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Abstract

In this survey paper, we explain how weight 2 modular forms on Γ0(N)
are related to modular symbols, and how to use this relationship to ex-
plicitly compute spaces of modular forms.

Introduction

The definition of spaces of modular forms as functions on the upper half plane
satisfying a certain equation is very abstract. The definition of the Hecke oper-
ators even more so. Nevertheless, one wishes to carry out explicit investigations
involving these objects.

We are fortunate that we now have methods available that allow us to trans-
form the vector space of cusp forms of given weight and level into a concrete
object, which can be explicitly computed. We have the work of Atkin and
Lehner, Birch and Swinnerton-Dyer, Manin, Mazur, Merel, and many others to
thank for this (see, e.g., [4, 7, 14, 15]). For example, we can use the Eichler-
Selberg trace formula, as extended in [10], to compute characteristic polynomials
of Hecke operators. Then the method described in [23] gives a basis for certain
spaces of modular forms. Alternatively, we can compute Θ-series using Brandt
matrices and quaternion algebras as in [11, 17], or we can use a closely related
geometric method that involves the module of enhanced supersingular elliptic
curves [16]. Another related method of Birch [3] is very fast, but gives only a
piece of the full space of modular forms. The power of the modular symbols
approach was demonstrated by Cremona in his book [7] in which he systemat-
ically computes a large table of invariants of all elliptic curves of conductor up
to 1000 (his online tables go much further).

Though the above methods are each beautiful and well suited to certain
applications, we will only discuss the modular symbols method in this paper,
as it has many advantages. We will primarily discuss the theory, leaving an
explicit description of the objects involved for other papers. Nonetheless, there
is a definite gap between the theory on the one hand, and an efficient running
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machine implementation on the other. To implement the algorithms hinted at
below requires making absolutely everything completely explicit, then finding
intelligent and efficient ways of performing the necessary manipulations. This
is a nontrivial and tedious task, with room for error at every step. Fortunately,
Cremona has succeeded at this in his book [7]. See also the author’s Magma [5]
package for working with modular symbols, which is part of Magma V2.7 (and
higher), and would be useful to experiment with while reading this paper.

In this paper we will focus exclusively on the case of weight-2 modular forms
for Γ0(N). The methods explained here extend to modular forms of integer
weight greater than 2 for Γ1(N) (nontrivial character); for more details see [15]
for the theory and [21] for the algorithms (see also [22]).

Section 1 contains a brief summary of basic facts about modular forms,
Hecke operators, and integral homology. Section 2 introduces modular symbols,
and describes how to compute with them. Section 3 outlines an algorithm
for constructing cusp forms using modular symbols in conjunction with Atkin-
Lehner theory.

This paper assumes some familiarity with algebraic curves, Riemann sur-
faces, and homology groups of compact surfaces. A few basic facts about modu-
lar forms are recalled, but only briefly. In particular, only a roundabout attempt
is made to motivate why one might be interested in modular forms; for this,
see, e.g., [4, 7, 8, 11, 18, 1]. No prior exposure to modular symbols is assumed.

Acknowledgment. The author would like to thank Mark Watkins and
Lynn Walling for many helpful comments.

1 Modular forms and Hecke operators

The objects we will consider arise from the modular group SL2(Z) of two-by-
two integer matrices with determinant equal to one. This group acts via linear
fractional transformations on the complex upper half plane h, and also on the
extended upper half plane

h∗ = h ∪P1(Q) = h ∪Q ∪ {∞}.

See [20, §1.3–1.5] for a careful description of the topology on h∗. A basis of
neighborhoods for α ∈ Q is given by the sets {α} ∪D, where D is a disc in h
that is tangent to the real line at α. Let N be a positive integer and consider
the group Γ0(N) of matrices

(
a b
c d

) ∈ SL2(Z) such that N | c. The group Γ0(N)
acts on h∗ by linear fractional transformations, and the quotient Γ0(N)\h∗ is
a Riemann surface, which we denote by X0(N). Shimura showed in [20, §6.7]
that X0(N) has a canonical structure of algebraic curve over Q.

A cusp form is a function f on h such that f(z)dz is a holomorphic differential
on X0(N). Equivalently, a cusp form is a holomorphic function f on h such that

(a) the expression f(z)dz is invariant under replacing z by γ(z) for each γ ∈
Γ0(N), and
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(b) f(z) is holomorphic at each element of P1(Q), and moreover f(z) tends
to 0 as z tends to any element of P1(Q).

The space of cusp forms on Γ0(N) is a finite dimensional complex vector space,
of dimension equal to the genus g of X0(N). Viewed topologically, as a 2-
dimensional real manifold, X0(N)(C) is a g-holed torus.

Condition (b) in the definition of f(z) means that f(z) has a Fourier expan-
sion about each element of P1(Q). Thus, at ∞ we have

f(z) = a1e
2πiz + a2e

2πi2z + a3e
2πi3z + · · ·

= a1q + a2q
2 + a3q

3 + · · · ,

where, for brevity, we write q = q(z) = e2πiz.
Example 1.1. Let E be the elliptic curve defined by the equation y2 + xy =
x3 + x2 − 4x − 5. For p 6= 3, 13, let ap = p + 1 − #Ẽ(Fp), where Ẽ is the
reduction of E mod p, and let a3 = −1, a13 = 1. For n composite, define an

using the relations at the end of Section 3. Then

f = q + a2q
2 + a3q

3 + a4q
4 + a5q

5 + · · ·
= q + q2 − q3 − q4 + 2q5 + · · ·

is the q-expansion of a modular form on Γ0(39). The Shimura-Taniyama conjec-
ture, which is now a theorem (see [6]) asserts that any q-expansion constructed
as above from an elliptic curve over Q is a modular form.

The Hecke operators are a family of commuting endomorphisms of S2(N),
which are defined as follows. The complex points of the open subcurve Y0(N) =
Γ0(N)\h are in bijection with pairs (E,C), where E is an elliptic curve over C
and C is a cyclic subgroup of E(C) of order N . If p - N then there are two
natural maps π1 and π2 from Y0(pN) to Y0(N); the first, π1, sends (E,C) to
(E,C ′), where C ′ is the unique cyclic subgroup of C of order N , and the second,
π2, sends a point (E,C) ∈ Y0(N)(C) to (E/D,C/D), where D is the unique
cyclic subgroup of C of order p. These maps extend in a unique way to maps
from X0(pN) to X0(N):

X0(pN)
π2

yyttttttttt
π1

%%KKKKKKKKK

X0(N) X0(N).

The pth Hecke operator Tp is (π1)∗ ◦ (π2)∗; it acts on most objects attached to
X0(N), such as divisors and cusp forms. There is a Hecke operator Tn for every
positive integer n, but we will not need to consider those with n composite.
Example 1.2. There is a basis of S2(39) so that

T2 =




1 1 0
−2 −3 −2

0 0 1


 and T5 =



−4 −2 −6

4 4 4
0 0 2


 .

3



H1(X0(39),Z) ∼= Z× Z× Z× Z× Z× Z

Figure 1: The homology of X0(39).

Notice that these matrices commute, and that 1 is an eigenvalue of T2, and 2 is
an eigenvalue of T5.

The first homology group H1(X0(N),Z) is the group of singular 1-cycles
modulo homology relations. Recall that topologically X0(N) is a g-holed torus,
where g is the genus of X0(N). The group H1(X0(N),Z) is thus a free abelian
group of rank 2g (see, e.g., [9, Ex. 19.30]), with two generators corresponding
to each hole, as illustrated in the case N = 39 in Figure 1.

The Hecke operators Tp act on H1(X0(N),Z), and integration defines a
nondegenerate Hecke-equivariant pairing

〈 , 〉 : S2(N)×H1(X0(N),Z) → C.

Explicitly, for a path x,

〈f, x〉 = 2πi

∫

x

f(z)dz,

where the integral may be viewed as a complex line integral along an appropri-
ate piece of the preimage of x in the upper half plane. The pairing is Hecke
equivariant in the sense that for every prime p, we have 〈fTp, x〉 = 〈f, Tpx〉. As
we will see, modular symbols allow us to make explicit the action of the Hecke
operators on H1(X0(N),Z); the above pairing then translates this into a wealth
of information about cusp forms.

For a more detailed survey of the basic facts about modular curves and
modular forms, we urge the reader to consult Diamond and Im’s excellent survey
paper [8]. For a discussion of how to draw a picture of the ring generated by
the Hecke operators, see [18, §3.8].

2 Modular symbols

The modular symbols formalism provides a presentation of H1(X0(N),Z) in
terms of paths between elements of P1(Q). Furthermore, a trick due to Manin
gives an explicit finite list of generators and relations for the space of modular
symbols.
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Figure 2: The modular symbols {α, β} and {0,∞}.

The modular symbol defined by a pair α, β ∈ P1(Q) is denoted {α, β}. As
illustrated in Figure 2, this modular symbol should be viewed as the homology
class, relative to the cusps, of a geodesic path from α to β in h∗. The homology
group relative to the cusps is a slight enlargement of the usual homology group,
in that we allow paths with endpoints in P1(Q) instead of restricting to closed
loops.

Motivated by this picture, we declare that modular symbols satisfy the fol-
lowing homology relations: if α, β, γ ∈ Q ∪ {∞}, then

{α, β}+ {β, γ}+ {γ, α} = 0.

Furthermore, the space of modular symbols is torsion free, so, e.g., {α, α} = 0
and {α, β} = −{β, α}.

Denote by MMM2 the free abelian group with basis the set of symbols {α, β}
modulo the three-term homology relations above and modulo any torsion. There
is a left action of GL2(Q) on MMM2, whereby a matrix g acts by

g{α, β} = {g(α), g(β)},
and g acts on α and β by a linear fractional transformation. The space MMM2(N)
of modular symbols for Γ0(N) is the quotient ofMMM2 by the submodule generated
by the infinitely many elements of the form x − g(x), for x in MMM2 and g in
Γ0(N), and modulo any torsion. A modular symbol for Γ0(N) is an element of
this space. We frequently denote the equivalence class that defines a modular
symbol by giving a representative element.

Example 2.1. Since γ = ( 1 1
0 1 ) ∈ Γ0(N), we have {∞, 0} = {γ(∞), γ(0)} =

{∞, 1}. Thus 0 = {∞, 1}−{∞, 0} = {∞, 1}+{0,∞} = {0,∞}+{∞, 1} = {0, 1}.

5



In [13], Manin proved that there is a natural injection H1(X0(N),Z) ↪→
MMM2(N). The image of H1(X0(N),Z) in MMM2(N) is as follows. Let BBB2(N)
denote the free abelian group whose basis is the finite set Γ0(N)\P1(Q). The
boundary map δ :MMM2(N) →BBB2(N) sends {α, β} to [β]− [α], where [β] denotes
the basis element of BBB2(N) corresponding to β ∈ P1(Q). The kernel SSS2(N)
of δ is the subspace of cuspidal modular symbols. An element of SSS2(N) can be
thought of as a linear combination of paths in h∗ whose endpoints are cusps,
and whose images in X0(N) are a linear combination of loops. We thus obtain
a map ϕ : SSS2(N) → H1(X0(N),Z).

Theorem 2.2. The map ϕ given above defines a canonical isomorphism

SSS2(N) ∼= H1(X0(N),Z).

Example 2.3. We illustrate modular symbols in the case when N = 11. Using,
e.g., the author’s package in [5], one finds thatMMM2(11) is the free abelian group
of rank 3 generated by {−1/7, 0}, {−1/5, 0}, and {∞, 0}. The integral homology
H1(X0(N),Z) corresponds to the abelian subgroup generated by {−1/7, 0} and
{−1/5, 0}. See [7, Appendix to Ch. II] for a more detailed description of the
computation of MMM2(11).

2.1 Manin’s trick

In this section, we describe a trick of Manin that shows that the space of modular
symbols can be computed.

By reducing modulo N , one sees that the group Γ0(N) has finite index in
SL2(Z). Let r0, r1, . . . , rm be distinct right coset representatives for Γ0(N) in
SL2(Z), so that

SL2(Z) = Γ0(N)ro ∪ Γ0(N)r1 ∪ · · · ∪ Γ0(N)rm,

where the union is disjoint. For example, when N is prime, a list of coset
representatives is

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 0
2 1

)
,

(
1 0
3 1

)
, . . . ,

(
1 0

N − 1 1

)
,

(
0 −1
1 0

)
.

In general, the right cosets of Γ0(N) in SL2(Z) are in bijection with the elements
of P1(Z/NZ), the bijection sending a coset representative

(
a b
c d

)
to the class of

(c : d) in P1(Z/NZ) (see [7, §2.2] for complete details).
The following trick of Manin (see [13, §1.5] and [7, §2.1.6]) allows us to

write every modular symbol as a Z-linear combination of symbols of the form
ri{0,∞}. In particular, the finitely many symbols ri{0,∞} generate MMM2(N).

Because of the relation {α, β} = {0, β} − {0, α}, it suffices to consider mod-
ular symbols of the form {0, b/a}, where the rational number b/a is in lowest
terms. Expand b/a as a continued fraction and consider the successive conver-
gents in lowest terms:

b−2

a−2
=

0
1
,

b−1

a−1
=

1
0
,

b0

a0
=

b0

1
, . . . ,

bn−1

an−1
,

bn

an
=

b

a

6



where the first two are added formally. Then

bkak−1 − bk−1ak = (−1)k−1,

so that

gk =
(

bk (−1)k−1bk−1

ak (−1)k−1ak−1

)
∈ SL2(Z).

Hence {
bk−1

ak−1
,
bk

ak

}
= gk{0,∞} = ri{0,∞},

for some i, is of the required special form.
Example 2.4. Let N = 11, and consider the modular symbol {0, 4/7}. We have

4
7

= 0 +
1

1 + 1
1+ 1

3

,

so the partial convergents are

b−2

a−2
=

0
1
,

b−1

a−1
=

1
0
,

b0

a0
=

0
1
,

b1

a1
=

1
1
,

b2

a2
=

1
2
,

b3

a3
=

4
7
.

Thus, noting as in Example 2.1 that {0, 1} = 0, we compute

{0, 4/7} = {0,∞}+ {∞, 0}+ {0, 1}+ {1, 1/2}+ {1/2, 4/7}
=

(
1 −1
2 −1

)
{0,∞}+

(
4 1
7 2

)
{0,∞}

=
(

1 0
9 1

)
{0,∞}+

(
1 0
9 1

)
{0,∞}

= 2 ·
[(

1 0
9 1

)
{0,∞}

]

2.2 Manin symbols

As above, fix coset representatives r0, . . . , rm for Γ0(N) in SL2(Z). Denote the
modular symbol ri{0,∞} by [ri]. The symbols [r0], . . . , [rm] are called Manin
symbols, and they are equipped with a right action of SL2(Z), which is given
by [ri]g = [rj ], where Γ0(N)rj = Γ0(N)rig. Recall that SL2(Z) is generated by
the two matrices σ =

(
0 −1
1 0

)
and τ =

(
1 −1
1 0

)
(see Theorem 2 of [19, VII.1.2]).

Theorem 2.5 (Manin). The Manin symbols [r0], . . . , [rm] satisfy the following
relations:

[ri] + [ri]σ = 0

[ri] + [ri]τ + [ri]τ2 = 0.

Furthermore, these relations generate all relations (modulo torsion relations).

This theorem, which is proved in [13, §1.7], provides a finite presentation for
the space of modular symbols.
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2.3 Hecke operators on modular symbols

When p is a prime not dividing N , define

Tp{α, β} =
(

p 0
0 1

)
{α, β}+

∑

r mod p

(
1 r
0 p

)
{α, β}.

As mentioned before, this definition is compatible with the integration pairing
〈 , 〉 of Section 1, in the sense that 〈fTp, x〉 = 〈f, Tpx〉. When p | N , the
definition is the same, except that the matrix

(
p 0
0 1

)
is dropped.

For example, when N = 11 we have

T2{0, 1/5} = {0, 2/5}+ {0, 1/10}+ {1/2, 3/5}
= −2{0, 1/5}.

In [15], L. Merel gives a description of the action of Tp directly on Manin
symbols [ri] (see also, [7, §2.4]). For example, when p = 2 and N is odd, we
have

T2([ri]) = [ri]
(

1 0
0 2

)
+ [ri]

(
2 0
0 1

)
+ [ri]

(
2 1
0 1

)
+ [ri]

(
1 0
1 2

)
.

3 Computing the space of modular forms

In this section we describe how to use modular symbols to construct a basis of
S2(N) consisting of modular forms that are eigenvectors for every element of
the ring T′ generated by the Hecke operator Tp, with p - N . Such eigenvectors
are called eigenforms.

Suppose M is a positive integer that divides N . As explained in [12, VIII.1–
2], for each divisor d of N/M there is a natural degeneracy map βM,d : S2(M) →
S2(N) given by βM,d(f(q)) = f(qd). The new subspace of S2(N), denoted
S2(N)new, is the complementary T-submodule of the T-module generated by
the images of all maps βM,d, with M and d as above. (It is a nontrivial fact
that this complement is well defined; one possible proof uses the Petersson inner
product.)

The theory of Atkin and Lehner [2] asserts that, as a T′-module, S2(N)
decomposes as follows:

S2(N) =
⊕

M |N, d|N/M

βM,d(S2(M)new).

To compute S2(N) it thus suffices to compute S2(M)new for each positive divi-
sor M of N .

We now turn to the problem of computing S2(N)new. Atkin and Lehner [2]
also proved that S2(N)new is spanned by eigenforms, each of which occurs with
multiplicity one in S2(N)new. Moreover, if f ∈ S2(N)new is an eigenform then
the coefficient of q in the q-expansion of f is nonzero, so it is possible to normal-
ize f so that coefficient of q is 1. With f so normalized, if Tp(f) = apf , then the
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pth Fourier coefficient of f is ap. If f =
∑∞

n=1 anqn is a normalized eigenvector
for all Tp, then the an, with n composite, are determined by the ap, with p prime,
by the following formulas: anm = anam when n and m are relatively prime, and
apr = apr−1ap − papr−2 for p - N prime. When p | N , apr = ar

p. We conclude
that in order to compute S2(N)new, it suffices to compute all systems of eigen-
values {a2, a3, a5, . . .} of the Hecke operators T2, T3, T5, . . . acting on S2(N)new.
Given a system of eigenvalues, the corresponding eigenform is f =

∑∞
n=1 anqn,

where the an, for n composite, are determined by the recurrence given above.
In light of the pairing 〈 , 〉 introduced in Section 1, computing the above

systems of eigenvalues {a2, a3, a5, . . .} amounts to computing the systems of
eigenvalues of the Hecke operators Tp on the subspace V of SSS2(N) that corre-
sponds to the new subspace of S2(N). For each proper divisor M of N and each
divisor d of N/M , let φM,d : SSS2(N) →SSS2(M) be the map sending x to ( d 0

0 1 ) x.
Then V is the intersection of the kernels of all maps φM,d.

The computation of the systems of eigenvalues of a collection of commuting
diagonalizable endomorphisms involves standard linear algebra techniques, such
as computation of characteristic polynomials and kernels of matrices. There
are, however, several tricks that greatly speed up this process, some of which
are described in [21, §3.5.4].

Example 3.1. All forms in S2(39) are new. Up to Galois conjugacy, the eigenval-
ues of the Hecke operators T2, T3, T5, and T7 on SSS2(39) are {1,−1, 2,−4} and
{a, 1,−2a− 2, 2a + 2}, where a2 + 2a− 1 = 0. Each of these eigenvalues occur
in SSS2(39) with multiplicity two; for example, the characteristic polynomial of
T2 on SSS2(39) is (x− 1)2 · (x2 + 2x− 1)2. Thus S2(39) is spanned by

f1 = q + q2 − q3 − q4 + 2q5 − q6 − 4q7 + · · · ,

f2 = q + aq2 + q3 + (−2a− 1)q4 + (−2a− 2)q5 + aq6 + (2a + 2)q7 + · · · ,

and the Galois conjugate of f2.

3.1 Summary

To compute the q-expansion, to some precision, of each eigenforms in S2(N),
we use the degeneracy maps so that we only have to solve the problem for
S2(N)new. Here, using modular symbols, we compute all systems of eigenvalues
{a2, a3, a5, . . .}, then write down each of the corresponding eigenforms f =
q + a2q

2 + q3q
3 + · · · .
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