Constructing Abelian Varieties for Pairing-Based Cryptography

David Freeman

University of California, Berkeley, USA

University of Washington 26 February 2008

< □ > < 同 > < 三 > <

Outline

Pairing-Based Cryptography

- Pairings in Cryptography
- Pairings on Abelian Varieties
- The Problem
- 2 Constructing Pairing-Friendly Ordinary Elliptic Curves
 - The CM Method of Curve Construction
 - The MNT Strategy
 - Curves with Embedding Degree 10
- 3 Constructing Pairing-Friendly Ordinary Abelian Varieties
 - Abelian Varieties and Complex Multiplication
 - The FSS Construction
 - Extending the Algorithm

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Pairing-Based Cryptography

Constructing Pairing-Friendly Ordinary Elliptic Curves Constructing Pairing-Friendly Ordinary Abelian Varieties

Outline

Pairings in Cryptography Pairings on Abelian Varieties The Problem

Pairing-Based Cryptography

- Pairings in Cryptography
- Pairings on Abelian Varieties
- The Problem
- 2 Constructing Pairing-Friendly Ordinary Elliptic Curves
 - The CM Method of Curve Construction
 - The MNT Strategy
 - Curves with Embedding Degree 10

3 Constructing Pairing-Friendly Ordinary Abelian Varieties

- Abelian Varieties and Complex Multiplication
- The FSS Construction
- Extending the Algorithm

Pairing-Based Cryptography

Constructing Pairing-Friendly Ordinary Elliptic Curves Constructing Pairing-Friendly Ordinary Abelian Varieties Pairings in Cryptography Pairings on Abelian Varieties The Problem

What is a pairing?

- Let $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_7$ be finite cyclic groups of the same order.
- A cryptographic pairing is a bilinear, nondegenerate map

 $\boldsymbol{e}:\mathbb{G}_1\times\mathbb{G}_2\to\mathbb{G}_T.$

- To be useful in crypto applications, we need:
 - the pairing to be easy to compute, and
 - the discrete logarithm problem in G₁, G₂, and G_T to be computationally infeasible.
- Discrete logarithm problem (DLP): Given x, x^a in finite group, compute a ∈ Z/|x|Z.

イロト 不得 とくほ とくほ とう

Pairings in Cryptography Pairings on Abelian Varieties The Problem

Example: One-round 3-way key exchange (Joux)

- Three players A,B,C want to agree on a shared secret.
- Choose (public) group G₁ = G₂ = ⟨g⟩ and cryptographic pairing e : G₁ × G₂ → G_T.
- A,B,C pick secret integers $a, b, c \in [1, |g|]$.
- A broadcasts g^a , B broadcasts g^b , C broadcasts g^c .
- Shared secret is $e(g,g)^{abc} \in \mathbb{G}_T$:
 - A computes $e(g^b, g^c)^a$,
 - B computes $e(g^a, g^c)^b$,
 - C computes $e(g^a, g^b)^c$.
- If DLP in ⟨g⟩ and G_T are infeasible, then the shared secret can't be recovered from the public information.
 - Can't compute *a* from g, g^a or $e(g, g), e(g, g^a)$.

Pairings in Cryptography Pairings on Abelian Varieties The Problem

Pairings used in cryptography

- Today, pairings used in many cryptographic applications, including *identity-based encryption, digital signatures, private information retrieval, zero knowledge,* and more...
- Groups G₁, G₂ are groups of points on (principally polarized) abelian varieties A/F_q.
- Pairings e are (variants of) the Weil pairing

 $e_{\textit{weil},\textit{r}}:\textit{A}[\textit{r}] imes \textit{A}[\textit{r}]
ightarrow \mu_{\textit{r}}$

or the Tate (or Frey-Rück) pairing

 $e_{tate,r}: A(\mathbb{F}_{q^k})[r] \times A(\mathbb{F}_{q^k})/rA(\mathbb{F}_{q^k}) \to \mathbb{F}_{q^k}^{\times}/(\mathbb{F}_{q^k}^{\times})^r$

• If *r* is prime and \mathbb{F}_{q^k} is the smallest field containing μ_r , then $\mathbb{G}_T = \mathbb{F}_{q^k}^{\times}$ for both pairings.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

Pairing-Based Cryptography

Constructing Pairing-Friendly Ordinary Elliptic Curves Constructing Pairing-Friendly Ordinary Abelian Varieties Pairings in Cryptography Pairings on Abelian Varieties The Problem

Embedding degrees

- Let A be an g-dimensional abelian variety over \mathbb{F}_q with
 - $r \mid #A(\mathbb{F}_q), r \text{ prime.}$
 - If keys, signatures, ciphertexts, etc. are elements of A[r], we want q small to save bandwidth.
 - Ideal case: $A(\mathbb{F}_q)$ has prime order $(r \approx q^g)$.
- Let k be the smallest integer such that $\mu_r \subset \mathbb{F}_{a^k}^{\times}$

(equivalently, such that $r \mid q^k - 1$ or $r \mid \Phi_k(q)$).

- Weil/Tate pairings can be used to embed $A(\mathbb{F}_q)[r]$ into $\mathbb{F}_{q^k}^{\times}$.
- *k* is the *embedding degree* of *A* (with respect to *r*).
- Equivalently, k is the order of q in $(\mathbb{Z}/r\mathbb{Z})^{\times}$.
 - For "random" varieties, $k \sim r$ (Bal.-Kob.).
 - If r is large (~ 2¹⁶⁰), random A will have embedding degree too large to be practical.

ヘロト ヘワト ヘビト ヘビト

The problem

Pairings in Cryptography Pairings on Abelian Varieties The Problem

 The problem: find primes q and abelian varieties A/F_q having

- a subgroup of large prime order r, and
- Prescribed (small) embedding degree with respect to r.
 - In practice, want $r > 2^{160}$ and $k \le 50$.
- We call such varieties "pairing-friendly."
- Want to be able to control the number of bits of *r* to construct varieties for various applications.

Outline

The CM Method of Curve Construction The MNT Strategy Curves with Embedding Degree 10

Pairing-Based Cryptography

- Pairings in Cryptography
- Pairings on Abelian Varieties
- The Problem
- 2 Constructing Pairing-Friendly Ordinary Elliptic Curves
 - The CM Method of Curve Construction
 - The MNT Strategy
 - Curves with Embedding Degree 10
- 3 Constructing Pairing-Friendly Ordinary Abelian Varieties
 - Abelian Varieties and Complex Multiplication
 - The FSS Construction
 - Extending the Algorithm

The CM Method of Curve Construction The MNT Strategy Curves with Embedding Degree 10

Known results: Elliptic curves

- Menezes-Okamoto-Vanstone: Supersingular elliptic curves always have k ≤ 6; easy to construct.
- Cocks-Pinch, Dupont-Enge-Morain: Construct ordinary elliptic curves with arbitrary $k, q \approx r^2$.
- Barreto-Lynn-Scott, Brezing-Weng: reduce size of *q* for certain *k*, but no curves of prime order.
- Miyaji-Nakabayashi-Takano, Barreto-Naehrig: Construct ordinary elliptic curves with *k* = 3, 4, or 6 (MNT), or *k* = 12 (BN) and prime order *r* ≈ *q*.
- Our result (ANTS-VII): Construct ordinary elliptic curves with k = 10 and prime order r ≈ q.

ヘロト 人間 ト ヘヨト ヘヨト

The CM Method of Curve Construction The MNT Strategy Curves with Embedding Degree 10

The CM method

- Complex Multiplication method (Atkin, Morain) generates elliptic curves with a specified number of points.
- For given square-free D > 0, CM method constructs elliptic curve with CM by Q(√−D).
- Running time depends on the class number h_D of $\mathbb{Q}(\sqrt{-D})$.
 - Bottleneck is computing the *Hilbert class polynomial*, a polynomial of degree *h*_D.
 - Best known algorithms run in (roughly) $O(h_D^2) = O(D)$ (Enge).
- Can be efficiently implemented if h_D not too large.
 - Current record is $h_D = 10^5$ (Enge).

<ロト <回 > < 注 > < 注 > 、

The CM Method of Curve Construction The MNT Strategy Curves with Embedding Degree 10

How to generate pairing-friendly curves

- Recall: The *trace* of E/\mathbb{F}_q satisfies $\#E(\mathbb{F}_q) = q + 1 t$.
- To apply the CM method: Fix *D*, *k*. Look for *t*, *r*, *q* (representing trace, order of subgroup, and size of field) satisfying
 - q, r prime;
 - 2 $r \mid q + 1 t$ (formula for number of points);
 - r | Φ_k(q), where Φ_k is kth cyclotomic polynomial (embedding degree k);
 - $Dy^2 = 4q t^2$ for some integer y ("CM equation").
- For such *t*, *r*, *q*, if *h_D* is not too large (~ 10⁵) we can construct an elliptic curve *E* over 𝔽_{*q*} with an order-*r* subgroup and embedding degree *k*.

The CM Method of Curve Construction The MNT Strategy Curves with Embedding Degree 10

Generating curves of prime order

- For curves of prime order, have r = q + 1 t.
 - Condition $r \mid \Phi_k(q)$ equivalent to $r \mid \Phi_k(t-1)$.
- Idea of Barreto-Lynn-Scott, others: parametrize t, r, q as polynomials: t(x), r(x), q(x). Construct curves by finding many integer solutions (x, y) to the "CM equaton"

$$Dy^2 = 4q(x) - t(x)^2 = 4r(x) - (t(x) - 2)^2.$$

- MNT strategy: Fix D, k, choose t(x), let r(x) be an irreducible factor of Φ_k(t(x) 1), find solutions (x, y) to CM equation.
- Observation (F.): CM equation will have many solutions only if RHS is quadratic or has a multiple root (Siegel's theorem).

ヘロト ヘワト ヘビト ヘビト

The CM Method of Curve Construction The MNT Strategy Curves with Embedding Degree 10

Using the MNT strategy

- Goal: Choose t(x), find factor r(x) of $\Phi_k(t(x) 1)$, such that $f(x) = 4r(x) (t(x) 2)^2$ is quadratic.
- MNT solution for *k* = 3, 4, 6:
 - O Choose t(x) linear; then r(x) is quadratic, and so is f(x).
 - Use standard Pell equation algorithms to find solutions (x_0, y_0) to $Dy^2 = f(x)$.
 - Ompute field size $q(x_0)$ and curve order $r(x_0)$.
 - If no solutions of appropriate size, or $q(x_0)$ or $r(x_0)$ not prime, choose different *D* and try again.
 - Use CM method to construct curve equation.

The CM Method of Curve Construction The MNT Strategy Curves with Embedding Degree 10

Our solution for k = 10

- Goal: Choose t(x), find factor r(x) of $\Phi_{10}(t(x) 1)$, such that $f(x) = 4r(x) (t(x) 2)^2$ is quadratic.
 - All irred. factors of $\Phi_{10}(t(x) 1)$ must have 4 | degree.
- Key observation: Need to choose r(x), t(x) such that the leading terms of 4r and t² cancel out.
 - Smallest possible case: deg r = 4, deg t = 2.
- Galbraith-McKee-Valença: Characterized quadratic t(x) such that $\Phi_{10}(t(x) 1)$ factors into two quartics.
- One of these *t*(*x*) gives the desired cancellation!
- Construct curves via Pell-like equation as in MNT solution.

The CM Method of Curve Construction The MNT Strategy Curves with Embedding Degree 10

Choice of Parameters

• Choose *t*, *r*, *q* as follows:

$$t(x) = 10x^{2} + 5x + 3$$

$$r(x) = 25x^{4} + 25x^{3} + 15x^{2} + 5x + 1$$

$$q(x) = 25x^{4} + 25x^{3} + 25x^{2} + 10x + 3$$

• Then r(x) divides $\Phi_{10}(t(x) - 1)$, and

$$f(x) = 4r(x) - (t(x) - 2)^2 = 15x^2 + 10x + 3.$$

イロン イボン イヨン イヨン

æ

The CM Method of Curve Construction The MNT Strategy Curves with Embedding Degree 10

Example: A 234-bit Curve (Computed by Mike Scott)

- Set *D* = 1227652867.
- Compute solution (x, y) to $Dy^2 = 15x^2 + 10x + 3$.
- Use this value of x to compute
 - t = 269901098952705059670276196260897153
 - r = 18211650803969472064493264347375949776033155743952030750450033782306651
 - q = 18211650803969472064493264347375950045934254696657090420726230043203803
- Use CM method to compute curve equation over \mathbb{F}_q :

 $y^2 = x^3 - 3x + 15748668094913401184777964473522859086900831274922948973320684995903275.$

• This curve has *r* points and embedding degree 10.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Outline

Abelian Varieties and Complex Multiplication The FSS Construction Extending the Algorithm

Pairing-Based Cryptography

- Pairings in Cryptography
- Pairings on Abelian Varieties
- The Problem
- 2 Constructing Pairing-Friendly Ordinary Elliptic Curves
 - The CM Method of Curve Construction
 - The MNT Strategy
 - Curves with Embedding Degree 10

3 Constructing Pairing-Friendly Ordinary Abelian Varieties

- Abelian Varieties and Complex Multiplication
- The FSS Construction
- Extending the Algorithm

Abelian Varieties and Complex Multiplication The FSS Construction Extending the Algorithm

Known Results: Abelian Varieties of Dimension ≥ 2

- Rubin-Silverberg: Classified supersingular abelian varieties of dimension *g* ≤ 6.
 - Easy to construct.
 - Always have $k \leq 7.5g$.
- Galbraith-McKee-Valença, Hitt: Showed existence of non-supersingular abelian surfaces (g = 2) with small embedding degree, but no construction.
- **Result #1** (*Pairings '07*): Construct ordinary abelian surfaces with arbitrary *k*.
- **Result #2** (*ANTS-VIII*, with P. Stevenhagen and M. Streng): Abstract Result #1 and generalize to arbitrary dimension.

Abelian Varieties and Complex Multiplication The FSS Construction Extending the Algorithm

Frobenius Endomorphism and CM fields

- Let A be a g-dimensional ordinary, simple abelian variety over 𝔽_g (q prime).
- K = End(A) ⊗ Q is a degree-2g number field, called a CM-field an imaginary quadratic extension of a totally real field. (We say A has CM by K.)
- The Frobenius endomorphism π of A can be interpreted as an algebraic integer in K.
- $\pi \in \mathcal{O}_K$ is a *q*-Weil number. all embeddings $K \hookrightarrow \mathbb{C}$ have $\pi \overline{\pi} = q$.

•
$$#A(\mathbb{F}_q) = N_{K/\mathbb{Q}}(\pi - 1).$$

イロト 不得 とくほと くほとう

1

Abelian Varieties and Complex Multiplication The FSS Construction Extending the Algorithm

Pairing-Friendly Frobenius Elements

- Honda-Tate: (conjugacy classes of) *q*-Weil numbers π correspond to (isogeny classes of) abelian varieties *A*/𝔽_{*q*}.
- To guarantee that A/\mathbb{F}_q has embedding degree *k* with respect to a subgroup of order *r*, we require:

$$egin{array}{rcl} {\sf N}_{{\cal K}/{\mathbb Q}}(\pi-1)&\equiv&0\pmod{r}\ {\Phi}_k(\pi\overline{\pi})&\equiv&0\pmod{r} \end{array}$$

where Φ_k is the *k*th cyclotomic polynomial.

- Construction of such π demonstrates existence of pairing-friendly abelian varieties.
- Problem: these varieties can only be *constructed* if *K* is "small."
- Solution: Fix *K* in advance so that varieties with CM by *K* can be constructed (more on this later...).

Abelian Varieties and Complex Multiplication The FSS Construction Extending the Algorithm

Main Idea: A Modular Approach

- Simple case: *K* Galois cyclic, degree 2*g*, Gal(K/\mathbb{Q}) = $\langle \sigma \rangle$.
- Subgroup order *r* is a prime that splits completely in *K*:

$$r\mathcal{O}_K = \mathfrak{r}_1 \cdots \mathfrak{r}_g \overline{\mathfrak{r}}_1 \cdots \overline{\mathfrak{r}}_g$$

with $\mathfrak{r}_i = \sigma^{-i}(\mathfrak{r})$ for some prime \mathfrak{r} over r.

• Given $\xi \in \mathcal{O}_K$, write

$$\xi \equiv \alpha_i \pmod{\mathfrak{r}_i}, \quad \xi \equiv \beta_i \pmod{\overline{\mathfrak{r}}_i}$$

for $\alpha_i, \beta_i \in \mathbb{F}_r$.

- Define $\pi = \prod_{i=1}^{g} \sigma^{i}(\xi)$.
- Then $\sigma^i(\xi) \equiv \alpha_i \pmod{\mathfrak{r}}$ and $\sigma^i(\xi) \equiv \beta_i \pmod{\overline{\mathfrak{r}}}$, so we have

$$\pi \equiv \prod_{i=1}^{g} \alpha_i \pmod{\mathfrak{r}}, \qquad \pi \equiv \prod_{i=1}^{g} \beta_i \pmod{\overline{\mathfrak{r}}}.$$

Abelian Varieties and Complex Multiplication The FSS Construction Extending the Algorithm

Imposing The Pairing-Friendly Conditions

• We have constructed $\pi \in \mathcal{O}_{\mathcal{K}}$ such that

$$\pi \equiv \prod_{i=1}^{g} \alpha_i \pmod{\mathfrak{r}}, \qquad \overline{\pi} \equiv \prod_{i=1}^{g} \beta_i \pmod{\mathfrak{r}}.$$

Suppose that

•
$$\zeta = \prod_{i=1}^{g} \alpha_i$$
 is a *k*th root of unity in \mathbb{F}_r^{\times} , and
• $\prod_{i=1}^{g} \beta_i = 1$ in \mathbb{F}_r .

Then

$$\begin{array}{l} \label{eq:phi} \bullet_k(\pi\overline{\pi}) \equiv \Phi_k(\zeta) \equiv 0 \pmod{\mathfrak{r}} \\ \end{tabular} \\ \end{tabular} \overline{\pi} - 1 \equiv 0 \pmod{\mathfrak{r}}, \mbox{ so } \mathsf{N}_{K/\mathbb{Q}}(\pi-1) \equiv 0 \pmod{r}. \end{array}$$

Conclusion: if q = ππ = N_{K/Q}(ξ) is prime, then abelian varieties A/𝔽_q with Frobenius endomorphism π have embedding degree k with respect to a subgroup of order r.

Abelian Varieties and Complex Multiplication The FSS Construction Extending the Algorithm

Generalizing to Arbitrary CM-Fields

- A *CM-type* of *K* is a set Φ = {φ₁,..., φ_g} of half of the embeddings *K* → C, one from each complex conjugate pair.
- The *reflex type* of (K, Φ) is a CM-type Ψ = {ψ₁,...,ψ_g} of a certain CM-subfield K of the Galois closure of K.
 K = K if K is Galois; in general ĝ ≫ g.
- The type norm of Ψ is the map

$$\mathsf{N}_{\Psi}: \xi \mapsto \prod_{i=1}^{\widehat{g}} \psi_i(\xi).$$

- Theorem (Shimura): N_{Ψ} maps $\mathcal{O}_{\widehat{K}}$ to $\mathcal{O}_{\mathcal{K}}$.
- To generalize construction, factor *r* in O_κ, construct
 ξ ∈ O_κ with prescribed residues, and let π = N_Ψ(ξ) ∈ O_κ.

Abelian Varieties and Complex Multiplication The FSS Construction Extending the Algorithm

The FSS Algorithm

- Fix primitive CM-type (K, Φ) , prime subgroup size *r* (splits completely in *K*), embedding degree $k \equiv 1 \pmod{r}$.
- 2 Compute the reflex type (\widehat{K}, Ψ) , let $\widehat{g} = \frac{1}{2} \deg \widehat{K}$.
- Schoose random $\alpha_1, \ldots, \alpha_{\widehat{g}-1}, \beta_1, \ldots, \beta_{\widehat{g}-1} \in \mathbb{F}_r^{\times}$.
- Schoose $\alpha_{\widehat{g}}, \beta_{\widehat{g}} \in \mathbb{F}_r$ such that $\prod_{i=1}^{\widehat{g}} \alpha_i$ is a *k*th root of unity, and $\prod_{i=1}^{\widehat{g}} \beta_i = 1$.
- Solution Use Chinese Remainder Theorem to compute $\xi \in \mathcal{O}_{\widehat{K}}$ with residues α_i, β_i modulo factors of $r\mathcal{O}_{\widehat{K}}$.

• Let
$$\pi = N_{\Psi}(\xi), q = \pi \overline{\pi} = \mathsf{N}_{\widehat{K}/\mathbb{Q}}(\xi).$$

If q is prime return q and π ; otherwise go to (3).

The Output

Abelian Varieties and Complex Multiplication The FSS Construction Extending the Algorithm

- Need g ≥ 2 for algorithm to work.
 - Adaptation for g = 1 recovers the Cocks-Pinch algorithm.
- For fixed *K*, expected running time to output prime *q* and $\pi \in \mathcal{O}_K$ is (heuristically) polynomial in log *r*.
- Theorem (FSS): If prime *q* is unramified in *K* and *K* = Q(π) (both of which happen with high probability) then there is an ordinary, simple abelian variety *A*/F_q of dimension *g* that has embedding degree *k* with respect to a subgroup of order *r*.
- How do we constuct this A? CM methods.

Abelian Varieties and Complex Multiplication The FSS Construction Extending the Algorithm

Constructing Abelian Varieties with CM by K

- CM theory: Abelian varieties A/F_q with CM by K arise as reductions of varieties in characteristic zero with CM by K.
- CM methods: Construct *g*-dimensional abelian varieties in characteristic zero with CM by *K*.
 - *g* = 1 (elliptic curves): Compute *Hilbert class polynomials*; roots are *j*-invariants of elliptic curves *E* with CM by *K*.
 - *g* = 2 (abelian surfaces): Compute *Igusa class polynomials*; roots are Igusa invariants of genus 2 curves *C* whose Jacobians have CM by *K*.
 - g = 3: Methods developed only for fields containing *i* or ζ_3 .
 - Higher dimensions: only a few explicit examples, e.g. Jacobian of $y^2 = x^p + 1$ for prime *p*.

The FSS Construction

A small example (q = 2)

Algorithm inputs:

- **O** CM-field $K = \mathbb{Q}(\zeta_5)$; CM-type $\Phi = \{\phi_1, \phi_2\}, \phi_2\}$ where $\phi_n: \zeta_5 \mapsto e^{2\pi i n/5}$.
- 2 Embedding degree k = 10,
- Prime r = 2011 = NextPrime(2008),
- Algorithm outputs:
 - Prime q = 2086780871011,
 - **2** $\pi = 835578 + 552276\zeta_5 845235\zeta_5^2 + 313882\zeta_5^3$
- CM methods produce curve $C: y^2 = x^5 + 22$ over \mathbb{F}_q .
- If A = Jac(C) is the Jacobian of C, then
 - \bigcirc $A(\mathbb{F}_{q})$ has a subgroup of order r.

 $#A(\mathbb{F}_{q}) = 4354647472611861083688755 \equiv 0$ (mod r)

A has embedding degree 10 with respect to r.

(ロト (過) (ヨト (ヨト

Abelian Varieties and Complex Multiplication The FSS Construction Extending the Algorithm

Improving the ρ -value

For abelian varieties A of dimension g over 𝔽_q, define a parameter

$$\rho = \frac{\log q^g}{\log r}.$$

- Since #A ≈ q^g, ρ measures ratio of pairing-friendly subgroup size to entire group size (in bits).
 - Want ρ small for maximum efficiency. (Minimum is 1.)
- Expected ρ -value produced by our algorithm is $2g\hat{g}$.

• $\rho = 7.46$ in the example above $(g = \hat{g} = 2)$.

 Major open problem: produce pairing-friendly ordinary abelian varieties with g ≥ 2 and ρ ≤ 2.

ヘロト 人間 ト ヘヨト ヘヨト

Pairing-Based Cryptography Constructing Pairing-Friendly Ordinary Abelian Varieties

Extending the Algorithm

A New Result

- Used the ideas of FSS algorithm to generalize Brezing-Weng elliptic curve construction to arbitrary dimension.
- Implemented for Galois cyclic CM-fields K.
- Algorithm produces pairing-friendly abelian varieties with $\rho < 2a^2$.

Dimension $g = 2$				
k	ρ	CM-field		
5	4	$\mathbb{Q}(\zeta_5)$		
10	6	$\mathbb{Q}(\zeta_5)$		
13	6.7	$\mathbb{Q}(\sqrt{-13+2\sqrt{13}})$		
16	7	$\mathbb{Q}(\sqrt{-2+\sqrt{2}})$		

Dimension q = 3

k	ρ	CM-field
7	12	$\mathbb{Q}(\zeta_7)$
9	15	$\mathbb{Q}(\zeta_9)$