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FIGURE 6.5. Louis J. Mordell

6.5 Elliptic Curves Over the Rational Numbers

Let E be an elliptic curve defined over Q. The following is a deep theorem
about the group E(Q).

Theorem 6.5.1 (Mordell). The group E(Q) is finitely generated. That is,

there are points P1, . . . , Ps ∈ E(Q) such that every element of E(Q) is of

the form n1P1 + · · · + nsPs for integers n1, . . . ns ∈ Z.

Mordell’s theorem implies that it makes sense to ask whether or not
we can compute E(Q), where by “compute” we mean find a finite set
P1, . . . , Ps of points on E that generate E(Q) as an abelian group. There
is a systematic approach to computing E(Q) called “descent” (see e.g.,
[Cre97, Cre, Sil86]). It is widely believed that descent will always succeeds,
but nobody has yet proved that it does. Proving that descent works for
all curves is one of the central open problem in number theory, and is
closely related to the Birch and Swinnerton-Dyer conjecture (one of the
Clay Math Institute’s million dollar prize problems). The crucial difficulty
amounts to deciding whether or not certain explicitly given curves have any
rational points on them or not (these are curves that have points over R

and modulo n for all n).
The details of using descent to computing E(Q) are beyond the scope

of this book. In several places below we will simply assert that E(Q) has
a certain structure or is generated by certain elements. In each case, we
computed E(Q) using a computer implementation of this method.

6.5.1 The Torsion Subgroup of E(Q) and the Rank

For any abelian group G, let Gtor be the subgroup of elements of finite
order. If E is an elliptic curve over Q, then E(Q)tor is a subgroup of
E(Q), which must be finite because of Theorem 6.5.1 (see Exercise 6.6).
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One can also prove that E(Q)tor is finite by showing that there is a prime
p and an injective reduction homomorphism E(Q)tor →֒ E(Z/pZ), then
noting that E(Z/pZ) is finite. For example, if E is y2 = x3 − 5x + 4, then
E(Q)tor = {O, (1, 0)} ∼= Z/2Z.

The possibilities for E(Q)tor are known.

Theorem 6.5.2 (Mazur, 1976). Let E be an elliptic curve over Q. Then

E(Q)tor is isomorphic to one of the following 15 groups:

Z/nZ for n ≤ 10 or n = 12,

Z/2 × Z/2n for n ≤ 4.

The quotient E(Q)/E(Q)tor is a finitely generated free abelian group,
so it is isomorphism to Zr for some integer r, called the rank of E(Q).
For example, using descent one finds that if E is y2 = x3 − 5x + 4, then
E(Q)/E(Q)tor is generated by the point (0, 2). Thus E(Q) ∼= Z× (Z/2Z).

The following is a folklore conjecture, not associated to any particular
mathematician:

Conjecture 6.5.3. There are elliptic curves over Q of arbitrarily large

rank.

The “world record” is the following curve, whose rank is at least 24:

y2+xy + y = x3 − 120039822036992245303534619191166796374x

+ 504224992484910670010801799168082726759443756222911415116

It was discovered in January 2000 by Roland Martin and William McMillen
of the National Security Agency.

6.5.2 The Congruent Number Problem

Definition 6.5.4 (Congruent Number). We call a nonzero rational num-
ber n a congruent number if ±n is the area of a right triangle with rational
side lengths. Equivalently, n is a congruent number if the system of two
equations

a2 + b2 = c2

1

2
ab = n

has a solution with a, b, c ∈ Q.

For example, 6 is the area of the right triangle with side lengths 3, 4,
and 5, so 6 is a congruent number. Less obvious is that 5 is also a congruent
number; it is the area of the right triangle with side lengths 3/2, 20/3, and
41/6. It is nontrivial to prove that 1, 2, 3, and 4 are not congruent numbers.
Here is a list of the integer congruent numbers up to 50:

5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, 47.
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Every congruence class modulo 8 except 3 is represented in this list,
which incorrectly suggests that if n ≡ 3 (mod 8) then n is not a congruent
number. Though no n ≤ 218 with n ≡ 3 (mod 8) is a congruent number,
n = 219 is a congruent number congruent and 219 ≡ 3 (mod 8).

Deciding whether an integer n is a congruent number can be subtle since
the simplest triangle with area n can be very complicated. For example,
as Zagier pointed out, the number 157 is a congruent number, and the
“simplest” rational right triangle with area 157 has side lengths

a =
6803298487826435051217540

411340519227716149383203
and b =

411340519227716149383203

21666555693714761309610
.

This solution would be difficult to find by a brute force search.
We call congruent numbers “congruent” because of the following proposi-

tion, which asserts that any congruent number is the common “congruence”
between three perfect squares.

Proposition 6.5.5. Suppose n is the area of a right triangle with rational

side lengths a, b, c, with a ≤ b < c. Let A = (c/2)2. Then

A − n, A, and A + n

are all perfect squares of rational numbers.

Proof. We have

a2 + b2 = c2

1

2
ab = n

Add or subtract 4 times the second equation to the first to get

a2 ± 2ab + b2 = c2 ± 4n

(a ± b)2 = c2 ± 4n
(

a ± b

2

)2

=
( c

2

)2

± n

= A ± n

The main motivating open problem related to congruent numbers, is to
give a systematic way to recognize them.

Open Problem 6.5.6. Give an algorithm which, given n, outputs whether

or not n is a congruent number.
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Fortunately, the vast theory developed about elliptic curves has some-
thing to say about the above problem. In order to understand this connec-
tion, we begin with an elementary algebraic proposition that establishes a
link between elliptic curves and the congruent number problem.

Proposition 6.5.7 (Congruent numbers and elliptic curves). Let n be a

rational number. There is a bijection between

A =

{

(a, b, c) ∈ Q3 :
ab

2
= n, a2 + b2 = c2

}

and

B =
{

(x, y) ∈ Q2 : y2 = x3 − n2x, with y 6= 0
}

given explicitly by the maps

f(a, b, c) =

(

−
nb

a + c
,

2n2

a + c

)

and

g(x, y) =

(

n2 − x2

y
, −

2xn

y
,

n2 + x2

y

)

.

The proof of this proposition is not deep, but involves substantial (ele-
mentary) algebra and we will not prove it in this book.

For n 6= 0, let En be the elliptic curve y2 = x3 − n2x.

Proposition 6.5.8 (Congruent number criterion). The rational number n
is a congruent number if and only if there is a point P = (x, y) ∈ En(Q)
with y 6= 0.

Proof. The number n is a congruent number if and only if the set A from
Proposition 6.5.7 is nonempty. By the proposition A is nonempty if and
only if B is nonempty.

Example 6.5.9. Let n = 5. Then En is y2 = x3 − 25x, and we notice that
(−4,−6) ∈ En(Q). We next use the bijection of Proposition 6.5.7 to find
the corresponding right traingle:

g(−4,−6) =

(

25 − 16

−6
,−

−40

−6
,
25 + 16

−6

)

=

(

−
3

2
,−

20

3
,−

41

6

)

.

Multiplying through by −1 yields the side lengths of a rational right triangle
with area 5. Are there any others?

Observe that we can apply g to any point in En(Q) with y 6= 0. Using
the group law we find that 2(−4,−6) = (1681/144, 62279/1728), and

g(2(−4,−6)) =

(

−
1519

492
,−

4920

1519
,
3344161

747348

)

.
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Example 6.5.10. Let n = 1, so E1 is defined by y2 = x3 − x. Since 1 is not
a congruent number, the elliptic curve E1 has no point with y 6= 0. See
Exercise 6.10.

Example 6.5.9 foreshadows the following theorem.

Theorem 6.5.11 (Infinitely Many Triangles). If n is a congruent number,

then there are infinitely many distinct right triangles with rational side

lengths and area n.

We will not prove this theorem, except to note that one proves it by
showing that En(Q)tor = {O, (0, 0), (n, 0), (−n, 0)}, so the elements of the
set B in Proposition 6.5.7 all have infinite order, hence B is infinite so A
is infinite.

Tunnell has proved that the Birch and Swinnerton-Dyer (alluded to
above), implies the existence of an elementary way to decide whether or
not an integer n is a congruent number. We state Tunnell’s elementary way
in the form of a conjecture.

Conjecture 6.5.12. Let a, b, c denote integers. If n is an even square-free

integer then n is a congruent number if and only if

#
{

(a, b, c) ∈ Z3 : 4a2 + b2 + 8c2 =
n

2
: c is even

}

= #
{

(a, b, c) : 4a2 + b2 + 8c2 =
n

2
: c is odd

}

.

If n is odd and square free then n is a congruent number if and only if

#
{

(a, b, c) : 2a2 + b2 + 8c2 = n : c is even
}

= #
{

(a, b, c) : 2a2 + b2 + 8c2 = n : c is odd
}

.

Enough of the Birch and Swinnerton-Dyer conjecture is known to prove
one direction of Conjecture 6.5.12. In particular, it is a very deep theorem
that if we do not have equality of the displayed cardinalities, then n is not
a congruent number. For example, when n = 1,

The even more difficult (and still open!) part of Conjecture 6.5.12 is the
converse: If one has equality of the displayed cardinalities, prove that n
is a congruent number. The difficulty in this direction, which appears to
be very deep, is that we must somehow construct (or prove the existence
of) elements of En(Q). This has been accomplished in some cases do to
groundbreaking work of Gross and Zagier ([GZ86]) but much work remains
to be done.

The excellent book [Kob84] is about congruent numbers and Conjec-
ture 6.5.12, and we encourage the reader to consult it. The Birch and
Swinnerton-Dyer conjecture is a Clay Math Institute million dollar millen-
nium prize problem (see [Cla, Wil00]).


