
154 7. Computational Number Theory

7.6 Elliptic Curves

The fundamental algorithms that we described in Chapter 6 are arithmetic
of points on elliptic curve, the Pollard (p − 1) and elliptic curve integer
factorization methods, and the the ElGamal elliptic curve cryptosystem.
In this section we implement each of these algorithms for elliptic curves
over Z/pZ, and finish with an investigation of the associative law on an
elliptic curve.

7.6.1 Arithmetic

Each elliptic curve function takes as first input an elliptic curve y2 = x3 +
ax + b over Z/pZ, which we represent by a triple (a,b,p). We represent
points on an elliptic curve in Python as a pair (x,y), with 0 ≤ x, y <
p or as the string "Identity". The functions in Listings 7.6.1 and 7.6.2
implement the group law (Algorithm 6.2.1) and computation of mP for
possibly large m.

Listing 7.6.1 (Elliptic Curve Group Law).

def ellcurve_add(E, P1, P2):

"""

Returns the sum of P1 and P2 on the elliptic

curve E.

Input:

E -- an elliptic curve over Z/pZ, given by a

triple of integers (a, b, p), with p odd.

P1 --a pair of integers (x, y) or the

string "Identity".

P2 -- same type as P1

Output:

R -- same type as P1

Examples:

>>> E = (1, 0, 7) # y**2 = x**3 + x over Z/7Z

>>> P1 = (1, 3); P2 = (3, 3)

>>> ellcurve_add(E, P1, P2)

(3, 4)

>>> ellcurve_add(E, P1, (1, 4))

’Identity’

>>> ellcurve_add(E, "Identity", P2)

(3, 3)

"""

a, b, p = E

assert p > 2, "p must be odd."

if P1 == "Identity": return P2

if P2 == "Identity": return P1

7.6 Elliptic Curves 155

x1, y1 = P1; x2, y2 = P2

x1 %= p; y1 %= p; x2 %= p; y2 %= p

if x1 == x2 and y1 == p-y2: return "Identity"

if P1 == P2:

if y1 == 0: return "Identity"

lam = (3*x1**2+a) * inversemod(2*y1,p)

else:

lam = (y1 - y2) * inversemod(x1 - x2, p)

x3 = lam**2 - x1 - x2

y3 = -lam*x3 - y1 + lam*x1

return (x3%p, y3%p)

————————————————————————

Listing 7.6.2 (Computing a Multiple of a Point).

def ellcurve_mul(E, m, P):

"""

Returns the multiple m*P of the point P on

the elliptic curve E.

Input:

E -- an elliptic curve over Z/pZ, given by a

triple (a, b, p).

m -- an integer

P -- a pair of integers (x, y) or the

string "Identity"

Output:

A pair of integers or the string "Identity".

Examples:

>>> E = (1, 0, 7)

>>> P = (1, 3)

>>> ellcurve_mul(E, 5, P)

(1, 3)

>>> ellcurve_mul(E, 9999, P)

(1, 4)

"""

assert m >= 0, "m must be nonnegative."

power = P

mP = "Identity"

while m != 0:

if m%2 != 0: mP = ellcurve_add(E, mP, power)

power = ellcurve_add(E, power, power)

m /= 2

return mP

————————————————————————

156 7. Computational Number Theory

7.6.2 Integer Factorization

In Listing 7.6.3 we implement Algorithm 6.3.2 for computing the least
common multiple of all integers up to some bound.

Listing 7.6.3 (Least Common Multiple of Numbers).

def lcm_to(B):

"""

Returns the least common multiple of all

integers up to B.

Input:

B -- an integer

Output:

an integer

Examples:

>>> lcm_to(5)

60

>>> lcm_to(20)

232792560

>>> lcm_to(100)

69720375229712477164533808935312303556800L

"""

ans = 1

logB = log(B)

for p in primes(B):

ans *= p**int(logB/log(p))

return ans

————————————————————————

Next we implement Pollard’s p − 1 method, as in Algorithm 6.3.3. We
use only the bases a = 2, 3, but you could change this to use more bases
by modifying the for loop in Listing 7.6.4.

Listing 7.6.4 (Pollard).

def pollard(N, m):

"""

Use Pollard’s (p-1)-method to try to find a

nontrivial divisor of N.

Input:

N -- a positive integer

m -- a positive integer, the least common

multiple of the integers up to some

bound, computed using lcm_to.

Output:

int -- an integer divisor of n

Examples:

7.6 Elliptic Curves 157

>>> pollard(5917, lcm_to(5))

61

>>> pollard(779167, lcm_to(5))

779167

>>> pollard(779167, lcm_to(15))

2003L

>>> pollard(187, lcm_to(15))

11

>>> n = random_prime(5)*random_prime(5)*random_prime(5)

>>> pollard(n, lcm_to(100))

315873129119929L #rand

>>> pollard(n, lcm_to(1000))

3672986071L #rand

"""

for a in [2, 3]:

x = powermod(a, m, N) - 1

g = gcd(x, N)

if g != 1 and g != N:

return g

return N

————————————————————————

In order to implement the elliptic curve method and also in our upcom-
ing elliptic curve cryptography implementation, it will be useful to define
the function randcurve of Listing 7.6.5, which computes a random elliptic
curve over Z/pZ and a point on it. For simplicity, randcurve always re-
turns a curve of the form y2 = x3 +ax+1, and the point P = (0, 1). As an
exercise you could change this function to return a more general curve, and
find a random point by choosing a random x, then incrementing it until
x3 + ax + 1 is a perfect square.

Listing 7.6.5 (Random Elliptic Curve).

def randcurve(p):

"""

Construct a somewhat random elliptic curve

over Z/pZ and a random point on that curve.

Input:

p -- a positive integer

Output:

tuple -- a triple E = (a, b, p)

P -- a tuple (x,y) on E

Examples:

>>> p = random_prime(20); p

17758176404715800329L #rand

>>> E, P = randcurve(p)

>>> print E

158 7. Computational Number Theory

(15299007531923218813L, 1, 17758176404715800329L) #rand

>>> print P

(0, 1)

"""

assert p > 2, "p must be > 2."

a = randrange(p)

while gcd(4*a**3 + 27, p) != 1:

a = randrange(p)

return (a, 1, p), (0,1)

————————————————————————

In Listing 7.6.6, we implement the elliptic curve factorization method.

Listing 7.6.6 (Elliptic Curve Factorization Method).

def elliptic_curve_method(N, m, tries=5):

"""

Use the elliptic curve method to try to find a

nontrivial divisor of N.

Input:

N -- a positive integer

m -- a positive integer, the least common

multiple of the integers up to some

bound, computed using lcm_to.

tries -- a positive integer, the number of

different elliptic curves to try

Output:

int -- a divisor of n

Examples:

>>> elliptic_curve_method(5959, lcm_to(20))

59L #rand

>>> elliptic_curve_method(10007*20011, lcm_to(100))

10007L #rand

>>> p = random_prime(9); q = random_prime(9)

>>> n = p*q; n

117775675640754751L #rand

>>> elliptic_curve_method(n, lcm_to(100))

117775675640754751L #rand

>>> elliptic_curve_method(n, lcm_to(500))

117775675640754751L #rand

"""

for _ in range(tries): # (1)

E, P = randcurve(N) # (2)

try: # (3)

Q = ellcurve_mul(E, m, P) # (4)

except ZeroDivisionError, x: # (5)

g = gcd(x[0],N) # (6)

7.6 Elliptic Curves 159

if g != 1 or g != N: return g # (7)

return N

————————————————————————

In line (1) the underscore means that the for loop iterates tries times,
but that no variable is “wasted” recording which iteration we are in. In
line (2) we compute a random elliptic curve and point on it. The elliptic
curve method works by assuming N is prime, doing a certain computation,
on an elliptic curve over Z/NZ, and detecting if something goes wrong.
Python contains a mechanism called exception handling, which leads to
a very simple implementation of the elliptic curve method, that uses the
elliptic curve functions that we have already defined. The try statement
in line (3) means that the code in line (4) should be executed, and if the
ZeroDivisionError exception is raised, then the code in lines (6) and
(7) should be executed, but not otherwise. Recall that in the definition of
inversemod from Listing 7.2.2, when the inverse could not be computed,
we raised a ZeroDivisionError, which included the offending pair (a, n).
Thus when computing mP , if at any point it is not possible to invert
a number modulo N , we jump to line (6), compute a gcd with N , and
hopefully split N .

7.6.3 ElGamal Elliptic Curve Cryptosystem

Listing 7.6.7 defines a function that creates an ElGamal cryptosystem over
Z/pZ. This is simplified from what one would do in actual practice. One
would use a more general random elliptic curve and point than we do in
elgamal init, and count the number of points on it using the Schoof-
Elkies-Atkin algorithm, then repeat this procedure if the number of points
is not a prime or a prime times a small number, or is p, p − 1, or p + 1.
Since implementing Schoof-Elkies-Atkin is beyond the scope of this book,
we have not included this crucial step.

Listing 7.6.7 (Initialize ElGamal).

def elgamal_init(p):

"""

Constructs an ElGamal cryptosystem over Z/pZ, by

choosing a random elliptic curve E over Z/pZ, a

point B in E(Z/pZ), and a random integer n. This

function returns the public key as a 4-tuple

(E, B, n*B) and the private key n.

Input:

p -- a prime number

Output:

tuple -- the public key as a 3-tuple

(E, B, n*B), where E = (a, b, p) is an

