Math 129: Algebraic Number Theory Homework Assignment 3

William Stein

Due: Thursday, March 4, 2004

The problems:

- 1. (a) Suppose K is a number field of degree 2. Prove that $\mathcal{O}_K = \mathbf{Z}[a]$ for some $a \in \mathcal{O}_K$.
 - (b) Prove that if K and K' are two number fields of degree 2 and $\text{Disc}(\mathcal{O}_K) = \text{Disc}(\mathcal{O}_{K'})$ then K = K'.
- 2. (*) Does there exist a number field K of degree 4 such that $\mathcal{O}_K \neq \mathbf{Z}[a]$ for all $a \in \mathcal{O}_K$? If so, give an explicit example.
- 3. Let K be the quintic number field generated by a root of $x^5 + 7x^4 + 3x^2 x + 1$. Draw a diagram (be creative) that illustrates the factorization of every prime $p \in \mathbf{Z}$, with p < 100, in \mathcal{O}_K .
- 4. (Problem 1.9 in Swinnerton-Dyer) Show that the only solutions $x, y \in \mathbb{Z}$ to $y^2 = x^3 13$ are given by $x = 17, y = \pm 70$, as follows. Factor the equation $y^2 + 13 = x^3$ in the number field $\mathbb{Q}(\sqrt{-13})$, which has class number 2. Show that if x, y is an integer solution then the ideal $(y + \sqrt{-13})$ must be the cube of an ideal, and hence $y + \sqrt{-13} = (a + b\sqrt{-13})^3$; thus $1 = b(3a^2 13b^2)$.
- 5. Suppose I and J are ideals in the ring \mathcal{O}_K of integers of a number field K. Does $IJ = I \cap J$? Prove or give a counterexample.
- 6. Let \mathcal{O}_K be the ring of integers $\mathbf{Q}(\sqrt{5})$, and let

 $I = (5, 2 + \sqrt{5})$ and $J = (209, (389 + \sqrt{5})/2)$

be integral ideals of \mathcal{O}_K .

- (a) Find an element of \mathcal{O}_K that is congruent to $\sqrt{5}$ modulo I and is congruent to $1 \sqrt{5}$ modulo J.
- (b) What is the cardinality of $(\mathcal{O}_K/I) \oplus (\mathcal{O}_K/J)$?
- (c) Find an element $a \in I$ such that (a)/I is coprime to J.
- 7. Let \mathcal{O}_K be the ring of integers of a number field K, and suppose K has exactly 2s complex embeddings. Prove that the sign of $\text{Disc}(\mathcal{O}_K)$ is $(-1)^s$.