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Abstract

One particularly elegant example of an application of modern algebraic number
theory to a classical problem about the integers is found in Kummer’s special case
of Fermat’s Last Theorem. In this paper, we reduce Fermat’s Last Theorem to the
question of whether or not there exist integer solutions to xp + yp = zp for p an odd
prime. We then give a thorough exposition of Kummer’s proof that no such solutions
exist in the case that p does not divide the class number of Q(e2πi/p), that is where p
is a regular prime.

1 Introduction

Although a complete proof of Fermat’s Last Theorem was finally given in 1994 by Andrew
Wiles with help from Richard Taylor, the famous problem, which remained unsolved for three
and a half centuries, is still of great interest to mathematicians and enthusiasts today. Part
of the reason for this sustained interest is the vast quantity of mathematics developed over
the past three centuries in an attempt to prove this elusive claim. Many of the major
developments associated with famous historical attempts to prove Fermat’s Last Theorem
are surveyed in Hellegouarch [3] and Stewart and Tall [7] for the student familiar with the
basics of modern algebra, or in Singh [5] for a more general audience.

One partial proof of Fermat’s Last Theorem that is of particular interest to students
acquainted with basic algebraic number theory is that given by Ernst Eduard Kummer in
the case that p is a regular prime. His proof uses the concept of “ideal numbers,” designed
to restore unique factorization to all number fields. While Kummer’s “ideal numbers” were
developed in conjunction with his work on higher reciprocity laws (see [7] pp 3-5), his proof
of this special case of Fermat’s Last Theorem gave an early and important application of the
concept that Dedekind would reformulate as “ideals.” This paper gives a complete, modern
version of Kummer’s proof including all necessary pre-requisites at a level that would be
easily understood by an undergraduate or graduate student who has taken a first course in
algebraic number theory.

In Section 2, we define and discuss regular primes. In Section 3, we prove a number of
necessary results and end with Kummer’s proof of Fermat’s Last Theorem for regular primes
p. In Section 4, we give our acknowledgments.
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2 Regular Primes

A prime p is said to be regular if it does not divide the class number CK of K = Q(ζ),
where ζ = e2πi/p. While this definition is easy to state, it is not easy to compute the class
number CK in general or even in the case that K = Q(ζ). So we would like to find another
criterion for determining when p is regular.

Surprisingly, a link exists between regular primes and the Bernoulli numbers Bk defined
by the following series:

x

ex − 1
= 1 +

∞∑
k=1

Bk

k!
xk

When k is odd, the Bernoulli numbers are easy to describe, but for even k, they behave
unpredictably. For k = 1, B1 = 1

2
, and when k is odd and greater than 1, Bk = 0. When k

is even, the first few values are

B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = −1

8
, B10 =

5

66
,

B12 = − 691

2730
, B14 =

6

6
, B16 = −3617

510
, . . .

The desired criterion for determining when p is a regular prime is given in the following
proposition, discovered by Kummer. The proof requires analytic techniques that are outside
the scope of this paper, so it is not given here. We refer the interested reader to Borevich
and Shafarevich [1] for details.

Proposition 2.1. A prime p is regular if and only if p does not divide the numerators of
the Bernoulli numbers B2, B4, . . . , Bp−3.

It is not hard to see with a computer that the only regular primes less than 100 are 37, 59,
and 67.

Kummer conjectured that there exist an infinite number of regular primes, but this fact
has never been proven. Ironically, despite their apparent scarcity, it is quite easy to prove
that there exist an infinite number of irregular primes (see [3]), although this is not directly
of interest to this paper.

3 Fermat’s Last Theorem

The task of showing that there exist no integer solutions to the equation xn + yn = zn

for n ≥ 3 can be simplified by making some elementary observations about the properties
of this equation. First, we note that we may assume that x, y, and z are pairwise coprime.
For if there existed a solution and an integer a 6= 1 such that a divides x and y, then a
would divide z as well, and division by an would yield another integer solution without this
common factor.

Furthermore, we note that if we can prove that there exists no solutions for some n,
then the same must be true for multiples of n as well. For if xmn + ymn = zmn then
(xm)n + (ym)n = (zm)n. Because every integer greater than 2 is divisible by either 4 or an
odd prime, it suffices to prove Fermat’s Last Theorem for these cases.
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3.1 n=4

The proof of Fermat’s Last Theorem for n = 4 can be given with elementary methods.
This proof is often attributed to Fermat himself, although no records of it exist, because he
posed this case as a challenge to others [7]. The proof attributed to Fermat relies on a well
known characterization of Pythagorean triples given in the following lemma.

Lemma 3.1. Any integer solution to x2 + y2 = z2 where x, y, and z are pairwise coprime
can be given in the following form (or with x and y interchanged)

± x = r2 − s2

± y = 2rs

± z = r2 + s2

where r and s are coprime and exactly one is odd.

Proof. We may assume that x, y, and z are all positive. We first consider their parity. Clearly
not all three may be odd, and because we assume that x, y, and z are pairwise coprime, it
follows that precisely one is even. Furthermore, if z = 2j is even and x = 2k + 1, y = 2l + 1
are odd, then (2k + 1)2 + (2l + 1)2 = (2j)2, which is impossible because the left hand side is
equivalent to 2 mod 4, while the right hand side is congruent to 0. Thus, we must have either
x or y even, so we assume without loss of generality that y is even. Then y2 = (z−x)(z +x),
and we can write y = 2a, z−x = 2b, and z +x = 2c, because all three are even and positive.
Hence (2a)2 = (2b)(2c) so a2 = bc.

We see that b and c must be coprime, for otherwise a common factor would divide both
z − x and z + x and thus also z and x. So each prime factor of a must occur as a square
factor of either b or c, and hence we may write b = s2 and c = r2 with r and s coprime. This
implies that z = r2 + s2 and x = r2− s2, and because both x and z are odd, precisely one of
r and s is. Finally, subtracting (r2 − s2)2 from (r2 + s2)2 and taking the square root shows
that ±y = 2rs as desired.

We can now prove that there exist no integer solutions to the equation x4 + y4 = z4 as a
corollary to the following theorem.

Theorem 3.2. There are no nonzero integer solutions to the equation x4 + y4 = z2.

Proof. Again, we may assume that x, y, and z are positive. Among the set of positive integer
solutions for the above equation, we may choose a triple (x, y, z) for which z is minimal.
Hence, x, y, and z are pairwise coprime, for otherwise we could cancel the common factor
(which must divide all three) and obtain a smaller z. So we may apply Lemma 3.1 and write,
relabeling x and y if necessary, x2 = r2 − s2, y2 = 2rs, and z = r2 + s2. The first equation
gives us another Pythagorean triple x2 + s2 = r2, and it is not hard to see that x, s, and r
must also be relatively prime. From our first choice for x, we know that x is odd, so we may
again imply Lemma 3.1 to see that x = a2 − b2, s = 2ab, and r = a2 + b2. We then see that

y2 = 2rs = 4ab(a2 + b2) (1)

From the lemma, a and b are relatively prime, so they must be pairwise coprime to a2 + b2 as
well. Hence, a prime factorization of (1) shows that a = c2, b = d2, and a2 + b2 = e2 must all
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themselves be squares. A final substitution shows that c4+d4 = e2, and as e ≤ a2+b2 = r < z,
this contradicts the minimality of z. Thus, no non-zero integer solution can exist.

Clearly a nonzero integer solution to Fermat’s equation x4 + y4 = z4 would provide a
contradiction to this theorem, hence no such solution can exist.

3.2 Next Steps

We now turn our attention the case where n is an odd prime p. For this we are interested
in the field K = Q(ζ) where ζ = e2πi/p because in this field the equation xp + yp factors into
linears. To see this, note that solutions to the equation xp − yp = 0 have the form x = ζky
for k = 0, 1, . . . , p − 1. Thus (xp − yp) = (x − y)(x − ζy) · · · (x − ζp−1y). We substitute −y
for y and note that p is odd to conclude that xp + yp = (x + y)(x + ζy) · · · (x + ζp−1y) over
Q(ζ).

The field Q(ζ) has degree p − 1 over Q because the minimal polynomial of ζ is f(x) =
xp−1 + xp−2 + · · · + x + 1, which can be shown to be irreducible by substituting y + 1 for
x and applying Eisenstein’s criterion. Thus the set {1, ζ, · · · , ζp−2} forms a basis for Q(ζ)
over Q as a vector space (a linear dependence would contradict the minimality of f).

The Galois conjugates of ζ are ζ i for i = 1, 2, . . . , p− 1, which are precisely the roots of
f . Thus, it is clear that Tr(ζ i) = −1 for 1 ≤ i ≤ p− 1 by examining the xp−2 coefficient of
the minimal polynomial. Similarly, Norm(ζ i) = ζζ2 · · · ζp−1 = 1, as this is the constant term
of f . It will be useful to work with the ring of integers of K, which we determine with the
following proposition.

Proposition 3.3. The ring of integers OK of K = Q(ζ) is Z[ζ].

Proof. Clearly Z[ζ] ⊂ OK so we wish to prove the reverse inclusion. Let α = a0 +a1ζ + · · ·+
ap−2ζ

p−2 be in OK . We wish to show that each ai is in Z. Because the OK is a ring and
ζ ∈ OK , for each 0 ≤ k ≤ p− 2, the element αζ−k −αζ is an algebraic integer, so its trace is
integral. Recalling that the trace is additive, we compute Tr(αζ−k −αζ) = Tr(a0ζ

−k + · · ·+
ak + · · ·+ap−2ζ

p−k−2−a0ζ−· · ·−ap−2ζ
p−1) = pak− (a0 + · · ·+ap−2)+(a0 + · · ·+ap−2) = pak

so pak ∈ Z for each k.
We let λ = 1− ζ and write

pα = b0 + b1ζ + · · ·+ bp−2ζ
p−2 = c0 + c1λ + · · ·+ cp−2λ

p−2 (2)

where

ci =

p−2∑
j=i

(−1)i

(
j

i

)
bj

is an integer. When we resubstitute ζ = 1− λ and expand, we see by symmetry that

bi =

p−2∑
j=i

(−1)i

(
j

i

)
cj. (3)

We claim that each ci is divisible by p and prove this with induction on i. As we have
Tr(α) = pa0 − (a1 + · · · + ap−2), clearly c0 = b0 + · · · + bp−2 = p(b0 − Tr(α)), proving
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the base case. Now we assume that p | ci for i = 0, . . . , k − 1. We see that p = f(1) =∏p−1
i=1 (1−ζ i) = (1−ζ)p−1

∏p−1
i=1 (1+ζ + · · ·+ζ i−1) = λp−1β where β ∈ Z[ζ] ⊂ OK . Thus p ≡ 0

modulo the ideal 〈λk+1〉, and so the left hand side of (2) vanishes modulo this ideal. Of the
terms on the right hand side, clearly ck+1λ

k+1, . . . , cp−2λ
p−2 ∈ 〈λk+1〉, and c0, . . . , ck−1λ

k−1

vanish as well, because p divides them by the inductive hypothesis. Hence, ckλ
k ≡ 0 so

ckλ
k = δλk+1 ⇒ ck = δλ for some δ ∈ OK . However, Norm(λ) =

∏p−1
i=1 (1 − ζ i) = f(1) = p,

and this divides Norm(ck) = cp−1
k because the norm is multiplicative and ck ∈ Z. So p | ck

for all k, and by (3) the same is true of each bk. Thus bk = pak implies that ak ∈ Z for each
k, and hence α ∈ Z[ζ] = OK as desired.

We let λ = 1−ζ as above and consider the ideal I = 〈λ〉 ⊂ Z[ζ]. A basic characterization
of I is given in the following lemma.

Lemma 3.4. The ideal I = 〈λ〉 of Z[ζ] satisfies the following: Ip−1 = 〈p〉 and Norm(I) = p.

Proof. The first claim is a consequence of the observation that the Galois conjugates of λ
are in fact associates in K. We show that each Galois conjugate 1− ζ i for i = 1, 2, . . . , p− 1
is associate to 1 − ζ. Clearly 1 − ζ | 1 − ζ i. For the converse, we use the fact that p is
prime to see that there exists some j such that ij ≡ 1 mod p. Thus, 1 − ζ = 1 − ζ ij so
1− ζ i | 1− ζ ij = 1− ζ. Clearly 〈p〉 =

∏p−1
i=1 〈1− ζ i〉, but we have just shown that each of the

ideals on the right hand side equals I. Hence, Ip−1 = 〈p〉 as desired.
For the second statement, we take the norms of the ideals in the previous equation.

In particular, Norm(Ip−1) = Norm(〈p〉) = pp−1. Because Norm(I) is a positive integer, it
follows from unique factorization of ideals that Norm(I) = p.

We recall that the norm of an ideal equals its index in the ring of integers, so we have
shown that |Z[ζ]/I| = p. Thus, the canonical quotient map Z[ζ] → Z[ζ]/I shows that every
element of Z[ζ] is congruent to one of 0, 1, . . . , p− 1 modulo I.

It will be of interest to characterize the units of Z[ζ], which we shall denote UK . By
Dirichlet’s Unit Theorem, UK ' Zn × T for some positive integer n and torsion subgroup
T (for proof, see [6]). It will be easiest to characterize T , so we begin with this. Clearly,
1 ∈ UK is the identity element, so a unit is in the torsion subgroup if and only if it is a root of
unity. Clearly, every root of unity in K is both an integer and a unit, so it suffices to classify
exactly which roots of unity exist in Q(ζ), which we do with the following proposition.

Proposition 3.5. The only roots of unity in Q(ζ) have the form ±ζm for some integer m.

Proof. It is clear that ±ζm ∈ Q(ζ) for each integer m, and that each such element is a 2p-th
root of unity. So it only remains to show that there does not exist some primitive k-th root
ζk ∈ Q(ζ) such that k - 2p, i.e., such that ζk does not have this form. We will prove that
such extraneous roots of unity cannot occur by using the following lemmas.

Lemma 3.6. Let ζk be a primitive k-th root of unity. Then [Q(ζk) : Q] = φ(k) where φ is
the Euler φ function.

Proof. We already know this result when k is prime because we have shown that the minimal
polynomial for ζk has degree φ(k) = k − 1. We now give a general proof with a slightly
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different flavor. Let f be the minimal polynomial for ζk. Then f divides xk − 1. We know
that all other primitive elements have the form ζq

k for q prime to k. Say xk − 1 = fh, where
f , as the minimal polynomial for an algebraic integer, and thus also h, are both monic and
integral. If ζq

k is not a root of f then it must be a root of h, in which case ζk is a root of h(xq),
which then must be divisible by f . This polynomial is again monic and integral so we may
consider its residue modulo q. As f divides h(xq), it follows that h(xq) = h(x)q = f(x)g(x)
mod q. So the residues of f and h are not relatively prime which means that xk−1 ≡ fh has
multiple roots modulo q. But then xk − 1 and its derivative would have a common factor,
which is clearly false, so ζq

k must be a root of f .
Finally, if f has roots other than the primitive ones, there would exist an automorphism

of Q(ζk) that mapped a primitive root ζk to a non-primitive root. But the image of such an
automorphism is clearly not an isomorphic embedding of K into C. Thus, a primitive k-th
root of unity cannot have the same minimal polynomial as a non-primitive root. Hence, the
degree of f is φ(k), and the result follows.

We make use of this fact in our final lemma.

Lemma 3.7. Given integers k, p relatively prime, there is no primitive k-th root of unity ζk

in Q(ζ).

Proof. We first note that Q(ζk, ζ) = Q(ζkp) where Q(ζkp) is a primitive kp-th root of unity.
This is clear because ζk and ζ are powers of ζp

kp and ζk
kp ∈ Q(ζkp), respectively, and ζkζ

is a primitive kp-th root of unity. By the previous lemma, [Q(ζk) : Q] = φ(k), and it is
well known that φ(kp) = φ(k)φ(p) when k and p are relatively prime. So [Q(ζkp) : Q] =
[Q(ζk, ζp) : Q] = [Q(ζk, ζ) : Q(ζ)][Q(ζ) : Q] implies that [Q(ζk, ζ) : Q(ζ)] = φ(k) 6= 1, so in
particular, ζk is not in Q(ζ).

Now we relax the condition that k is relatively prime to p, and assume only that k - 2p.
Clearly we may write k = apn where a and p are relatively prime and a ≥ 3. Then if
ζk ∈ Q(ζ), we would have ζpn

k ∈ Q(ζ), and this is a primitive a-th root of unity that is not
an integer. But this contradicts the previous Lemma, so ζk /∈ Q(ζ) for any ζk 6= ±ζm.

Our case of Fermat’s Last Theorem requires three more lemmas, which we will prove
now.

Lemma 3.8. For each α ∈ Z[ζ] there exists an integer a such that αp ≡ a (mod Ip).

Proof. By Lemma 3.4, |Z[ζ]/I| = p, for this is the definition of the norm of an ideal. Thus,
when we consider the canonical homomorphism Z[ζ] → Z[ζ]/I, it is clear that every α ∈ Z[ζ]
is congruent to one of 0, 1, . . . , p − 1 modulo I. Let b be that integer. Clearly, αp − bp =∏p−1

i=0 (α− ζ ib), and because ζ ≡ 1 (mod I), each factor on the right is congruent to α− b ≡
0 (mod I). Thus, αp ≡ bp (mod I), as desired.

Lemma 3.9. If g ∈ Z[x] is a monic polynomial such that all of its roots in C lie on the unit
circle, then every zero is a root of unity.

Proof. We let α1, . . . , αr denote the roots of g. It follows that, for any integer k, gk(x) =
(x − αk

1) · · · (x − αk
r ) is in Z[x] because the roots of this polynomial are permuted by the

Galois group of K/Q. If gk(x) = xr + ar−1x
r−1 + · · · + a0, then it is not hard to see that
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aj ≤
(

r
j

)
for j = 0, 1, . . . , r − 1 because each |αj| = 1. Hence, because we have bounded the

coefficients, there can only be finitely many such polynomials. So gk = gn for some k 6= n.
Thus, there exists some permutation σ ∈ Sr such that αk

j = αn
σ(j) for each j. We apply this

construction iteratively and note that the order of σ divides r! to see that αkr!

j = αnr!

j for

each j. Hence, αkr!−nr!

j = 1, and because kr! 6= nr! it follows that αj is a root of unity.

The final result is called Kummer’s Lemma and will be central to his proof of the case
of Fermat’s Last Theorem.

Lemma 3.10. Every element in the group of units UK for K = Q(ζ) has the form rζk where
r ∈ R and k ∈ Z.

Proof. Let u ∈ Z[ζ] be a unit and g(x) ∈ Z[x] be the polynomial such that u = g(ζ). We
let uj = g(ζj) for j = 1, . . . , p − 1 and note that 1 = ±Norm(u) = ±u1 · · ·up−1 because
the uj are the Galois conjugates of u. So each uj is also a unit. Furthermore, we see that

up−j = g(ζp−j) = g(ζj) = g(ζj) = uj, which means that uj and up−j are complex conjugates.
In particular, ujup−j = |uj|2 > 0, so Norm(u) = (u1up−1)(u2up−2) · · · > 0, which means that
Norm(u) must be 1.

We see further that uj/up−j must be a unit of absolute value 1 and that the polynomial∏p−1
j=1(x− uj/up−j) ∈ Z[x] because it is fixed by the Galois group of K/Q as before. Hence,

by Lemma 3.9, its zeros are roots of unity, and because the only roots of unity in K have
the form ±ζa, there exists some a ∈ Z such that

u/up−1 = ±ζa. (4)

Because p is odd, either a or a + p is even, so we may write u/up−1 = ±ζ2k for 0 < k ∈ Z.
We wish to determine whether the sign of (4) is positive or negative. To begin, we

note that for some b ∈ Z, ζ−ku ≡ b (mod I), so ζkup−1 ≡ b (mod 〈λ〉) by taking complex
conjugates. We recall that λ = 1 − ζp−1, which is an associate of λ, so 〈λ〉 = I. So we can
combine these congruences to see that u/up−1 ≡ ζ2k (mod I). If the sign in (4) is negative
then I | 〈2ζ2k〉 and Norm(I) | 2p−1, contradicting Lemma 3.4. So the sign in (4) is positive,
and ζ−ku = ζkup−1. Because the two sides are complex conjugates, we have ζ−ku = r ∈ R,
and our proof is complete.

3.3 Proof of Fermat’s Last Theorem for Regular Primes

We have now arrived at the main theorem, which we will proof in two cases. Theorem
3.11 will deal with the case when x, y, and z are prime to p, and Theorem 3.13 will complete
the proof by covering the remaining case: when p divides one of x, y, and z.

Theorem 3.11. If p is an odd, regular prime, then the equation xp + yp = zp has no integer
solutions such that x, y, and z are prime to p.

Proof. As p is odd, we may consider instead the equation xp + yp + zp = 0, for a solution to
one can be transformed into a solution for the other by substituting −z for z. We assume,
for sake of contradiction, that there exists an integer solution to this equation given by x, y,
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and z not divisible by p. As discussed previously, we may factor this equation over Q(ζ) to
obtain

∏p−1
i=0 (x + ζ iy) = −zp, which gives us a similar equality of ideals:

p−1∏
i=0

〈x + ζ iy〉 = 〈z〉p. (5)

We claim that the ideals on the left hand side are pairwise coprime. Otherwise, there
would be a prime ideal p containing 〈x + ζjy〉 and 〈x + ζky〉 for some 0 ≤ j < k ≤ p − 1,
in which case p contains (x + ζjy)− (x + ζky) = yζj(1− ζk−j). We recall that (1− ζk−j) is
an associate of 1 − ζ = λ, and naturally ζj is a unit, so p contains yλ. As p is prime, this
means that either p ⊃ 〈y〉 or p ⊃ 〈λ〉. In the first case, y ∈ p and x + ζjy ∈ p so x ∈ p.
Because x and y are relatively prime, there exist integers a and b such that ax+ by = 1. But
this would imply that 1 ∈ p, which cannot be true. Hence, we must have λ ∈ p. We recall
that Norm(λ) = f(1) = p where f is the minimal polynomial for ζ. But this implies that
I = 〈λ〉 is a prime ideal, for norms of any prime factors of I would be integers greater than
1 and divide p. As p is a prime, I must be prime as well. Finally, the fact that I ⊂ p and
OK is a Dedekind domain (see [6] chapter 3) implies that p = I. As I divides the left hand
side of (5), it divides 〈z〉 as well, which means that Norm(I) = p divides Norm(z) = zp−1,
so that p | z, contradicting our hypothesis. Thus, the ideals 〈x + ζ iy〉 are pairwise coprime
as desired.

We know that the factorization of ideals into primes is unique (see [6] chapter 3), so
the fact the prime ideals on the right hand side occur to the p-th power and the fact that
the 〈x + ζ iy〉 are coprime implies that each 〈x + ζ iy〉 is itself a p-th power. We let m be
the ideal such that 〈x + ζy〉 = mp. In particular, mp is principal, and because p does not
divide the class number of K, this implies that m must be principal as well. Thus, there
exists some α such that m = 〈α〉, and it follows that x + ζy = uαp where u is a unit. From
our characterization of UK in Lemma 3.10, we have x + ζy = rζkαp where r ∈ R and k
is an integer. Then by Lemma 3.8, there exists an integer a such that αp ≡ a mod Ip, so
x + ζy ≡ raζk. We know from Lemma 3.4 that 〈p〉 | Ip, so x + ζy ≡ raζk (mod 〈p〉) as well.
As ζk is a unit, we can divide to obtain the congruence ζ−k(x + ζy) ≡ ra (mod 〈p〉), and
complex conjugation yields ζk(x+ ζ−1y) ≡ ra (mod 〈p〉). Combining these facts, we see that

xζ−k + yζ1−k − xζk − yζk−1 ≡ 0 (mod 〈p〉) (6)

We claim that ζ + 1 is a unit. To see this, we first note that f(−1) = 1 as p − 1
is even. But we know that (x − ζ)g(x) = f(x) for some polynomial g as f(ζ) = 0, so
(−1 − ζ)g(−1) = 1, from which it follows easily that ζ + 1 is a unit. If k ≡ 0 mod p, then
ζk = 1 and (6) becomes y(ζ − ζ−1) ≡ y(−ζ−1)(1 − ζ2) ≡ y(1 + ζ)(1 − ζ) ≡ 0 (mod 〈p〉).
As 1 + ζ is a unit, this shows that yλ ≡ 0 (mod 〈p〉). But we showed that 〈p〉 = Ip−1

in Lemma 3.4, and p − 1 ≥ 2, so this implies that λ | y. Hence, Norm(λ) | Norm(y), so
p | y, a contradiction. Thus, k 6= 0 mod p. Similarly, if k ≡ 1 mod p, then (6) becomes
x(ζ−1 − ζ) ≡ xζ−1(1 − ζ2) ≡ x(1 − ζ)(1 + ζ) ≡ 0 (mod 〈p〉). So the same argument shows
that p | x, again a contradiction. Hence, k 6= 0, 1 mod p.

From (6) we know that xζ−k + yζ1−k − xζk − yζk−1 = αp for some α ∈ Z[ζ]. Hence,
α = x

p
ζ−k + y

p
ζ1−k − x

p
ζk − y

p
ζk−1, and no exponent is divisible by p. We know that the

set {1, ζ, . . . , ζp−2} is a basis for Z[ζ] over Z, so if all of the exponents are not congruent
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modulo p, linear independence of this set over Q would imply that x
p
∈ Z, contradicting our

hypothesis. So some pair of exponents must be congruent modulo p. As p 6= 0, 1 mod p, the
only way this could happen is if 2k ≡ 1 mod p, which would mean that k ≡ 1 − k mod p.
Hence, αpζk = x + yζ − xζ2k − yζ2k−1 = x + yζ − xζ − y = (x − y)λ. Taking norms, we
see that p | (x − y). By the symmetry of the equation xp + yp + zp = 0, we must also have
y ≡ z mod p so xp + yp + zp ≡ 3xp mod p. Because p - x, we must have p = 3.

We note that modulo 9 the cubes of the numbers prime to p are congruent either to
1 or −1. Hence, a solution to x3 + y3 + z3 ≡ 0 in integers prime to 3 takes the form
±1± 1± 1 ≡ 0 mod 9, which is clearly impossible. So there are no solutions for p = 3, and
our proof is complete.

We have thus reduced our proof of Fermat’s Last Theorem for regular primes to the case
where p divides exactly one of x, y, and z. For this case we need one result, also proven by
Kummer, that is beyond the scope of this paper. We instead refer the reader to Borevich
and Shafarevich [1].

Proposition 3.12. If α ∈ Q(ζ) is a unit that is congruent to an element of Z modulo 〈p〉,
then α is a p-th power of a unit.

We are now ready to give the proof of the remaining case of Fermat’s Last Theorem for
regular primes, which is a bit messier.

Theorem 3.13. If p is an odd, regular prime, then the equation xp + yp = zp has no integer
solutions.

Proof. We wish to show that there exist no integer solutions to the equation

xp + yp = zp. (7)

By Theorem 3.11, it remains to show that no such solutions exist in the case that p divides
exactly one of these integers. Because p is odd, any solution to (7) gives a solution to
xp + yp + zp = 0, so without loss of generality, we may assume that p | z. Let z = pkz0 where
z0 is prime to p and k ≥ 1. By Lemma 3.4, p = uλp−1 in Q(ζ) for some unit u. Thus, a
solution to equation (7) would give an equality of the form

xp + yp = uλpmzp
0 (8)

where m = k(p − 1) > 0. We will prove the theorem by showing that an equation of the
form (8) is impossible. We will actually show that (8) is impossible when x, y, and z0 are
elements of Z[ζ] relatively prime to λ, which clearly implies the same is true when x, y, and
z0 are rational integers relatively prime to p.

Assuming such a solution to (8) exists, let x, y, z0 ∈ Z[ζ] be prime to λ, satisfying (8) for
some unit u, and such that m is minimal. We factor the left hand side of (8) and pass to
ideals to obtain:

p−1∏
j=0

〈x + ζjy〉 = Ipm〈z0〉p (9)

Because pm ≥ p > 0, it follows by unique factorization that at least one of the terms on
the left hand side of (9) is divisible by I. But since the x + ζjy are all associates, this
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means that each ideal is divisible by I. We see that if for some 0 ≤ i < j ≤ p − 1,
x + ζ iy ≡ x + ζjy (mod I2), then ζ iy(1 − ζj−i) ≡ 0 (mod I2), which is impossible as ζ iy is
prime to λ and 1− ζj−i is associate to 1− ζ = λ. Thus, the x + ζjy are distinct modulo I2,
so the

x + ζjy

λ
(k = 0, 1, . . . , p− 1)

are pairwise-noncongruent modulo I. Because the norm of I is p, the order of Z[ζ]/I is p,
which means that these expressions form a complete set of residues modulo I. In particular,
one must be an element of I. Because we may replace y by any ζjy, we can assume that
x + y ∈ I2. So each x + ζjy for j 6= 0 is an element of I\I2. Hence, the left hand side of (9)
is divisible by Ip+1, and m > 1.

We let m denote the greatest common divisor of 〈x〉 and 〈y〉. We know that 〈x〉 and
〈y〉 are not divisble by I, so m is not either. So 〈x + ζjy〉 is divisible by Im when j 6= 0
and 〈x + y〉 is divisible by Ip(m−1)+1m, and we let 〈x + ζjy〉 = Impj for each j 6= 0 and
〈x + y〉 = Ip(m−1)+1mp0. We claim that the ideals p0, . . . , pp−1 are pairwise coprime. If p

divides pi and pj for some i < j, then 〈x + ζ iy〉 and 〈x + ζjy〉 would be divisible by Imp.
But then ζjy(1 − ζj−i) and x(1 − ζj−i) would be in Imp, which means that x, y ∈ mp,
contradicting the choice of m. So the ideals p0, . . . , pp−1 are pairwise coprime.

We substitute these new equations into (9) to get mpIpmp0 · · · pp−1 = Ipm〈z0〉p. Because
the pj are pairwise coprime, we see that each pj must be the p-th power of some ideal dividing
〈z0〉. Let pj = ap

j for j = 0, 1, . . . , p− 1. Then 〈x+ y〉 = Ip(m−1)+1map
0 and 〈x+ ζjy〉 = Imap

k.
We solve the first equation for m and substitute this into the second to obtain

〈x + ζjy〉Ip(m−1) = 〈x + y〉(aja
−1
0 )p. (10)

It follows that the ideals (aja
−1
0 )p are principal, because the left hand side is. We know that

if Jp is any principal ideal of Z[ζ], then J is principal as well, because p does not divide
CK (as the order of any non-principal ideal would). Thus, aja

−1
0 is principal as well. Hence,

there exist αj, βj ∈ Z[ζ] such that aja
−1
0 = 〈αj

βj
〉 for j = 1, . . . , p − 1. Because aj and a0 are

coprime to I, we may assume that neither αj or βj is in I. From (10), we see that

(x + ζjy)λp(m−1) = (x + y)

(
αj

βj

)p

uj (j = 1, 2, . . . , p− 1) (11)

where each uj ∈ Z[ζ] is a unit. It is clear that (x + ζy)(1 + ζ) − (x + ζ2y) = ζ(x + y). If
we multiply this equation by λp(m−1) and evaluate (11) at j = 1 and j = 2, we see that

(x + y)
(

α1

β1

)p

u1(1 + ζ)− (x + y)
(

α2

β2

)p

u2 = (x + y)ζλp(m−1). Thus,

(α1β2)
p − u2

u1(1 + ζ)
(α2β1)

p =
ζ

u1(1 + ζ)
λp(m−1)(β1β2)

p.

Again, we note that 1 + ζ is a unit, this time because (1 − ζ)(1 + ζ) = 1 − ζ2, which is
associate to 1 − ζ = λ. Thus, if we set α = α1β2, β = α2β1, and γ = β1β2, we have the
equality:

αp + eβp = e′λp(m−1)γp (12)
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where α, β, γ ∈ Z[ζ]\I and e, e′ ∈ UK are units. We hope to modify (12) to get an equation
of the form (8).

Because m > 1, p(m−1) ≥ p, and αp + eβp ≡ 0 (mod Ip). Because β is prime to I, there
exists some β′ such that ββ′ ≡ 1 (mod Ip). We multiply the first congruence by β′p and
see that e ≡ (−αβ′)p (mod I). Because the norm of I is p, and −αβ′ ∈ Z[ζ], as discussed
previously, −αβ′ is congruent to some a ∈ Z modulo I. Then (−αβ′)p ≡ ap (mod Ip), so
the same is true of the unit e. Because 〈p〉 | Ip, we can apply Proposition 3.12 to see that e
is a p-th power in K. We let e = ηp, where η ∈ Z[ζ] is another unit. Then

αp + (ηβ)p = e′λp(m−1)ζp,

which is of the same type as the equation (8). But here we have replaced the exponent m by
m − 1, contradicting the minimality of m. Hence, (7) has no solution in Z where p divides
one of x, y, and z, and we have completed the proof of Fermat’s Last Theorem for regular
primes.
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is omitted there and taken instead from Borevich and Shafarevich [1] as well as Hellegouarch
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