

[174218751, 51562501, 187109377]

Fix an element ζ of finite multiplicative order in a ring R, and let D(N,R)
denote the group of Dirichlet characters modulo N over R, with image in 〈ζ〉 ∪
{0}. We specify an element ε ∈ D(N,R) by giving the list

[ε(g0), ε(g1), . . . , ε(gn)] (4.3.1)

of images of the generators of (Z/NZ)∗. (Note if N is even, the number of
elements of the list (4.3.1) does not depend on whether or not 8 | N—there are
always two factors corresponding to 2.) This representation completely deter-
mines ε and is convenient for arithmetic operations with Dirichlet characters. It
is analogous to representing a linear transformation by a matrix. See Section 4.7
for a discussion of alternative ways to represent Dirichlet characters.

4.4 Evaluation of Dirichlet Characters

This section is about how to compute ε(n), where ε is a Dirichlet character
and n is an integer. We begin with an example.

Example 4.4.1. If N = 200, then g0 = 151, g1 = 101 and g2 = 177, as we
saw in Example 4.3.6. The exponent of (Z/200Z)∗ is 20, since that is the least
common multiple of the exponents of 4 = #(Z/8Z)∗ and 20 = #(Z/25Z)∗. The
orders of g0, g1 and g2 are 2, 2, and 20. Let ζ = ζ20 be a primitive 20th root of
unity in C. Then the following are generators for D(200,C):

ε0 = [−1, 1, 1], ε1 = [1,−1, 1], ε2 = [1, 1, ζ],
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and ε = [1,−1, ζ5] is an example element of order 4. To evaluate ε(3), we write 3
in terms of g0, g1, and g2. First, reducing 3 modulo 8, we see that 3 ≡ g0 · g1
(mod 8). Next reducing 3 modulo 25, and trying powers of g2 = 2, we find that
e ≡ g7

2 (mod 25). Thus

ε(3) = ε(g0 · g1 · g7
2)

= ε(g0)ε(g1)ε(g2)
7

= 1 · (−1) · (ζ5)7

= −ζ35 = −ζ15.

We next illustrate the above computation of ε(3) in SAGE. First we make
the group D(200,Q(ζ8)), and list its generators.

sage: G = DirichletGroup(200)

sage: G

Group of Dirichlet characters of modulus 200 over Cyclotomic Field

of order 20 and degree 8

sage: G.exponent()

20

sage: G.gens()

[[-1, 1, 1], [1, -1, 1], [1, 1, zeta_20]]

Next we construct ε.

sage: K = G.base_ring()

sage: zeta = K.gen()

sage: eps = G([1,-1,zeta^5])

sage: eps

[1, -1, zeta_20^5]

Finally, we evaluate ε at 3.

sage: eps(3)

zeta_20^5

sage: -zeta^15

zeta_20^5

Example 4.4.1 illustrates that if ε is represented using a list as described
above, evaluation of ε on an arbitrary integer is inefficient without extra infor-
mation; it requires solving the discrete log problem in (Z/NZ)∗. In fact, for a
general character ε calculation of ε will probably be at least as hard as finding
discrete logarithms no matter what representation we use (quadratic characters
are easier—see Algorithm 4.4.5).



Chapter 5

Eisenstein Series

We introduce generalized Bernoulli numbers attached to Dirichlet characters,
and give an algorithm to enumerate the Eisenstein series in Mk(N, ε). We will
wait until Chapter 8 for an algorithm to compute all cusp forms in Mk(N, ε).

5.1 Generalized Bernoulli Numbers

Suppose ε is a Dirichlet character modulo N over C.

Definition 5.1.1 (Generalized Bernoulli Number). Define the generalized Bernoulli

numbers Bk,ε attached to ε by the following identity of infinite series:

N−1
∑

a=1

ε(a) · x · eax
eNx − 1

=
∞
∑

k=0

Bk,ε ·
xk

k!
.

If ε is the trivial character of modulus 1 and Bk are as in Section 2.1,
then Bk,ε = Bk, except when k = 1, in which case B1,ε = −B1 = 1/2 (see
Exercise 5.5).

Let Q(ε) denote the field generated by the values of the character ε, so Q(ε)
is the cyclotomic extension Q(ζn), where n is the order of ε.

Algorithm 5.1.2 (Bernoulli Numbers). Given an integer k ≥ 0 and any

Dirichlet character ε with modulus N , this algorithm computes the generalized

Bernoulli numbers Bj,ε, for j ≤ k.

1. Compute g = x/(eNx − 1) ∈ Q[[x]] to precision O(xk+1) by computing
eNx−1 =

∑

n≥1
Nnxn/n! to precision O(xk+2), and computing the inverse

x/(eNx − 1). For completeness, note that if f = a0 + a1x + a2x
2 + · · · ,

then we have the following recursive formula for the coefficients bn of the
expansion of 1/f :

bn = − b0
a0

· (bn−1a1 + bn−2a2 + · · · + b0an).

69
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2. For each a = 1, . . . , N , compute fa = g ·eax ∈ Q[[x]], to precision O(xk+1).
This requires computing eax =

∑

n≥0
anxn/n! to precision O(xk+1). (One

can omit computation of eNx if N > 1.)

3. Then for j ≤ k, we have

Bj,ε = j! ·
N

∑

a=1

ε(a) · cj(fa),

where cj(fa) is the coefficient of xj in fa.

Note that in Steps 1 and 2 we compute the power series doing arithmetic
only in Q[[x]], not in Q(ε)[[x]], which could be much less efficient if ε has large
order. One could also write down a recurrence formula for Bj,ε, but this would
simply encode arithmetic in power series rings and the definitions in a formula.

Example 5.1.3. Let ε be the nontrivial character with modulus 4. Thus ε has
order 2 and takes values in Q. Then the Bernoulli numbers Bk,ε for k even are
all 0 and for k odd they are

B1,ε = −1/2

B3,ε = 3/2

B5,ε = −25/2

B7,ε = 427/2

B9,ε = −12465/2

B11,ε = 555731/2

B13,ε = −35135945/2

B15,ε = 2990414715/2

B17,ε = −329655706465/2

B19,ε = 45692713833379/2.

These Bernoulli numbers can be divisible by large primes. For example, B17,ε =
5 · 172 · 228135437/2.

Example 5.1.4. This examples illustrates that the generalized Bernoulli num-
bers need not be rational numbers. Suppose ε is the mod 5 character such that
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ε(2) = i =
√
−1. Then Bk,ε = 0 for k even and

B1,ε =
−i− 3

5

B3,ε =
6i+ 12

5

B5,ε =
−86i− 148

5

B7,ε =
2366i+ 3892

5

B9,ε =
−108846i− 176868

5

B11,ε =
7599526i+ 12309572

5

B13,ε =
−751182406i− 1215768788

5

B15,ε =
99909993486i+ 161668772052

5

B17,ε =
−17209733596766i− 27846408467908

5

Proposition 5.1.5. If ε(−1) 6= (−1)k, then Bk,ε = 0.

5.2 Explicit Basis for the Eisenstein Subspace

Suppose χ and ψ are primitive Dirichlet characters with conductors L and M ,
respectively. Let

Ek,χ,ψ(q) = c0 +
∑

m≥1





∑

n|m

ψ(n) · χ(m/n) · nk−1



 qm ∈ Q(χ, ψ)[[q]], (5.2.1)

where

c0 =







0 if L > 1,

−Bk,ψ
2k

if L = 1.

Note that when χ = ψ = 1 and k ≥ 4, then Ek,χ,ψ = Ek, where Ek is from
Chapter 1.

Miyake proves statements that imply the following theorems in [Miy89,
Ch. 7]. We will not prove them in this book since developing the theory needed
to prove them would take us far afield from our goal, which is to compute
Mk(N, ε).

Theorem 5.2.1. Suppose t is a positive integer and χ, ψ are as above, and

that k is a positive integer such that χ(−1)ψ(−1) = (−1)k. Except when
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k = 2 and χ = ψ = 1, the power series Ek,χ,ψ(qt) defines an element of

Mk(MLt, χ/ψ). If χ = ψ = 1, k = 2, t > 1, and E2 = Ek,χ,ψ, then

E2(q) − tE2(q
t) is a modular form in M2(Γ0(t)).

Theorem 5.2.2. The Eisenstein series in Mk(N, ε) coming from Theorem 5.2.1

form a basis for the Eisenstein subspace Ek(N, ε).

Theorem 5.2.3. The Eisenstein series Ek,χ,ψ(q) ∈ Mk(ML) defined above is

an eigenvector for all Hecke operators Tn. Also E2(q) − tE2(q
t), for t > 1, is

an eigenform.

Since Ek,χ,ψ(q) is normalizes so the coefficient of q is 1, the eigenvalue of Tm
is

∑

n|m

ψ(n) · χ(m/n) · nk−1.

Also for f = E2(q) − tE2(q
t) with t > 1 prime, the coefficient of q is 1, and

Tm(f) = σ1(m) · f for (m, t) = 1, and Tt(f) = ((t+ 1) − t)f = f .

Algorithm 5.2.4 (Enumerating Eisenstein Series). Given a weight k and a

Dirichlet character ε of modulus N , this algorithm computes a basis for the

Eisenstein subspace Ek(N, ε) of Mk(N, ε) to precision O(qr).

1. [Weight 2 Trivial Character?] If k = 2 and ε = 1, output the Eisenstein
series E2(q) − tE2(q

t), for each divisor t | N with t 6= 1, then terminate.

2. [Compute Dirichlet Group] Let G = D(N,Q(ζn)) be the group of Dirichlet
characters with values in Q(ζn), where n is the exponent fo (Z/NZ)∗.

3. [Compute Conductors] Compute the conductor of every element of G
(which just involves computing the orders of the local components of each
character).

4. [List Characters χ] Form a list V all Dirichlet characters χ ∈ G such that
cond(χ) · cond(χ/ε) divides N .

5. [Compute Eisenstein Series] For each character χ in V , let ψ = χ/ε, and
compute Ek,χ,ψ(qt) (mod qr) for each divisor t of N/(cond(χ) · cond(ψ)).
We compute Ek,χ,ψ(qt) (mod qr) using (5.2.1) and Algorithm 5.1.2.

Remark 5.2.5. Algorithm 5.2.4 is what I currently use in my programs. It
might be better to first reduce to the prime power case by writing all characters
as product of local characters and combine Steps 3 and 4 into a single step
that involves orders. However, this might make things more complicated and
obscure.

Example 5.2.6. The following is a basis of Eisenstein series E2,χ,ψ for E2(Γ1(13)).
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f1 = 1/2 + q + 3*q^2 + 4*q^3 + O(q^4)

f2 = (-7/13*zeta_12^2 - 11/13) + q + (2*zeta_12^2 + 1)*q^2

+ (-3*zeta_12^2 + 1)*q^3 + O(q^4)

f3 = q + (zeta_12^2 + 2)*q^2 + (-1*zeta_12^2 + 3)*q^3 + O(q^4)

f4 = (-1*zeta_12^2) + q + (2*zeta_12^2 - 1)*q^2

+ (3*zeta_12^2 - 2)*q^3 + O(q^4)

f5 = q + (zeta_12^2 + 1)*q^2 + (zeta_12^2 + 2)*q^3 + O(q^4)

f6 = (-1) + q + (-1)*q^2 + 4*q^3 + O(q^4)

f7 = q + q^2 + 4*q^3 + O(q^4)

f8 = (zeta_12^2 - 1) + q + (-2*zeta_12^2 + 1)*q^2

+ (-3*zeta_12^2 + 1)*q^3 + O(q^4)

f9 = q + (-1*zeta_12^2 + 2)*q^2 + (-1*zeta_12^2 + 3)*q^3 + O(q^4)

f10 = (7/13*zeta_12^2 - 18/13) + q + (-2*zeta_12^2 + 3)*q^2

+ (3*zeta_12^2 - 2)*q^3 + O(q^4)

f11 = q + (-1*zeta_12^2 + 3)*q^2 + (zeta_12^2 + 2)*q^3 + O(q^4)

5.3 Exercises

5.1 Suppose γ ∈ SL2(Z) and N is a positive integer. Prove that there is a
positive integer h such that ( 1 h

0 1
) ∈ γ−1Γ1(N)γ.

5.2 Prove that the map SL2(Z) → SL2(Z/NZ) is surjective. (Hint: There
is a proof of a more general result near the beginning of Shimura’s book
[Shi94].)

5.3 Prove that Mk(N, 1) = Mk(Γ0(N)).

5.4 Suppose A and B are diagonalizable linear transformations of a finite-
dimensional vector space V and that both A and B are diagonalizable.
Prove there is a basis for V so that the matrices of A and B with respect
to that both are simultaneously diagonal.

5.5 If ε is the trivial character of modulus 1 and Bk are as in Section 2.1, then
Bk,ε = Bk, except when k = 1, in which case B1,ε = −B1 = 1/2.

5.6 Prove that if n > 1 is odd, then the Bernoulli number Bn is 0.


