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Finding the Class Number for a 

Quadratic Field 

 

The class number Kh  of a quadratic field )( dK Q=  (Q is the field of 

rationals) is the order of KC , the class group, defined as the group of fractional ideals 

(with respect to ideal multiplication) modulo the group of principal ideals of KO , the ring 

of integers of K.  By the discussion in Chapter 8 of this class we know that Kh  is finite.  

In this paper, I will show how one may compute it for an arbitrary quadratic field (an 

arbitrary squarefree d, positive or negative).  The information comes mostly from Gerald 

J. Janusz’s clear Algebraic Number Fields (Second Edition, 1996, American 

Mathematical Society). 

We will compute Kh by evaluating a certain limit in two different ways and equating the 

two ways, one of which involves an Kh for which we can solve.  We’ll start off with a 

formula that takes us too far afield to prove: K
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)(sKζ  is the zeta function on K, which we will discuss; r and s are the number of real 



embeddings and the number of pairs of complex embeddings, respectively; Kω  is the 

number of roots of unity in K; reg(K) is the regulator of K (that is, the volume of the 

lattice of units); K∆  is the discriminant of the field.  Right away we can make some 

simplifications: for d > 0, r = 2, s = 0, and Kω = 2, the only roots being 1 and –1; for 

d < 0, r = 0, s = 1; since by the Dirichlet Unit Theorem the rank of the free abelian group 

part of KU , the group of units, is r + s – 1, when d < 0 the regulator is 1.  The 

discriminant is d for 4mod1≡d  and 4d for 4mod3,2≡d (never 0, of course, because 

then it would not be squarefree); let KD ∆= .  From our class work in section 9.1, if u 

generates the free part of KU  and u > 1, the regulator is ln u.  Therefore, we can solve for 

the class number: )()1(lim
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for d < 0.  What remains is now to evaluate the limit. 

The zeta function on K is defined in a similar way as the Riemann zeta 

function, though over all integral ideals rather than all positive integers, and using the 

norms of those ideals: ∑=
U U sK N

s
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1)(ζ .  Since the norm is multiplicative, we can use 

that wonderful factorization trick in Dirichlet series and express this infinite sum over all 

ideals as an infinite product over prime ideals: ∏
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each prime ideal p is either a prime p or the square of a prime in a quadratic field; there is 

also the problem with ramification.  A given prime p, may remain prime (in which case 

the prime ideal corresponding to it has norm 2p ), split, or ramify (in which two cases the 



prime ideals corresponding to it have norm p); if it splits, p presents a contribution to two 

p’s in the product, and if it ramifies, only one. 

We may summarize this by saying that the contribution to the product for 

a given prime p is 12 )1( −−− sp  if p remains prime, 2)1( −−− sp  if p splits, and 1)1( −−− sp  

if p ramifies.  We’d like to write these in a more unified manner; if we factor out 

1)1( −−− sp , we have remaining factors of 1)1( −−+ sp , 1)1( −−− sp , and 1 respectively.  

We can define a function )( pχ  on the set of integral primes such that it equals –1 when p 

remains prime, 1 when p splits, and 0 when p ramifies, and rewrite the contributions as 

1)1( −−− sp 1))(1( −−− sppχ . 

We can extend )( pχ  to the positive integers by declaring it multiplicative 

(such that )()()( mnnm χχχ = for all integer m, n) and to the negative integers with 

)1(−χ  = 1 if d > 0 and –1 if d < 0.  We will not prove that )( pχ  is periodic with period 

D, but using this fact, as well as the obvious 1)1( =χ , we know that )( pχ  is an abelian 

character on Z/(D), and since it is not the trivial character, the sum of )( pχ over the 

group must be 0 by Schur’s Lemma.  We call )( pχ  the quadratic character on K. 

We review the conditions for whether a prime remains prime, ramifies, or 

splits.  A prime p ramifies if it divides the discriminant.  If the polynomial dx −2 or 

)1(4
12 dxx −+− , depending on whether d is congruent to 2,3 or 1 mod 4, respectively, is 

irreducible in pF , p remains prime; else, it splits.  We can rewrite those two polynomials 

as 
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(except when p is 2, in which case the fractions make no sense and the original forms 



have to be employed).  For primes that do not divide the discriminant, then, 
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To use quadratic reciprocity we must have primes on both sides; we can factor the 

discriminant into ramified primes and use quadratic reciprocity on each one.  However, 

since the quadratic character is periodic, we know that this computation is finite and only 

necessary for the units of Z/(D). 

Returning now to the task at hand, we can separate the product into 

products of each contribution separately, and doing this we obtain two functions, 
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Both products are over integer primes, and the first of the two functions is the Riemann 

zeta function.  We will not prove that 1)()1(lim
1

=−
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ζ  or that ),( χsL  is continuous at 

1, but given these facts, the limit evaluates to ),1( χL .  It remains to evaluate ),1( χL . 

Expanding the product back into a sum for L, we get 
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0 otherwise.  We can rewrite c, by means of being clever, as ∑
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being a primitive Dth root of unity; this works because when the exponent is not zero, 

the sum adds all the way around the circle, canceling out to 0, but when the exponent is 

0, each term contributes 1 to the sum.  Substituting, we find that 
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Call the inner sum ),( jg γχ ; we will not prove that ),()(),( γχχγχ gjg j = or that 

Dg =),( γχ , but these are true. 

We will employ the complex logarithm function; the principal 

value of which will lie in ],( ππ− .  For this principal value, 
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 is the Taylor series around z = 0.  Look familiar?  

We can therefore rewrite the sum to the right of the parentheses as )1log( j−−− γ , and 

rewrite ∑
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we’ll evaluate now. 

Let Die /2πγ = .  For 0 < j < D, we have  
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Consider first positive d, for which 1)1( =−χ .  We can replace j 

by D – j in S because the sum would sum over the same numbers with the exception of 

the overlap of 0 and D, and every instance of j here is periodic with period D so that 

doesn’t matter.  Hence, 
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conjugates of one another, so their principal value amplitudes cancel out and we are left 

with ∑
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character is 0 as has already been mentioned.  By pairing together j and D – j terms that 

are equal, we can cut the number of terms in half, finally getting 
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prime to D, since otherwise it will have a ramifying factor and the character will 

evaluate to 0.  Since we know we are only dealing with positive real numbers, the 

actual value of g is unimportant; we need only the absolute value, which, as we shall 

not prove, is D .  Solving for the class number we find that, for d > 0, 
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convenience in computation. 

Consider now negative d, for which 1)1( −=−χ .  Similarly, we get 
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This time, since the log arguments are complex conjugates, the real parts cancel out, 
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orthogonal to the trivial character, again).  We have ∑
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The most difficult part of this formula is determining the 

fundamental unit for positive d; we have discovered a way to find the class number for 

a quadratic extension of the rationals. Let us then compute the class number for a few 

simple cases to see how this works, starting with d = 2. 

D = 8; the numbers relatively prime to it are 1, 3, 5, and 7.  1 and 7 

have character 1 (7 = –1 mod 8), so 3 and 5 must have character –1 since the sum of the 

four has to be 0.  We must then compute 
8

3sinln
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first half for the formula.  The fundamental root is 21+ , from the zeroth convergent 

of the partial fraction for 2 .  Because 8/π  and 8/3π  are complements, the ln 

expression is 
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+ , and the class number is the absolute value, 1. 

Let’s now try an imaginary field, 6−=d .  This is not in Gauss’s 

list of imaginary quadratic fields with class number 1, so we should not expect that to 

be our answer.  D = 24, so the numbers relatively prime to it are 1, 5, 7, 11, –11, –7, –5, 

–1.  The characters, by checking whether –24 is a square modulo 5, 7, and 11, are 1, 1,  



1, 1, –1, –1, –1, –1, respectively, for the eight.  The sum, therefore, is 1 + 5 + 7 + 11 – 

13 – 17 – 19 – 23 = –48.  Since there are only two roots of unity, namely 1 and –1, the 

formula gives us 248
242

2
=−

⋅
for the class number.  Of course, both these examples 

are confirmed by PARI, which is good to know. 

Quadratic number fields are one of the most interesting parts of 

number theory partly for their simplicity, but the class number problem is a difficult 

one.  Gauss found that fields with –d = 1, 2, 3, 7, 11, 19, 43, 67, and 163 have class 

number 1, but not until much later, in the 1960’s, was it proved that there are no other 

imaginary fields with class number 1.  Finding which real fields have class number 1 is 

still an open problem. 


