Harvard Math 129: Algebraic Number Theory Homework Assignment 4

William Stein

Due: Thursday, March 10, 2005

The problems have equal point value, and multi-part problems are of the same value. In any problem where you use a computer, include in your solution the exact commands you type and their output. You may use any software, including (but not limited to) MAGMA and PARI.

1. Let p be a prime. Let \mathcal{O}_{K} be the ring of integers of a number field K, and suppose $a \in \mathcal{O}_{K}$ is such that $\left[\mathcal{O}_{K}: \mathbb{Z}[a]\right]$ is finite and coprime to p. Let $f(x)$ be the minimal polynomial of a. We proved in class that if the reduction $\bar{f} \in \mathbb{F}_{p}[x]$ of f factors as

$$
\bar{f}=\prod_{i}^{g_{i}^{i}},
$$

where the g_{i} are distinct irreducible polynomials in $\mathbb{F}_{p}[x]$, then the primes appearing in the factorization of $p \mathcal{O}_{K}$ are the ideals $\left(p, g_{i}(a)\right)$. In class, we did not prove that the exponents of these primes in the factorization of $p \mathcal{O}_{K}$ are the e_{i}. Prove this.
2. Let $a_{1}=1+i, a_{2}=3+2 i$, and $a_{3}=3+4 i$ as elements of $\mathbb{Z}[i]$.
(a) Prove that the ideals $I_{1}=\left(a_{1}\right), I_{2}=\left(a_{2}\right)$, and $I_{3}=\left(a_{3}\right)$ are coprime in pairs.
(b) Compute $\# \mathbb{Z}[i] /\left(I_{1} I_{2} I_{3}\right)$.
(c) Find a single element in $\mathbb{Z}[i]$ that is congruent to n modulo I_{n}, for each $n \leq 3$.
3. Find an example of a field K of degree at least 4 such that the ring \mathcal{O}_{K} of integers of K is not of the form $\mathbb{Z}[a]$ for any $a \in \mathcal{O}_{K}$.
4. Let \mathfrak{p} be a prime ideal of \mathcal{O}_{K}, and suppose that $\mathcal{O}_{K} / \mathfrak{p}$ is a finite field of characteristic $p \in \mathbb{Z}$. Prove that there is an element $\alpha \in \mathcal{O}_{K}$ such that $\mathfrak{p}=(p, \alpha)$. This justifies why PARI can represent prime ideals of \mathcal{O}_{K} as pairs (p, α). (More generally, if I is an ideal of \mathcal{O}_{K}, we can choose one of the elements of I to be any nonzero element of I.)
5. (*) Give an example of an order \mathcal{O} in the ring of integers of a number field and an ideal I such that I cannot be generated by 2 elements as an ideal. Does the Chinese Remainder Theorem hold in \mathcal{O} ? [The $\left(^{*}\right.$) means that this problem is more difficult than usual.]

