The main theorem that we are going to prove in this paper is the following:

Theorem 1.1. Kronecker-Weber Theorem Let K/Q be an abelian Galois extension. There exists an n such that $K \subset Q(\zeta_n)$.

Theorem 1.1 is equivalent to the following equality

$$Q^{ab} = \prod_{n=1}^{\infty} Q(\zeta_n)$$

where Q^{ab} denotes the maximal abelian extension (the field that contains all the abelian extensions of Q.) So basically theorem 1.1 says that the maximal abelian extension of Q is the compositum of the cyclotomic extensions of Q. Therefore it gives a classification of abelian extensions of Q. In general the abelian extensions of a number field can be classified by means of class field theory. In this paper we present a proof of theorem 1.1 without appealing to class field theory. A remarkable aspect of this work is that it makes use of the local-global principle. In other words we obtain theorem 1.1 from the following theorem:

Theorem 1.2. Local Kronecker-Weber Theorem Let K/Q_p be an abelian Galois extension. There exists an n such that $K \subset Q_p(\zeta_n)$

2. Notations and Fundamental Theorems

Throughout this paper p will denote a rational prime, Q_p the completion of rational numbers with respect to p-adic valuation, K_p the completion of a number field K with respect to one of its prime ideals p and ζ_n a primitive nth root of unity.

We start with basic facts and well known theorems from algebraic number theory. We give some of the proofs.

Definition 2.1. Let K and L be finite extensions of Q (or Q_p.) The smallest field containing K and L is called the compositum of K and L and denoted as KL.
Theorem 2.2. Let \(K \) and \(L \) be finite Galois extensions of \(\mathbb{Q} \). \(\text{Gal}(KL/\mathbb{Q}) \) is isomorphic to the subgroup \(\{ (\phi, \psi) | \phi|_{K\cap L} = \psi|_{K\cap L} \} \) of \(\text{Gal}(K/\mathbb{Q}) \times \text{Gal}(L/\mathbb{Q}) \). Similar argument holds for \(\mathbb{Q}_p \).

Proof Let \(G = \text{Gal}(KL/\mathbb{Q}) \) and \(H = \{ (\phi, \psi) | \phi|_{K\cap L} = \psi|_{K\cap L} \} \). Clearly the map \(\Lambda : G \rightarrow H, \sigma \rightarrow (\sigma|_K, \sigma|_L) \) defines an injective homomorphism between \(G \) and \(H \). We show that this homomorphism is indeed an isomorphism by showing that \(|G| = |H| \).

Let \(M = K \cap L \) and let \([M : \mathbb{Q}] = m, [KL : K] = k \) and \([KL : L] = l \). Viewing \(A = \text{Gal}(KL/K) \) and \(B = \text{Gal}(KL/L) \) as subgroups of \(\text{Gal}(KL/M) \) one can easily show that \(A \cap B = \{ \text{id} |_{KL} \} \) and the fixed field of \(AB \) is \(M \). It follows that \([KL : M] = kl \). So \([K : M] = l \) and \([L : M] = k \). Combining with \([M : \mathbb{Q}] = m \) and simple counting shows that \(|H| = klm \). But \(|G| = [KL : \mathbb{Q}] = [KL : M][M : \mathbb{Q}] = klm \) so we are done.

Theorem 2.3. Let \(L/\mathbb{Q} \) be an abelian Galois extension and let

\[
\text{Gal}(L/\mathbb{Q}) \cong \prod_{i=1}^{m} G_i.
\]

Then

\[
L = \prod_{i=1}^{m} L^{G_i}.
\]

Similar argument holds for \(\mathbb{Q}_p \).

Proof It suffices to prove for \(m = 2 \). Let \(L/\mathbb{Q} = G_1 \times G_2 \). Then \(L^{G_1} \cap L^{G_2} = \mathbb{Q} \). By theorem 2.2 \(\text{Gal}(L^{G_1}L^{G_2}) = G_1 \times G_2 \). From this the theorem follows.

Theorem 2.4. Let \(L/K \) be a finite Galois extension. \((L \) and \(K \) can be number fields or local fields) Let \(p \) be a prime ideal of \(K \). Then \(p \) factorizes in \(L \) as

\[
p = b_1^e_1b_2^e_2...b_g^e_g
\]

The number \(e \) is called the ramification index. The degree of the extension of the residue fields \(\mathcal{O}_L \mod b_1 / \mathcal{O}_K \mod p \) is denoted by \(f \). If the degree of \(L/K \) is \(n \) then

\[
n = efg.
\]

(If \(K \) and \(L \) are local \(g = 1 \) \(p \) is said to be totally ramified in \(L \) if \(e = n \) and unramified if \(e = 1 \). (If \(K \) and \(L \) are local fields then we say \(L/K \) is unramified or totally ramified if \(e = 1 \) or \(e = n \) respectively. A number field extension is said to be unramified if all prime ideals are unramified.)

Definition 2.5. Let L/K be a Galois extension, p a prime of K, b a prime lying above p. The decomposition group D_b of b is given by $D_b = \{ \sigma \in Gal(L/K) | \sigma(b) = b \}$. (If L and K are local then D_b is the whole Galois group.) The ramification group I_b is defined as follows:

$$I_b = \{ \sigma \in D_b \mid \sigma(\alpha) \equiv \alpha \pmod{b} \text{ for all } \alpha \in \mathcal{O}_L \}$$

p is unramified in L^b and L^b is the largest such field among the intermediate fields of L/K.

Theorem 2.6. Let L/K be a Galois extension of number fields. If p is a prime of K and L_p/K_p is the localization of L/K with respect to p, then $Gal(L_p/K_p) \cong D_b$ and the inertia groups of b in both extensions are isomorphic.

Proof There exist injections $i_1 : K \hookrightarrow K_p$ and $i_2 : L \hookrightarrow L_b$. Certainly any element of $Gal(L_p/K_p)$ induces an automorphism of $i_2(L)/i_1(K)$. Furthermore since $i_1(K)$ is dense in K_p and $i_2(L)$ is dense in L_b the restriction $\Sigma : Gal(L_p/K_p) \to Gal(i_2(L)/i_1(K))$ is injective. Furthermore since any automorphism of L_p/K_p preserves b-adic absolute value the image of Σ must be in D_b. Conversely if $\sigma \in D_b$ then one can extend σ uniquely to an automorphism of L_p/K_p.

Theorem 2.7. Let K and L be finite Galois extensions of \mathbb{Q}_p and suppose that L/K is Galois. Then there is a surjective homomorphism between the inertia groups I_L and I_K of L and K.

Proof Let M/\mathbb{Q}_p be the maximal unramified subextension of L/\mathbb{Q}_p. Then the maximal unramified subextension of K/\mathbb{Q}_p is $M \cap K/\mathbb{Q}_p$. Since the restriction homomorphism $Gal(M/\mathbb{Q}_p) \to Gal(M \cap K/\mathbb{Q}_p)$ is surjective, the theorem follows.

Theorem 2.8. The inertia group of the extension $\mathbb{Q}_p(\zeta_n)/\mathbb{Q}_p$ is isomorphic to $(\mathbb{Z}/p^n\mathbb{Z})^\ast$ where p^n is the exact power of p dividing n.

Proof By theorem 2.6 the inertia group of is isomorphic to the inertia group of $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ corresponding to p. Now let $n = p^m$. Then

$$Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/p^m\mathbb{Z})^\ast \times (\mathbb{Z}/m\mathbb{Z})^\ast$$

It is not hard to check that the fixed field of the subgroup isomorphic to $(\mathbb{Z}/m\mathbb{Z})^\ast$ is $\mathbb{Q}(\zeta_p)$. Furthermore $\mathbb{Q}(\zeta_{p^n})/\mathbb{Q}$ is totally ramified with inertia group $(\mathbb{Z}/p^n\mathbb{Z})^\ast$. Since $\mathbb{Q}(\zeta_m)/\mathbb{Q}$ is unramified at p no further ramification occurs.

Theorem 2.9. (Hensel’s Lemma) Let L be a local field, b be its maximal ideal, l be the residue field, $f \in \mathcal{O}_L[x]$ be a monic polynomial, \tilde{f} be its restriction to l, and $\alpha \in l$ be such that $\tilde{f}(\alpha) = 0$ and $\tilde{f}'(\alpha) \neq 0$. Then there exists a root β of f in \mathcal{O}_L such that $\beta = \alpha \pmod{b}$.
Proof Let $\beta_0 \in \mathcal{O}_L$ be such that $\beta_0 = \alpha \pmod{b}$. Define $\beta_m = \beta_{m-1} - \frac{f(\beta_{m-1})}{f'(\beta_{m-1})}$. It is an easy exercise to show that the sequence $\{\beta_m\}$ converges and the limit is a root of f. For a proof see [F-V] p. 36.

Theorem 2.10. If K/Q is unramified then $K = Q$

Proof By a theorem of Minkowski
\[\sqrt{|d_K|} \geq \left(\frac{\pi}{4}\right)^s n^n \frac{1}{n!} \]
where s is half the number of complex embeddings of K and $n = [K : Q]$. Using this one can show that if $n > 1$ then $|d_K| > 1$ therefore there exists primes that are ramified. So if all primes are unramified, $n = 1$.

Theorem 2.11. Let K/Q be a Galois extension. The Galois group is generated by the inertia groups I_p where p runs through all rational primes.

Proof Let L be the fixed field of the group generated by I_ps. Then L/Q is unramified so $L = Q$. The theorem follows.

3. DERIVING THE GLOBAL THEOREM FROM THE LOCAL CASE

Theorem 3.1. The local Kronecker-Weber theorem implies the Global Kronecker-Weber theorem.

Proof Assume that the local Kronecker-Weber theorem holds for all rational primes. Let K/Q be an abelian extension and p a rational prime that ramifies in K. Let \mathfrak{b} be a prime lying above p. Consider the localization $K_{\mathfrak{b}}/Q_p$. The Galois group is the decomposition group of \mathfrak{b} and hence the extension is abelian. By the local Kronecker-Weber theorem $L_{\mathfrak{b}} \subset Q_p(\zeta_{n_p})$ for some n_p. Let p^{ν_p} be the exact power of p dividing n_p. Let
\[n = \prod_{p \text{ ramifies}} p^{\nu_p}. \]

Claim 3.2. $K \subset Q(\zeta_n)$

proof of the claim Let $L = K(\zeta_n)$. By the proof of theorem 2.7 we know that $Q(\zeta_n)/Q$ is unramified outside n so the primes that ramify in L are the same as that of K. Let p be a prime that ramifies in L. Then by theorem 2.6 I_p can be computed locally. The localization of L is $L_p = K_{\mathfrak{b}}(\zeta_n) \subset Q_p(\zeta_{n_p}, \zeta_n) = Q_p(\zeta_m)$ where m is the least common multiple of n_p and n. Now by theorem 2.8 the inertia groups of $Q_p(\zeta_m)/Q_p$ and $Q_p(\zeta_n)/Q_p$ are both isomorphic to
A SIMPLE PROOF OF KRONECKER-WEBER THEOREM

$$(\mathbb{Z}/p^e\mathbb{Z})^\times$$. Since $\mathbb{Q}_p(\zeta_n) \subset L_p \subset \mathbb{Q}_p(\zeta_m)$ by theorem 2.7, the inertia group of L_p is $(\mathbb{Z}/p^e\mathbb{Z})^\times$. Therefore $|I_p| = \phi(p^e)$. By theorem 2.11,

$$|Gal(L/\mathbb{Q})| \leq \prod_{p \text{ ramifies}} |I_p| \leq \phi(n).$$

It follows that $[L : \mathbb{Q}] \leq \phi(n)$, but L already contains $\mathbb{Q}(\zeta_n)$ and $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \phi(n)$. Therefore $L = \mathbb{Q}(\zeta_n)$ from which it follows that $K \subset \mathbb{Q}(\zeta_n)$.

□

Now let L/\mathbb{Q}_p be an abelian Galois extension. For the proof of the local Kronecker-Weber theorem we handle the following three cases separately:

- The extension is unramified i.e. the maximal ideal of \mathbb{Q}_p remains prime in L.
- The extension is tamely ramified i.e. the ramification degree e is not divisible by p.
- The extension is wildly ramified i.e. the ramification degree e is divisible by p.

4. The Unramified Case

We prove a stronger theorem from which the unramified case of the local Kronecker-Weber theorem follows.

Theorem 4.1. Let L/K be an unramified, finite Galois extension where K and L are finite extensions of \mathbb{Q}_p. $L = K(\zeta_n)$ for some n with $p \nmid n$.

Proof Assume that L/K is such an extension. Since $e = 1$ the inertia group is trivial and therefore the Galois group of L/K is isomorphic to the Galois group of the extension of the residue fields. Let α generate the extension of residue fields l/k. Since α is an element of a finite field with characteristic p, it is a root of unity with order coprime to p. Let n be the order of α. Now apply theorem 2.9 with $f = x^n - 1$ to obtain a root $\beta \in \mathcal{O}_L$ of $x^n - 1$ such that $\beta = \alpha \pmod{b}$. Then $[K(\beta) : K] \geq [k(\alpha) : k]$ but the latter has degree equal to $[l : k] = [L : K]$ therefore $L = K(\beta) = K(\zeta_n)$.

□

Now taking $K = \mathbb{Q}_p$ gives us the desired result.

5. The Tamely Ramified Case

We begin with two auxilary lemmata.
Lemma 5.1. Let K and L be finite extensions of \mathbb{Q}_p and \wp_K the maximal ideal of \mathcal{O}_K. Suppose L/K is totally ramified of degree e with $p \nmid e$. Then there exists $\pi \in \wp_K \setminus \wp_K^2$ and a root α of $x^e - \pi = 0$ such that $L = K(\alpha)$.

Proof Let $|.|$ denote the absolute value on \mathbb{C}_p. Let $\pi_0 \in \wp_K \setminus \wp_K^2$ and let $\beta \in L$ be a uniformizing parameter so that $|\beta^e| = |\pi_0|$. Then $\beta^e = \pi_0u$ for some $u \in U_L$ (= the units of \mathcal{O}_L) Now since $f = 1$ the extension of the residue fields is trivial, hence there exists $u_0 \in U_K$ such that $u = u_0 \ (\mod \ \wp_L)$. Therefore $u = u_0 + x$ with $x \in \wp_L$. Let $\pi = \pi_0u_0$.

Then $\beta^e = \pi_0(u_0 + x) = \pi + \pi_0x$ so $|\beta^e - \pi| < |\pi_0| = |\pi|$. Let $\alpha_1, \alpha_2, ..., \alpha_e$ be the roots of $f(X) = X^e - \pi$. We claim that $L = K(\alpha_i)$ for some i.

Since $|\alpha_i|^e = |\pi|$, $|\alpha_i| = |\alpha_j|$ for all i, j. We have

$$|\alpha_i - \alpha_j| \leq Max\{|\alpha_i|, |\alpha_j|\} = |\alpha_1|.$$ But

$$\prod_{i \neq 1} |\alpha_i - \alpha_1| = |f'(\alpha_1)| = |e\alpha_1^{e-1}| = |\alpha_1|^{e-1}.$$ So $|\alpha_i - \alpha_1| = |\alpha_1|, \forall i \neq 1$. Since

$$\prod_i |\beta - \alpha_i| = |f(\beta)| < |\pi| = \prod_i |\alpha_i|,$$

we must have $|\beta - \alpha_i| < |\alpha_1|$ for some i. Without loss of generality assume that $i = 1$. Now let M be the Galois closure of the extension $K(\alpha_1, \beta)/K(\beta)$. Let $\sigma \in Gal(M/K(\beta))$. We have

$$|\beta - \sigma(\alpha_1)| = |\sigma(\beta - \alpha_1)| = |\beta - \alpha_1| < |\alpha_1| = |\alpha_i - \alpha_1|$$

for $i \neq 1$. But

$$|\alpha_1 - \sigma(\alpha_1)| \leq Max\{|\alpha_1 - \beta|, |\beta - \sigma(\alpha_1)|\} < |\alpha_i - \alpha_1|.$$ It follows that $\sigma(\alpha_1) \neq \alpha_i$ for $i \neq 1$. So $\sigma(\alpha_1) = \alpha_1$. Since σ was arbitrary we have $\alpha_1 \in K(\beta)$ thus $K(\alpha_1) \subset K(\beta) \subset L$. But $f(X)$ is irreducible over K by Eisenstein criterion so $[K(\alpha_1) : K] = e = [L : K]$. Therefore $L = K(\alpha_1)$.

Lemma 5.2. $\mathbb{Q}_p((-p)^{1/(p-1)}) = \mathbb{Q}_p(\zeta_p)$
Proof It is easy to prove that the maximal ideal of $\mathbb{Q}_p(\zeta_p)$ is given by $(1 - \zeta_p)$. Now consider the polynomial

$$g(X) = \frac{(X + 1)^p - 1}{X} = X^{p-1} + pX^{p-2} + \cdots + p$$

Then

$$0 = g(\zeta_p - 1) \equiv (\zeta_p - 1)^{p-1} + p \ (mod \ (\zeta_p - 1)^p),$$

so

$$u = \frac{(\zeta_p - 1)^{p-1}}{-p} \equiv 1 \ (mod \ \zeta_p - 1).$$

Let $f(X) = X^{p-1} - u$ then $f(1) \equiv 0 \ (mod \ \zeta_p - 1)$ and $(\zeta_p - 1) \nmid f'(1)$. It follows from theorem 2.9 that there exists $u_1 \in \mathbb{Q}_p(\zeta_p)$ such that $u_1^{p-1} = u$. But then we have

$$(-p)^{1/(p-1)} = \frac{\zeta_p - 1}{u_1} \in \mathbb{Q}_p(\zeta_p)$$

On the other hand $X^{p-1} + p$ is irreducible over \mathbb{Q}_p by Eisenstein’s criterion so $\mathbb{Q}_p((-p)^{1/(p-1)})$ and $\mathbb{Q}_p(\zeta_p)$ have the same degree over \mathbb{Q}_p. Therefore $\mathbb{Q}_p((-p)^{1/(p-1)}) = \mathbb{Q}_p(\zeta_p)$.

\[\square\]

Now let L/\mathbb{Q}_p be a tamely ramified abelian extension. Let K/\mathbb{Q}_p be the maximal unramified subextension. Then $K \subset \mathbb{Q}_p(\zeta_n)$ for some n by the previous section. L/K is totally ramified with degree $p \nmid e$. By lemma 5.1 $L = K(\pi^{1/e})$ for some π of order 1 in K. Since K/\mathbb{Q}_p is unramified, p is of order 1 in K, so $\pi = -up$ for some unit $u \in K$. Since u is a unit and $p \nmid e$ the discriminant of $f(X) = X^e - u$ is not divisible by p, hence $K(u^{1/e})/K$ is unramified. By theorem 4.1

$$K(u^{1/e}) \subset K(\zeta_M) \subset \mathbb{Q}_p(\zeta_M)$$

for some M. Let T be the compositum of the fields $\mathbb{Q}_p(\zeta_M)$ and L. By theorem 2.2, T/\mathbb{Q}_p is abelian. Since $u^{1/e}, \pi^{1/e} \in T \Rightarrow (-p)^{1/e} \in T$. It follows that $\mathbb{Q}_p((-p)^{1/e})/\mathbb{Q}_p$ is Galois since it is a subextension of the abelian extension T/\mathbb{Q}_p. Therefore $\zeta_e \in \mathbb{Q}_p((-p)^{1/e})$. Since $\mathbb{Q}_p((-p)^{1/e})$ is totally ramified, so is the subextension $\mathbb{Q}_p(\zeta_e)/\mathbb{Q}_p$. But $p \nmid e$, so the latter extension is trivial and $\zeta_e \in \mathbb{Q}_p$. Therefore $e \mid (p - 1)$. Now by lemma 5.2,

$$\mathbb{Q}_p((-p)^{1/e}) \subset \mathbb{Q}_p(\zeta_p).$$

Therefore

$$L = K(\pi^{1/e}) = K(u^{1/e}, (-p)^{1/e}) \subset \mathbb{Q}_p(\zeta_{Mnp}).$$

This finishes the tamely ramified case.
6. The Wildly Ramified Case

This part of the proof requires knowledge of Kummer theory. We briefly sketch the proof for details see [W] p. 321. Assume that \(p \) is an odd prime. First of all note that we may assume by structure theorem for abelian groups and theorem 2.3, that the extension \(L/\mathbb{Q}_p \) is cyclic, totally ramified of degree \(p^m \) for some \(m \). Now let \(K_u/\mathbb{Q}_p \) be an unramified cyclic extension of degree \(p^m \) and let \(K_r/\mathbb{Q}_p \) be a totally ramified extension of degree \(p^m \). \(K_u \) can be obtained by taking the extension \(F/\mathbb{F}_p \) of degree \(p^m \) and lifting the minimal polynomial of its primitive element to \(\mathbb{Z}_p[X] \). The root of this polynomial will generate an unramified extension of degree \(p^m \). \(K_r \) can be taken to be the fixed field of the subgroup isomorphic to \((\mathbb{Z}/p\mathbb{Z})^* \) in the extension \(\mathbb{Q}_p(\zeta_{p^m})/\mathbb{Q}_p \). By the unramified case of the theorem we know that \(K_u \subset \mathbb{Q}_p(\zeta_n) \) for some \(n \). Since \(K_r \cap K_u = \mathbb{Q}_p \), by theorem 2.2,

\[
\text{Gal}(K_rK_u/\mathbb{Q}_p) \cong (\mathbb{Z}/p^m\mathbb{Z})^2.
\]

If \(L \not\subseteq K_rK_u \) then

\[
\text{Gal}(K(\zeta_n, \zeta_{p^{m+1}})/\mathbb{Q}_p) \cong (\mathbb{Z}/p^m\mathbb{Z})^2 \times \mathbb{Z}/p^{m'}\mathbb{Z}
\]

for some \(m' > 0 \). This group has \((\mathbb{Z}/p\mathbb{Z})^3 \) as a quotient, so there is a field \(N \) such that

\[
\text{Gal}(N/\mathbb{Q}_p) \cong (\mathbb{Z}/p\mathbb{Z})^3.
\]

Following lemma shows that this is impossible.

Lemma 6.1. Let \(p \) be an odd prime. There is no extension \(N/\mathbb{Q}_p \) such that

\[
\text{Gal}(N/\mathbb{Q}_p) \cong (\mathbb{Z}/p\mathbb{Z})^3.
\]

Before proving the above lemma we quote the following lemma without proof. Interested reader can find the proof in [W] p. 327.

Lemma 6.2. Let \(F \) be a field of characteristic \(\neq p \), let \(M = F(\zeta_p) \), and let \(L = M(a^{1/p}) \) for some \(a \in M \). Define the character \(\omega : \text{Gal}(M/F) \to \mathbb{F}_p^* \) by \(\sigma(\zeta_p) = \zeta_p^{\omega(\sigma)} \). Then

\[
L/F \text{ is abelian } \Rightarrow \sigma(a) = a^{\omega(\sigma) \mod (M^*)^p}
\]

for all \(\sigma \in \text{Gal}(M/F) \).

Proof of 6.1 Assume that there exists such an \(N \), then \(N(\zeta_p)/\mathbb{Q}_p \) is abelian and

\[
\text{Gal}(N(\zeta_p)/\mathbb{Q}_p(\zeta_p)) \cong (\mathbb{Z}/p\mathbb{Z})^3.
\]

This is a Kummer extension so there is a corresponding subgroup \(B \subset \mathbb{Q}_p(\zeta_p)^*/(\mathbb{Q}_p(\zeta_p)^*)^p \) with \(B \cong (\mathbb{Z}/p\mathbb{Z})^3 \) and \(\mathbb{Q}_p(\zeta_p)(B^{1/p}) = N(\zeta_p) \). Let \(a \in B \) and \(L = \mathbb{Q}_p(\zeta_p, a^{1/p}) \subset N(\zeta_p) \). Since \(L/\mathbb{Q}_p \) is abelian, by lemma 6.2,

\[
\sigma(a) = a^{\omega(\sigma) \mod (\mathbb{Q}_p(\zeta_p)^*)^p}, \quad \sigma \in \text{Gal}(\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p).
\]
Let v be the valuation on $\mathbb{Q}_p(\zeta_p)$ such that $v(\zeta_p - 1) = 1$. Then

$$v(a) = v(\sigma(a)) = \omega(\sigma)v(a) \pmod{p}, \text{ for all } \sigma.$$

Now if $\sigma \neq id$ the above equality gives $v(a) = 0 \pmod{p}$. It is easy to verify that

$$\mathbb{Q}_p(\zeta_p) \times = (\zeta_p - 1)^2 \times W_{p-1} \times U_1$$

where W_{p-1} are the roots of unity in \mathbb{Q}_p and $U_1 = \{u = 1 \pmod{\zeta_p - 1}\}$. Since $p | v(a)$ and W_{p-1}'s elements are already pth powers, a is equivalent to an element in U_1. So assume $a \in U_1$. We can also assume $B \subset U_1/U_1^p$, and $\text{Gal}(\mathbb{Q}_p(\zeta_p)/\mathbb{Q}_p)$ acts via ω. We claim that $U_1^p = \{u = 1 \pmod{\pi^{p+1}}\}$. Let $\pi = 1 - \zeta_p$. Now if $u \in U_1$ then $u = 1 + \pi x$. By looking at the binomial expansion one can show that $u^p = 1 \pmod{\pi^{p+1}}$. Conversely if $u_2 = 1 \pmod{\pi^{p+1}}$ then the binomial series for $(1 + u_2 - 1)^{1/p}$ converges. This proves the claim.

Let $u \in B$. Let $u = 1 + b\pi + \cdots$. Since $\zeta_p = 1 + \pi$ we have $\zeta_p^b = 1 + b\pi + \cdots$. Thus $u = \zeta_p^b u_1$ with $u_1 = 1 \pmod{\pi^2}$. Since

$$\sigma(u) = u^\omega \sigma \pmod{U_1^p}$$

substituting $u = u_1\zeta_p^b$ yields $\sigma(u_1) = u_1^\omega \sigma \pmod{U_1^p}$. Write

$$u_1 = 1 + c\pi^d + \cdots$$

with $c \in \mathbb{Z}, p \nmid c$, and $d \geq 2$. Note that

$$\frac{\sigma(\pi)}{\pi} = \frac{\zeta_p^{\omega(\sigma)} - 1}{\zeta_p - 1} = \zeta_p^{\omega - 1} + \cdots + 1 = \omega(\sigma) \pmod{\pi}.$$

So $(\sigma(\pi))/\pi = \omega(\sigma) \pmod{\pi}$. We have

$$\sigma(u_1) = 1 + c\omega(\sigma)^d\pi^d + \cdots$$

but

$$u_1^\omega(\sigma) = 1 + c\omega(\sigma)^d\pi^d + \cdots$$

Since $\sigma(u_1) = u_1^\omega(\sigma) \pmod{U_1^p}$ and $U_1^p = \{u = 1 \pmod{\pi^{p+1}}\}$, we have $\sigma(u_1) = u_1^\omega(\sigma) \pmod{\pi^{p+1}}$. This means that either $d \geq p + 1$ or $d = 1 \pmod{p - 1}$. The former means that $u_1 \in U_1^p$ and the latter means that $d = p$. Clearly $1 + \pi^p$ generates modulo U_1^p the subgroup of $u_1 = 1 \pmod{\pi^p}$. We therefore obtained

$$B \subset \langle \zeta_p, 1 + \pi^p \rangle$$

where $\langle x, y \rangle$ denotes the group generated by x and y. Since $B \cong (\mathbb{Z}/p\mathbb{Z})^3$, we have a contradiction.

\[\square\]
For $p = 2$ one has to make a more careful analysis so we shall omit it here. For the proof of this case see [W] p. 329.

References

E-mail address: nizam@mit.edu