Math 129: Algebraic Number Theory Homework Assignment 3

William Stein

Due: Thursday, March 4, 2004

The problems:

1. (a) Suppose K is a number field of degree 2. Prove that $\mathcal{O}_{K}=\mathbf{Z}[a]$ for some $a \in \mathcal{O}_{K}$.
(b) Prove that if K and K^{\prime} are two number fields of degree 2 and $\operatorname{Disc}\left(\mathcal{O}_{K}\right)=$ $\operatorname{Disc}\left(\mathcal{O}_{K^{\prime}}\right)$ then $K=K^{\prime}$.
2. ${ }^{*}$) Does there exist a number field K of degree 4 such that $\mathcal{O}_{K} \neq \mathbf{Z}[a]$ for all $a \in \mathcal{O}_{K}$? If so, give an explicit example.
3. Let K be the quintic number field generated by a root of $x^{5}+7 x^{4}+3 x^{2}-x+1$. Draw a diagram (be creative) that illustrates the factorization of every prime $p \in \mathbf{Z}$, with $p<100$, in \mathcal{O}_{K}.
4. (Problem 1.9 in Swinnerton-Dyer) Show that the only solutions $x, y \in \mathbf{Z}$ to $y^{2}=x^{3}-13$ are given by $x=17, y= \pm 70$, as follows. Factor the equation $y^{2}+13=x^{3}$ in the number field $\mathbf{Q}(\sqrt{-13})$, which has class number 2. Show that if x, y is an integer solution then the ideal $(y+\sqrt{-13})$ must be the cube of an ideal, and hence $y+\sqrt{-13}=(a+b \sqrt{-13})^{3}$; thus $1=b\left(3 a^{2}-13 b^{2}\right)$.
5. Suppose I and J are ideals in the ring \mathcal{O}_{K} of integers of a number field K. Does $I J=I \cap J$? Prove or give a counterexample.
6. Let \mathcal{O}_{K} be the ring of integers $\mathbf{Q}(\sqrt{5})$, and let

$$
I=(5,2+\sqrt{5}) \quad \text { and } \quad J=(209,(389+\sqrt{5}) / 2)
$$

be integral ideals of \mathcal{O}_{K}.
(a) Find an element of \mathcal{O}_{K} that is congruent to $\sqrt{5}$ modulo I and is congruent to $1-\sqrt{5}$ modulo J.
(b) What is the cardinality of $\left(\mathcal{O}_{K} / I\right) \oplus\left(\mathcal{O}_{K} / J\right)$?
(c) Find an element $a \in I$ such that (a)/I is coprime to J.
7. Let \mathcal{O}_{K} be the ring of integers of a number field K, and suppose K has exactly $2 s$ complex embeddings. Prove that the sign of $\operatorname{Disc}\left(\mathcal{O}_{K}\right)$ is $(-1)^{s}$.

