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1 Why fields of functions over algebraic curves?

The study of algebraic number fields — finite extensions of Q — and their rings
of integers yields many fascinating results, theories, and open question. These
objects form such fertile ground of study in part because the ring of integers OK

of an algebraic number field has the additional structure of Dedekind domain,
allowing one to work in terms of ideal factorization. All such number fields K/Q
must have characteristic 0, so the question arises: are there fields of nonzero
characteristic p that give rise to a similar theory? Finite fields Fq give us nothing
to study. Indeed, any subring of a finite field is also a field, with no interesting
ideal structure. However, if we add a transcendental element, and consider fields
of Fq(t) and its finite separable extensions, we will find we arrive at a theory
very similar to that of algebraic number fields. As a bonus, these fields can
also be interpreted as function fields of algebraic curves. Our exposition will
first briefly develop this theory of algebraic curves in order to use it as a tool
to prove that function fields of algebraic curves over finite fields are Dedekind
domains like the algebraic number fields they resemble.

2 Theory of Function Fields over Fq

2.1 Definitions and other Gory Details

Let K be a field: for the purposes of this paper K will always be either a
finite field of the form Fq for some prime power q or K will be the alge-
braic closure F̄q. To understand algebraic curves, we will introduce a few
notions from algebraic geometry. We will consider algebraic curves over K
as subsets of either the affine space An(K) = Kn or Pn(K) = (Kn+1 −
{0})/scalar multiplication by elements of K.

Definition. An (affine) algebraic set over K is a subset V of An(K) such
that there exist polynomials a1, a2, . . . , am ∈ K[x1, . . . , xn] such that V =
{(x1, . . . , xn ∈ An(K) | ai(x1, . . . xn) = 0 for i = 1, . . . m}. Note that if
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I ⊂ K[x1, . . . , xn] is the ideal generated by a1, . . . an this condition is equiv-
alent to the stronger condition a(x1, . . . , xn) = 0 for any a ∈ I. In such a
case we write V = V (I). In the other direction, starting with an algebraic set
V ⊂ An(K), we define I(V ) to be the ideal of all polynomials that vanish on V .
A projective algebraic set is defined similarly as a subset of the projective space
Pn(K) (defined as usual to be An+1(K)/(multiplication by nonzero elements of K)).
In this case a1, . . . , am are required to be homogeneous polynomials in K[x0, . . . , xn].
We can construct V (I) and I(V ) exactly as above, where our ideal I will now
be a homogeneous ideal (that is, one generated by homogeneous polynomials in
x0, . . . , xn).

Definition. An (affine) algebraic curve is defined as a polynomial F ∈ K(x1, x2)
modulo multiplication by nonzero elements of K (that is, polynomials that are
scalar multiples of each other correspond to the same curve). Any algebraic
curve has an associated algebraic set, V (F ) = {x1, x2 ∈ A2(K) | F (x1, x2) = 0},
which can also be identified as the curve.

Definition. Suppose that V is an algebraic set over K such that I(V ) is a
prime ideal (it can be shown that this condition is equivalent to saying that
V is not the union of two smaller algebraic sets). Then the coordinate ring of
V is defined as Γ(V ) = K(x1, . . . , xn)/I(V ), which is then an integral domain.
Define the function field K(V ) of V to be the field of fractions of I(V ). For an
algebraic curve F for which V (F ) is irreducible, as a matter of terminology we
write Γ(F ) = Γ(V (F )) and K(F ) = K(V (F )).

However, we run into difficulty because our field K will generally be finite,
hence not algebraically closed. When working with an algebraic curve F over
such a non-algebraically closed field, the ideal I(V (F )) need not be generated
by F alone. (For example Fq(x) contains functions such as xq − x that vanish
everywhere and lie in I(V (F )) for any F .) However it’s a fact of algebraic
geometry (which we will not prove) that this is no longer an issue when K is
algebraically closed. This means if we look at the field of functions when we
consider F as a curve over K̄ (we will assume that V (F ) remains irreducible
when the field of constants is extended), our coordinate ring will be ΓK̄ =
K̄[x1, x2]/(F ). However, this new ring has K̄ as its field of constants, so we
restrict back to K by looking at the image of K[x1, . . . , xn] in this quotient. In
effect, then, the way we really want to think of Γ(F ) and of K(F ) is simply
as the ring K[x1, x2]/(F ) and its associated field of fractions. However, we will
look at them in relationship to the curve over the algebraic closure K̄, which
we’ll call VK̄(F ). Although our finite fields K can’t be algebraically closed, we
will at least require that K be algebraically closed in K(F ). As it turns out,
this is not a severe restriction, for one can show that we can always replace K
with its algebraic closure K∗ in K(F ) and choose the curve appropriately so as
to get a field of functions extending K∗(x).

Definition. A curve F over a field K is nonsingular if at no point p on VK̄(F )
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do the formal partial derivatives

∂F

∂x
(p),

∂F

∂y
(p)

both vanish.

We will restrict our attention to the case when F is nonsingular: this turns
out to not be a restriction on the field VK̄(F ).

At this point we note that elements of K(F ) do in fact act like rational
functions on VK̄(F ). First, if p = (px, py) ∈ VK̄(F ), and f ∈ Γ(F ), f(a) is
well defined (elements of I(F ) are zero at a), and this induces a homomorphism
from K(F ) to K̄. Similarly, if f = f1

f2
∈ K(V ), we can define f(V ) uniquely as

f1(ax,ay)
f2(ax,ay) , which will be defined as an element of K̄ unless f2(a) = 0: if f2(a) = 0

for any choice of f1, f2 ∈ Γ(F ) with f = f1
f2

, f is said to have a pole at a.
The field K(F ) is a finite extension of K(x) ∼= K(x1) generated by x2,

(although this extension need not be separable), and F is an irreducible curve
over K̄, so we can extend the field of constants to the new field K̄(F ) = K(F )⊗K

K̄. We now show a converse: any finite separable extension L of K(x) with
base field (that is, field of algebraic elements) K which satisfies the additional
condition that the compositum L ⊗K K̄ with the algebraic closure remains a
field is isomorphic to some function field of the form K(F ). We first invoke
the Theorem of the Primitive Element (here we use that L/K(x) is separable).
This lets use write L = K(x)(a), where a is algebraic over K(x). Additionally, a
cannot be algebraic over K, because if it were, the minimal polynomial of a over
K would have more than its full complement of roots in the field L⊗K K̄, which
is impossible. Let F ∈ K(x)[y] be the minimal polynomial of a over K(x), so
that F (a) = 0, and clear denominators and remove any common factors in K[x]
so that F ∈ K[x][y] and the coefficents of y are relatively prime in K[x]. Then
let F̂ be the corresponding element of K[x, y], so that F̂ (x, a) = 0. This ensures
that F is irreducible in K[x, y], but we also want the stronger condition that F
is irreducible in K̄[x, y]. This follows from our condition that L⊗K K̄ is a field
(see [3]Corollary 2.4.8 for details). Hence K[x, y]/(F̂ ) is an integral domain,
whose field of fractions is K(F̂ ). We want to show K(F ) ∼= L. For K(F ) is
an extension of K(x) by an element y satisfying F̂ (x, y) = 0, so F (y) = 0:
by irreducibility of F , F is the minimal polynomial of y over K(x). But F is
also the minimal polynomial of a over K(x), and L = K(x)(a), so we have an
isomorphism K(F ) ∼= L identifying y with a.

This shows that our construction of finite extensions of K(x) via algebraic
curves is fully general. This will yield a general theory of finite extensions of
K(x) (satisfying certain conditions given above) similar to the general algebraic
number theory of finite extensions of Q. However, there is one important differ-
ence. In the number field case, the field Q embeds uniquely into K. However,
the field K(x) can be embedded into the function field K(F ) in more than one
way. For any element a of K(F ) with a /∈ K, a is transcendental over K, whence
we can embed K(x) ∼= K(a) into K(F ).
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It would be nice if, additionally we could always find a b ∈ K(F ) such that
K(F ) = K(a, b), however this need not be the case. It can happen that K(F ) is
not a separable extension of K(a), so that the Theorem of the Primitive Element
no longer applies. However, there is a simple criterion for showing when this is
the case. The proof is technical and not very enlightening, so we will omit it,
but we state the criterion below.

Definition. For any a ∈ K(F ), a is a separating variable for K(F ) if K(F ) is
a separable extension of K(a).

Proposition 2.1 ([3] Theorem 2.4.6). If K is a finite field with characteristic
p, let K(F )p be the subfield of K(F ) generated by K and the p-th powers of the
elements of K(F ). Because the finite field K is perfect and the Frobenius map
a 7→ ap is a homomorphism, this field will consist exactly of the p-th powers in
K(F ), and so the notation will cause no confusion. Then [K : K(F )p] = p,
and for all a ∈ K(F ) which are not contained in K(F )p, K(F ) is a separable
extension of K(a).

However, in the general case we can at least say that K(F ) is a finite exten-
sion of K(a).

Proposition 2.2. For any a ∈ K(F ), a /∈ K, K(F ) is a finite extension of
K(a).

Proof. We see first that because K(F ) is a finite extension of K(x) and hence
of the intermediate field K(x, a), we need only show that K(x, a) is a finite
extension of K(a). We have that K(x, a) ⊂ K(F ) is a finite extension of K(x),
which implies that a is algebraic over K(x) and there exists a nonzero polynomial
p ∈ K(x)[y] such that p(a) = 0. By clearing denominators, we can assume that
p ∈ K[x][y] ∼= K[x, y] ∼= K[y][x] ∼= K[a][x]. Hence by regrouping there is a
corresponding polynomial p′ ∈ K[a][x] with p′(x) = 0, and p′ is also nonzero
because a is transcendental over K. This means that x is algebraic over K(a),
giving that K(x, a), so also K(F ), is a finite extension of K(a).

When we know that a is a separating variable for K(F ), we can apply the
Theorem of the Primitive Element to arrive at the following.

Corollary 2.3. For any a ∈ K(F ) outside of K(F )p, there exists b ∈ K(F )
such that K(F ) = K(a, b).

Also, we can deal with the projective case similarly, which gives us a projec-
tive function field isomorphic to the one from the affine case, so we can identify
the two, so that elements of K(F ) can have zeroes and poles at projective “points
at infinity” as well as the regular points of the affine plane. However, we note
that the points at infinity of VK̄(F ) will be of the form (x, y, 0) ∈ P3(K), where
Fhom(x, y, 0) = 0 (where Fhom is the homogenized version of F ). Because F is
not the zero polynomial, the homogenized version Fhom will have only finitely
many roots of (x, y) on the projective line P2(K).
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2.2 Zeroes, Poles, and Local Rings

Before moving on to rings of integers, we will prove a couple more facts about
the field structure of K(F ) and in particular about poles and zeroes. Recall that
if f ∈ K(F ), p ∈ VK̄(F ), f is said to have a pole at p if however you express
f = f1

f2
, f1, f2 ∈ Γ(F ), f2(p) = 0. Also, f has a zero at p if f(p) = 0. We note

the following useful fact:

Proposition 2.4. Any nonzero f ∈ K(F ) has only finitely many poles and
finitely many zeroes.

Proof. Write f = f1
f2

, f1, f2 ∈ Γ(F ). Then for p ∈ VK̄(F ), if f has a zero at p,
so does f1, and if f has a pole at p, f2 has a zero at p. Hence we need only show
that any nonzero f1 ∈ Γ(F ) has only finitely many zeroes. Because only finitely
many points at infinity lie on VK̄(F ), we need only show that f1 has finitely many
zeroes in the affine plane. Now f1 is the residue of some polynomial f̂1 ∈ K[x, y].
Because the principal ideal (F ) in K[x, y] is prime, (F ) is irreducible in K[x, y],
so F and f1 have no common factor K[x, y] = K[x][y]. By Gauss’s lemma, they
then also have no common factor in of K(x)[y], which is a principal ideal domain,
so the ideal (f̂1, F ) of K(x)[y] must be the unit ideal. That is, there exists
A,B ∈ K(x) such that Af̂1+BF = 1. Applying this to any point p = (px, py) of
VK̄(F ), we have 1 = A(px)f̂1(p)+B(px)F (p) = A(p)f1(p)+B(p)·0 = A(p)f1(p).
Hence, the only way we can have f1(p) = 0 is if the denominator of A(px) is
also zero. This denominator is a nonzero polynomial in px, so it can be zero for
only finitely many values of px.

Hence we deduce that px can take on only finitely many values at zeroes of
f1. Similarly, py can take on only finitely many values at zeroes of f1, so f1 has
only finitely many affine zeroes, hence only finitely many total zeroes, and the
proposition follows.

Definition. The local ring Op(F ) is {f ∈ K(F ) | f does not have a pole at p},
p ∈ VK̄(F ).

Henceforwards in this section, we assume, without loss of generality, that
p = (px, py) is not a point at infinity (otherwise perform appropriate projective
transformations). This condition implies that Γ(F ) ⊂ Op(F ), so the field of
fractions of Op(F ) is the whole field K(F ). These rings Op(F ) are called local
rings because they have a unique maximal ideal. In this case, the maximal ideal
is Mp(F ) = {f ∈ Op(F ) | f has a zero at p}. It is maximal and is unique,
because it contains exactly all non-units of Op(F ). Ultimately, we will piece
together the structure of the more general rings of integers we define in the
following sections from the relatively simple structures of the local rings Op(F )
for p ranging over all points of the curve. We first introduce another definition:

Definition. An integral domain R is a discrete valuation ring if there exists
a non-unit t ∈ R such that any element of R can be represented as r = utn,
where u is a unit of R, and n is a non-negative integer. (In this case, t is called
a uniformizing parameter for R. Also this representation is unique because
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otherwise one would arrive at a relation of the form tk = u, where u is a unit,
and k 6= 0. This implies that t is a unit, which is impossible.)

There is an equivalent definition of discrete valuation rings, which will also
be useful, and whose equivalence we will now prove.

Theorem 2.5. An integral domain R is a discrete valuation ring as defined
above if and only it is Noetherian, local, and its maximal ideal is principal.

Proof. Proof of ⇒: If R is a discrete valuation ring, the ideal (t) contains
exactly the non-units of R, so it is the unique maximal ideal. Hence we need
only show that R is Noetherian. Indeed, any ideal I of R is the finitely generated
principal ideal (tn), where n is the least positive integer such that there is a unit
u with utn ∈ I.

Proof of ⇐: Let t generate the maximal ideal of R. We claim that t is a
uniformizing parameter for R. Let r be an arbitrary element of R. We claim
that there is some n ≥ 0 such that tn | r, tn+1 - r in R. For otherwise, we would
have that tn | r for all positive integers n, giving us the infinite ascending chain
(r) ⊂ (rt−1) ⊂ (rt−2) ⊂ · · · , contradicting the Noetherian condition. Write
r = utn: we need to show that u is a unit. For if not, u is contained in some
maximal ideal of R, which must be t, implying the contradiction tn+1 | r.

We would like to show that our local ring Op(F ) is a such a ring: we’ve
already shown that it is local, so we need only show that it is Noetherian and
that Mp(F ) is principal.

Proposition 2.6. Op(F ) is Noetherian.

Proof. The ring Γ(F ) is Noetherian because it is a quotients of the Noetherian
ring K[x, y]. Without loss of generality, assume that p is not a point at infinity,
so that Γ(F ) ⊂ Op(F ). Then let I be an ideal of Op(F ), and intersect with
Γ(F ) to get an ideal of Γ(F ), which is then finitely generated. Then go back to
Op(F ) and you have the same generators.

Proposition 2.7. The maximal ideal Mp(F ) is principal in Op(F ).

Proof. By suitable projective change of coordinates, we can assume that p is
the origin, that is, px = py = 0. Because p = (0, 0) is on the curve given by
F (x, y) = 0, the constant term of F must be nonzero, so write F = xA + yB,
A,B ∈ K[x, y]. By nondegeneracy of F , one of A(0, 0) = ∂F

∂x , B(0, 0) = ∂F
∂y

must be zero. Without loss of generality assume B(0, 0) 6= 0. We now claim
that Mp(F ) = (x).

Let g be an arbitrary element of Mp(F ). We will show g ∈ (x). We can
write g = g1

g2
, where g1, g2 ∈ Γ(F ) g1(0, 0) = 0, g2(0, 0) 6= 0. Then g2 is a unit

of Op(F ), so we can assume g ∈ Γ(F ). Let G be an element of K[x, y] that
corresponds to g in the quotient Γ(F ) = K[x, y]/(F ). Then g(0, 0) = 0, so we
can write G = xC + yD, C,D ∈ K[x, y]. We now have two linear equations in
the variables x, y, so we can substitute it for y to get

G =
x(BC −AD)− F )

B
.
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Because F corresponds to 0inΓ(F ), when we return to K(F ), we obtain a
corresponding formula of the form

g = x
bc− ad

b
,

(where the lower case letters are images of their upper case counterparts in the
quotient Γ(F ).) Because B(0, 0) 6= 0, bc−ad

b does not have a pole at (0, 0), so
g ∈ (x).

Hence (x) contains the maximal ideal Mp(F ), and so the two ideals are equal
and Mp(F ) is principal.

We now deduce our final result:

Proposition 2.8. The integral domain Oa(F ) is a discrete valuation ring.

This is a very useful result. We can use it to deduce a simple lemma with
two immediate corollaries about zeroes and poles for general elements of K(F ).
We will return to this result from in Section 3 when we prove that our rings of
integers are Dedekind domains.

Lemma 2.9. Suppose that t is a uniformizing parameter for Op(F ). Then for
any nonzero f ∈ K(F ), we can express f = utn, where u is a unit of Op(F )
and n can now be any integer. In fact, this representation is unique, so that
we can define ordp(f) = n: this is the “valuation” of the “discrete valuation
ring” Op(F ) which satisfies ordp(fg) = ordp(f) + ordp(g) and ordp(f + g) ≥
min ordp(f), ordp(g).

Proof. This is a direct consequence of the definition of a discrete valuation ring
and the fact that K(F ) is the field of fractions of Op(F ). Uniqueness holds for
the same reason as in Op(F ) case, and the rest follows automatically.

Corollary 2.10. Let a ∈ VK̄ and f, g ∈ K(F ) such that g has a zero at p.
Then for sufficently large n ∈ N, fgn does not have a pole at p.

Proof. By the previous lemma, f = uf tordp(f), g = ug, t
ordp(g), where uf , ug

are units of Op(F ). Because g has a zero at p, g ∈ Mp(F ), so ordp(g) ≥ 1.
Then, for sufficently large n ∈ N , ordp(fgn) = ordp(f) + n ordp(g) ≥ 0, so
fgn = ufug

ntordp(fgn) ∈ Op(F ) doesn’t have a pole at p.

Corollary 2.11. If f ∈ K(F ) is nonzero, p ∈ VK̄ , f has a zero at p if and only
if f−1 has a pole at p.

Proof. Write f = uf tordp(f), f−1 = uf
−1t− ordp(f). Then f has a zero at p if

and only if ordp(f) > 0 if and only if − ordp(f) < 0 if and only if f−1 has a
pole at p.
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2.3 The Ring of Integers OK(F ),S

In order to do anything interesting we need to get an analogue of the ring
of integers. If we fix a finite set of points S on the projective curve, that is,
elements of VK̄(F ) (identifying points that are Galois conjugates of each other),
we take OK(F ),S = {f ∈ K(F ) | f only has poles at points in S}. This is a
subring of OK(F ),S , hence it is an integral domain. We will neglect to show
that in the general case this ring has any elements outside of K. This is a
consequence of the Riemann-Roch theorem, which would take us too far afield
in our present journey. We content ourselves with the knowledge that we can
easily construct such nontrivial elements in many specific cases, and that even
if such trivial cases did exist, we would gain nothing from considering them.
Hence we can proceed with the assumpion that OK(F ),S is not merely K. In
the case of a number field K, the ring of integers OK has the property that
its field of fractions is all of K, a corollary of Stein 2.3.11, which states that
QOK = K. We can show an analogue of this fact for function fields, but the
proof is different because we have no canonical analogue of Q. Rather, we must
explore more deeply the structure of VK̄(F ). Specifically, we will take the route
of finding a, b ∈ OK(F ),S which generate K(F ) over K

Proposition 2.12. For any function field K(F ) over K, and any set of points
on F , we can find a, b ∈ OK(F ),S such that K(F ) = K(a, b). In fact for any
a ∈ OK(F ),S which is a separating variable for K(F ), we can find a b to satisfy
the above. As a result, the field of fractions of OK(F ),S is K(F ).

Proof. We have assumed there exists some a ∈ OK(F ),S outside of K, but we
don’t know that this a must be a separating variable for K(F ). However, we do
know that K(F ) does contain separating variables by Goldschmidt’s criterion.
Let s be a separating variable for K(F ): then s /∈ K(F )p. Without loss of
generality, assume that a ∈ K(F )p (otherwise we’d be done already). Then we
claim that for any pole p of s outside S, there is some nonzero cp ∈ K[a] such
that cp has a zero at p. For consider the value a(p): it is well defined because
a doesn’t have a pole, and it lies in K̄, so there is some nonzero polynomial
Cp ∈ K[x] such that Cp(a(p)) = 0. So let cp = Cp(a), which is nonzero because
a is transcendental over K. Also each of the cp are in the field K(F )p. By
multiplying by sufficiently high powers of each of the finitely many cp, we can
remove all poles of s to produce an element s′ of OK(F ),S . Also s′

s ∈ K(F )p, so
since s′ is not in the field K(F )p, neither is s. Hence our element s′ satisfies all
criteria needed, and we can take it for our new a.

Suppose that a ∈ OK(F ),S is a separating variable for K(F ). Write K(F ) =
K(a, b′), for b′ ∈ K(F ). Then b′ has only finitely many poles outside S: as
above, by multiplying by an appropriate element of K[a], we can remove them
all. Then b ∈ OK(F,S), and K(a, b) = K(a, b′) = K(F ). This is exactly what
we want, and K(F ) = K(a, b) is the field of fractions of K[a, b], so also of the
larger ring OK(F ),S .
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2.4 Ideals and Prime Ideals

Now we have laid our groundwork and we are ready to do something that looks
more like algebraic number theory, that is, study the structure of the ideals of
OK(F ),S . In particular, we will focus on the prime ideals; unlike in the number
field case, where the prime ideals have no special significance, for function fields
there is an elegant correspondence between the prime ideals of OK(F ),S and the
points of VK̄(F ) (up to action of the Galois group) that are not in S. In order to
establish this, however, we first need to investigate the structure of the quotient
of OK(F ),S by any prime ideal.

Lemma 2.13. If R is a ring with field of fractions K(F ), and p a prime ideal
of R, the ring R/p is algebraic over K.

Proof. Let a be an arbitrary element of p. The field K(F ) is a finite, hence
algebraic, extention of K(a), so that for any b ∈ R, b is algebraic over K(a).
Clearing denominators, b is also algebraic over the ring K[a]. Then after quoti-
enting by p, the residue b̂ of b is algebraic over the image of K[a], which reduces
to K. Because b̂ is an arbitrary element of R/p, R/p is itself algebraic over
K.

We now think about some concrete examples of prime ideals of K(F ). We
have previously seen the ideals Mp(F ) of Op(F ), where p is a point on VK̄(F ).
For any p /∈ S, these ideals can be restricted to the smaller domain OK(F ),S , to
produce the ideals

pp,S = {f ∈ OK(F ),S | f(p) = 0}

of OK(F ),S . The ideal pp,S is prime because it is the kernel of the homomorphism
φ : OK(F ),S → K̄ given by φ(f) = f(p) (which always exists because p /∈ S,
so f can’t have a pole at p). We’ll now show that any prime ideal of OK(F ),S

arises in this manner.

Corollary 2.14. Any prime ideal of OK(F ),S is of the form pp for some point
p = (px, py) of VK̄(F ) outside of S.

Proof. Let p be an arbitrary prime ideal of OK(F ),SWe know from Lemma 2.13
that OK(F ),S/p is algebraic over K, hence it can be embedded into the algebraic
closure K̄ of K. Let φ : OK(F ),S/p → K̄ be such an embedding. Lift φ to
OK(F ),S to give a homomorphism φ̂ : OK(F ),S → K̄.

Now let a, b be elements of OK(F ),S that generate K(F ) over K. Let ap =
ˆφ(a), bp = ˆφ(b). Because x, y ∈ K(F ), there are rational functions X, Y ∈

K(A,B) such that X(a, b) = x, Y (a, b) = y. We can think of K(F ) as also
being parametrized by a, b as opposed to the standard parameters x, y, that
is, it is isomorphic to the function field K(F ′) for some algebraic curve F ′ ∈
K[A,B] with F ′(a, b) = 0. Then if either X(A,B) or Y (A,B) has a pole at
the point A = ap, B = bp on VK̄(F ′), we can apply a appropriate projective
transformation to our coordinates x, y to make this not be the case. Then let
X(ap, bp) = xp, Y (ap, bp) = yp.
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Now let h be an arbitrary element of OK(F ),S , and write h = H(x, y), where
H ∈ K[X, Y ]. Then we can formally apply our homomorphism φ̂ to h:

φ̂(h) = φ̂(H(x, y))

= H(φ̂(x), φ̂(y))

= H(φ̂(X(a, b)), φ̂(Y (a, b))
= H(X(aφ, bφ), Y (aφ, bφ))
= H(xp, yp)
= h(xp, yp)

where the last step is true by the formal definition of h(xφ, yφ). Therefore, the
map φ̂ is the map evaluating an element of OK(F ),S at some point pp = (xp, yp)
on VK̄(F ) (which is not on S, becaus φ is defined everywhere. Then its kernel p
must equal the prime ideal ppp

corresponding to the point pp, which takes the
desiredform.

In this manor, we find there is a correspondence between the prime ideals of
OK(F ),S and the points of VK̄(F ) outside of S.

3 Dedekind Domains and Unique Ideal Factor-
ization

We have laid our groundwork, and we are ready to prove our big theorem, that
OK(F ),S is a Dedekind domain having unique factorization of ideals. In the
standard treatment (see [7]) of algebraic number theory, unique factorization
of ideals for rings of integers in number fields is deduce as a corollary of the
fact that such rings are Dedekind domains. However, due to the difficulty in
showing that OK(F ),S is Noetherian, in our case we will effectively prove unique
ideal factorization before establishing that OK(F ),S is a Dedekind domain. We
recall the definition of a Dedekind domain:

Definition. A ring R is a Dedekind domain if it satisfies:

(i) R is Noetherian.

(ii) R is integrally closed in its field of fractions.

(iii) Prime ideals of R are maximal.

We note that we have already shown the last of these three conditions in
the preceding section. We prove that R is Noetherian first, since along the way
we will gain a deeper understanding of the structure of ideal factorization in
R. In the number field case, the concept of fractional ideals is again useful, so
we review it here (for technical reasons, the definition of a fractional ideal used
here differs from the one used in Stein [7], but the two definitions are equivalent
for Noetherian rings).
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Definition. Let R be a ring with field of fractions K. A fractional ideal I of
R is an R-submodule of K such that for some nonzero d ∈ R, dI ⊂ R. As with
ideals, the product of two fractional ideals I, J is the fractional ideal generated
by all elements of the form ij, where i ∈ I, j ∈ J . The inverse of a fractional
ideal I is another fractional ideal I−1 such that II−1 = R.

We’ll now show that any prime ideal of OK(F ),S has an inverse, so that we
will be able to “divide” by prime ideals when factoring ideals later on in our
proof.

Proposition 3.1. For any p ∈ VK̄(F ) outside of S, the prime ideal pp is
invertible in OK(F ),S, and its inverse is the fractional ideal

p−1
p = {f ∈ OK(F ),S∪{p} | ordp(f) ≥ −1}.

Proof. We need only show that ppp
−1
p = OK(F ),S . Let t be an element of

OK(F ),S with ordp t = 1. (Such a one exists by Riemann-Roch, but if you
would rather not invoke that, just assume that ordp t is minimal, and replace
1 by ordp t as applicable.) Then t ∈ pp, t−1 ∈ p−1

p , and so 1 = tt−1 ∈ ppp
−1
p ,

and OK(F ),S ⊂ ppp
−1
p . For the other inclusion, pp and p−1

p are both contained
in the larger field OK,S∪{p}. Furthermore, if i ∈ pp, j ∈ p−1

p , ordp(ij) =
ordp(i) + ordp(j) ≥ 1 + −1 = 0, so, even after taking linear combinations, a
general element of ppp

−1
p cannot have a pole at p either. We now have that

ppp
−1
p = OK(F ),S , and so pp is invertible, as desired.

Before showing existence of factorizations, we note a couple of facts:

Lemma 3.2. For a given point p ∈ VK̄(F ),

∞⋂
k=0

pk
p = {0},

and for p1, p2, p3, . . . ∈ VK̄(F ) all distinct,

∞⋂
k=0

ppk
= {0}

Proof. For the first part, we note that for any f ∈ pp, ordp(f) ≥ 1, and
ordp(fk) ≥ k. By the property that ordp(f + g) ≥ min ordp(f), ordp(g), it
follows that any nonzero element f of the ideal pk

p must also have ordp(f) ≥ k.
But then, if f ∈

⋂∞
k=0 pk

p, ordp(f) must be greater than any positive integer k.
Hence this intersection can contain only zero.

For the second part, suppose that f ∈
⋂∞

k=0 ppk
. Then for each k ≥ 0, f has

a zero at pk. Hence f has infinitely many zeroes, and must be zero.

We will now show that an arbitrary ideal I of OK(F ),S can be factored into
prime ideals of OK(F ),S .
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Proposition 3.3. Let I be a nonzero ideal contained in OK(F ),S. Then there
exists an n ∈ N and (not necessarily distinct) prime ideals p1, p2, p3 . . . , pn of
OK(F ),S such that I can be expressed as the product

∏n
k=1 ppk

.

Proof. We claim that we can inductively construct a (possibly terminating)
sequence of ideals {Ik} indexed by positive integers, and a sequence of prime
ideals pk such that for each k, Ik

∏k
i=1 pi = I. Let I0 = I. Then, for each k, if

Ik−1 is not the unit ideal, let pk be a maximal ideal containing Ik. Additionally,
let Ik be the product of fractional ideals Ik−1p

−1
k : we claim that this is in fact

an integral ideal. After all, Ik = Ik−1p
−1
k ⊂ pkp−1

k = OK,S . Finally, we see
inductively that

Ik

k∏
i=1

pi = Ik−1p
−1
k

k∏
i=1

pi = Ik−1

k−1∏
i=1

pi = I.

If for some k, Ik = OK(F ),S , we have produced the desired factorization
I =

∏k
i=1 pi. Hence we need only show that this process must terminate. For

suppose not. We see that
∏k

i=1 pi ⊂ Ik

∏k
i=1 pi = I, for any positive integer k.

Taking the intersection,
∞⋂

k=1

k∏
i=1

pi ⊃ I.

On the other hand, either there are infinitely many distinct pi, or some pi ap-
pears infinitely many times. In either case, as a result of Lemma 3.2 implies the
infinite intersection

⋂∞
k=1

∏k
i=1 pi is empty, a contradiction. Hence the process

must terminate, and I can be factorized into prime ideals.

As a consequence, we can prove unique factorization of ideals:

Theorem 3.4 (Unique Ideal Factorization). If I is an ideal of OK(F ),S,
there exists a unique integer k unique choice (up to ordering) of prime ideals pi

and positive integers ni for i = 1, 2, . . . , k such that

I =
k∏

i=1

pni
i

Proof. We know that such a factorization exists by Theorem 3.3. The proof
that these factorizations is unique proceeds exactly as in Stein 3.1.9, using the
previously that prime ideals are invertible.

Although we could stop here now that we have proved the powerful result of
unique factorization, we will proceed to show that OK(F ),S additionally shares
the other basic properties that Dedekind domains enjoy: namely, the Noetherian
property and that of being integrally closed in its field of fractions.

Proposition 3.5. The integral domain OK(F ),S is Noetherian.
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Proof. We will show that if I is any ideal of OK(F ),S , there are only finitely
many ideals containing I. By Proposition 3.3, we can factorize I into prime
ideals, and can do the same with J . Because J is a product of prime ideals, J

has an inverse J−1 =
∏m

j=1 p′j
−n′j , and J−1I ⊂ J−1J is an integral ideal. We

can then factor IJ−1 into prime ideals as well, and the product of the prime
factorizations of J and IJ−1 must yield the unique prime ideal factorization of I.
Hence only ideals that appear in the prime factorization of I can appear in the
prime factorization of J , and no prime ideal can appear in the factorization of J
to a higher power that it does for I. This yields only finitely many possibilites
for J , proving our claim.

Now the ascending chain condition is clear: if I1 ⊂ I2 ⊂ I3 . . . is an infinite
ascending chain of ideals, all ideals in the chain must contain I1. There are only
finitely many such ideals, so the chain must eventually terminate.

We finally show that OK(F ),S is integrally closed in its field of fractions. For
this we take a different tack. First of all, we claim that it suffices to show the
result for the fields Oa(F ), where a ranges over all points of VK̄(F ) outside of
S.

Proposition 3.6. If for each point a ∈ VK̄(F ) outside S, the field Oa(F ) is
integrally closed in its field of fractions K(F ), so is OK(F ),S.

Proof. First, we note that by definition OK(F ),S =
⋂

aOa(F ), where a ranges
over all points of VK̄(F ) outside S. Then suppose that α ∈ K(F ) satisfies a
monic polynomial equation p(α) = 0 with coefficients in OK(F ),S : we need to
show that α ∈ OK(F ),S . For any a ∈ VK̄(F ) − S, p also has coefficients in the
larger integrally closed ring Oa(F ), so pinOa(F ). Since this is true for any point
a outside of S, we deduce that α ∈ OK(F ),S , which must then also be integrally
closed in its field of fractions.

Now we need only show thatOa(F ) is integrally closed in its field of fractions.
This turns out to be a general property of discrete valuation rings.

Proposition 3.7. Let R be a discrete valuation ring with field of fractions K.
Then R is integrally closed in K

Proof. Suppose not. Then let α ∈ K, α /∈ R such that a satisifies a monic
polynomial p ∈ R[a]. Then let t be a uniformizing parameter for R. We can
write α = ut−n, where u is a unit of R and n is a positive integer. Additionally,
we can express

p(x) = xN + vN−1t
aN−1xN−1 + vN−2t

aN−2xN−2 + · · ·+ v1t
a1x + v0t

a0

where all of the t are non-negative. Then

t(N−1)np(α) =

uN t−n+vN−1u
N−1taN−1 +vN−2u

N−2taN−2+n+. . .+v1u1t
(N−2)n+v0t

(n−1)N .

The left hand side of this expression is in R, as all all terms of the right hand
side save the first. Hence uN t−n ∈ R, which is impossible.
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Now we are ready to wrap everything up, with our big theorem:

Theorem 3.8. For an algebraic curve F over a finite field K, and some fi-
nite subset S of points of VK̄(F ) on the curve, the ring OK(F ),S is a Dedekind
domain.

Proof. We have proven that the maximal ideals of OK(F ),S are maximal, that
it is Noetherian, and that OK(F ),S is integrally closed in its field of fractions
K(F ). This is exactly what we had to show.

From this, we can rededuce our previous result of unique ideal factorization.
Additionally, we know that any theorem about rings of integers in algebraic
number fields that uses only the Dedekind domain properties extends immedi-
ately to OK(F ),S . For example, any ideal of OK(F ),S can be generated by two
elements. Additionally, we can define a class group Cl(K(F ), S) in exactly the
same way as has been done for algebraic number fields K/Q.

4 Conclusion

Although we have accomplished our major goal of showing that OK(F ),S is, like
our previously studied rings of integers in number fields, this is more a beginning
than an end. For one thing, our results have allowed us to construct class groups
for our rings of integers OK(F ),S , which are new objects to study and investigate
in the same manner as has been done for number fields. Additionally, well-
defined prime ideal factorization allows us to study the question of how prime
ideals factor when one moves to a finite extension: whether it ramifies, splits,
stays inert, or does some combination of the above. And even without thinking
about ideal factorization, we have another object, the group of units, to play
with and investigate. There is much room to explore and seek parallels with
number fields, although some tools from the number field case will not carry
over directly to function fields. This is especially true when exploiting the
geometry, analysis, and topology of Q and its rational extensions as embedded
in C. However, there are still many fruitful and far-reaching parallels that we
have not have time to delve into.
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