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What is a pairing?

Let G1,G2,GT be finite cyclic groups of the same order.
A cryptographic pairing is a bilinear, nondegenerate map

e : G1 ×G2 → GT .

To be useful in crypto applications, we need:
1 the pairing to be easy to compute, and
2 the discrete logarithm problem in G1, G2, and GT to be

computationally infeasible.

Discrete logarithm problem (DLP): Given x , xa in finite
group, compute a ∈ Z/|x |Z.
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Example: One-round 3-way key exchange (Joux)

Three players A,B,C want to agree on a shared secret.
Choose (public) group G1 = G2 = 〈g〉 and cryptographic
pairing e : G1 ×G2 → GT .
A,B,C pick secret integers a,b, c ∈ [1, |g|].
A broadcasts ga, B broadcasts gb, C broadcasts gc .
Shared secret is e(g,g)abc ∈ GT :

A computes e(gb,gc)a,
B computes e(ga,gc)b,
C computes e(ga,gb)c .

If DLP in 〈g〉 and GT are infeasible, then the shared secret
can’t be recovered from the public information.

Can’t compute a from g,ga or e(g,g),e(g,ga).
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Pairings used in cryptography

Today, pairings used in many cryptographic applications,
including identity-based encryption, digital signatures,
private information retrieval, zero knowledge, and more...
Groups G1,G2 are groups of points on (principally
polarized) abelian varieties A/Fq.
Pairings e are (variants of) the Weil pairing

eweil,r : A[r ]× A[r ] → µr

or the Tate (or Frey-Rück) pairing

etate,r : A(Fqk )[r ]× A(Fqk )/rA(Fqk ) → F×qk/(F×qk )
r

If r is prime and Fqk is the smallest field containing µr , then
GT = F×qk for both pairings.
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Embedding degrees

Let A be an g-dimensional abelian variety over Fq with
r | #A(Fq), r prime.

If keys, signatures, ciphertexts, etc. are elements of A[r ],
we want q small to save bandwidth.
Ideal case: A(Fq) has prime order (r ≈ qg).

Let k be the smallest integer such that µr ⊂ F×qk

(equivalently, such that r | qk − 1 or r | Φk (q)).
Weil/Tate pairings can be used to embed A(Fq)[r ] into F×qk .
k is the embedding degree of A (with respect to r ).

Equivalently, k is the order of q in (Z/rZ)×.
For “random” varieties, k ∼ r (Bal.-Kob.).
If r is large (∼ 2160), random A will have embedding degree
too large to be practical.
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The problem

The problem: find primes q and abelian varieties A/Fq
having

1 a subgroup of large prime order r , and
2 prescribed (small) embedding degree with respect to r .

In practice, want r > 2160 and k ≤ 50.

We call such varieties “pairing-friendly.”
Want to be able to control the number of bits of r to
construct varieties for various applications.
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Known results: Elliptic curves

Menezes-Okamoto-Vanstone: Supersingular elliptic curves
always have k ≤ 6; easy to construct.
Cocks-Pinch, Dupont-Enge-Morain: Construct ordinary
elliptic curves with arbitrary k , q ≈ r2.
Barreto-Lynn-Scott, Brezing-Weng: reduce size of q for
certain k , but no curves of prime order.
Miyaji-Nakabayashi-Takano, Barreto-Naehrig: Construct
ordinary elliptic curves with k = 3, 4, or 6 (MNT), or k = 12
(BN) and prime order r ≈ q.
Our result (ANTS-VII): Construct ordinary elliptic curves
with k = 10 and prime order r ≈ q.
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The CM method

Complex Multiplication method (Atkin, Morain) generates
elliptic curves with a specified number of points.
For given square-free D > 0, CM method constructs elliptic
curve with CM by Q(

√
−D).

Running time depends on the class number hD of
Q(
√
−D).
Bottleneck is computing the Hilbert class polynomial, a
polynomial of degree hD.
Best known algorithms run in (roughly) O(h2

D) = O(D)
(Enge).

Can be efficiently implemented if hD not too large.
Current record is hD = 105 (Enge).
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How to generate pairing-friendly curves

Recall: The trace of E/Fq satisfies #E(Fq) = q + 1− t .
To apply the CM method: Fix D, k . Look for t , r ,q
(representing trace, order of subgroup, and size of field)
satisfying

1 q, r prime;
2 r | q + 1− t (formula for number of points);
3 r | Φk (q), where Φk is k th cyclotomic polynomial

(embedding degree k );
4 Dy2 = 4q − t2 for some integer y (“CM equation”).

For such t , r ,q, if hD is not too large (∼ 105) we can
construct an elliptic curve E over Fq with an order-r
subgroup and embedding degree k .
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Generating curves of prime order

For curves of prime order, have r = q + 1− t .
Condition r | Φk (q) equivalent to r | Φk (t − 1).

Idea of Barreto-Lynn-Scott, others: parametrize t , r ,q as
polynomials: t(x), r(x),q(x). Construct curves by finding
many integer solutions (x , y) to the “CM equaton”

Dy2 = 4q(x)− t(x)2 = 4r(x)− (t(x)− 2)2.

MNT strategy: Fix D, k , choose t(x), let r(x) be an
irreducible factor of Φk (t(x)− 1), find solutions (x , y) to
CM equation.
Observation (F.): CM equation will have many solutions
only if RHS is quadratic or has a multiple root (Siegel’s
theorem).
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Using the MNT strategy

Goal: Choose t(x), find factor r(x) of Φk (t(x)− 1), such
that f (x) = 4r(x)− (t(x)− 2)2 is quadratic.
MNT solution for k = 3,4,6:

1 Choose t(x) linear; then r(x) is quadratic, and so is f (x).
2 Use standard Pell equation algorithms to find solutions

(x0, y0) to Dy2 = f (x).
3 Compute field size q(x0) and curve order r(x0).
4 If no solutions of appropriate size, or q(x0) or r(x0) not

prime, choose different D and try again.
5 Use CM method to construct curve equation.
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Our solution for k = 10

Goal: Choose t(x), find factor r(x) of Φ10(t(x)− 1), such
that f (x) = 4r(x)− (t(x)− 2)2 is quadratic.

All irred. factors of Φ10(t(x)− 1) must have 4 | degree.
Key observation: Need to choose r(x), t(x) such that the
leading terms of 4r and t2 cancel out.

Smallest possible case: deg r = 4, deg t = 2.

Galbraith-McKee-Valença: Characterized quadratic t(x)
such that Φ10(t(x)− 1) factors into two quartics.
One of these t(x) gives the desired cancellation!
Construct curves via Pell-like equation as in MNT solution.
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Choice of Parameters

Choose t , r ,q as follows:

t(x) = 10x2 + 5x + 3
r(x) = 25x4 + 25x3 + 15x2 + 5x + 1
q(x) = 25x4 + 25x3 + 25x2 + 10x + 3

Then r(x) divides Φ10(t(x)− 1), and

f (x) = 4r(x)− (t(x)− 2)2 = 15x2 + 10x + 3.
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Example: A 234-bit Curve (Computed by Mike Scott)

Set D = 1227652867.
Compute solution (x , y) to Dy2 = 15x2 + 10x + 3.
Use this value of x to compute

t = 269901098952705059670276196260897153

r = 18211650803969472064493264347375949776033155743952030750450033782306651

q = 18211650803969472064493264347375950045934254696657090420726230043203803

Use CM method to compute curve equation over Fq:

y2 = x3−3x+15748668094913401184777964473522859086900831274922948973320684995903275.

This curve has r points and embedding degree 10.
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Known Results: Abelian Varieties of Dimension ≥ 2

Rubin-Silverberg: Classified supersingular abelian
varieties of dimension g ≤ 6.

Easy to construct.
Always have k ≤ 7.5g.

Galbraith-McKee-Valença, Hitt: Showed existence of
non-supersingular abelian surfaces (g = 2) with small
embedding degree, but no construction.
Result #1 (Pairings ‘07):
Construct ordinary abelian surfaces with arbitrary k .
Result #2 (ANTS-VIII, with P. Stevenhagen and M. Streng):
Abstract Result #1 and generalize to arbitrary dimension.
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Frobenius Endomorphism and CM fields

Let A be a g-dimensional ordinary, simple abelian variety
over Fq (q prime).
K = End(A)⊗Q is a degree-2g number field, called a
CM-field — an imaginary quadratic extension of a totally
real field. (We say A has CM by K .)
The Frobenius endomorphism π of A can be interpreted as
an algebraic integer in K .
π ∈ OK is a q-Weil number: all embeddings K ↪→ C have
ππ = q.
#A(Fq) = NK/Q(π − 1).
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Pairing-Friendly Frobenius Elements

Honda-Tate: (conjugacy classes of) q-Weil numbers π
correspond to (isogeny classes of) abelian varieties A/Fq.
To guarantee that A/Fq has embedding degree k with
respect to a subgroup of order r , we require:

NK/Q(π − 1) ≡ 0 (mod r)
Φk (ππ) ≡ 0 (mod r)

where Φk is the k th cyclotomic polynomial.
Construction of such π demonstrates existence of
pairing-friendly abelian varieties.
Problem: these varieties can only be constructed if K is
“small.”
Solution: Fix K in advance so that varieties with CM by K
can be constructed (more on this later...).
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Main Idea: A Modular Approach

Simple case: K Galois cyclic, degree 2g, Gal(K/Q) = 〈σ〉.
Subgroup order r is a prime that splits completely in K :

rOK = r1 · · · rgr1 · · · rg

with ri = σ−i(r) for some prime r over r .
Given ξ ∈ OK , write

ξ ≡ αi (mod ri), ξ ≡ βi (mod ri)

for αi , βi ∈ Fr .
Define π =

∏g
i=1 σ

i(ξ).
Then σi(ξ) ≡ αi (mod r) and σi(ξ) ≡ βi (mod r), so we
have

π ≡
∏g

i=1 αi (mod r), π ≡
∏g

i=1 βi (mod r).
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Imposing The Pairing-Friendly Conditions

We have constructed π ∈ OK such that

π ≡
∏g

i=1 αi (mod r), π ≡
∏g

i=1 βi (mod r).

Suppose that
1 ζ =

∏g
i=1 αi is a k th root of unity in F×r , and

2
∏g

i=1 βi = 1 in Fr .
Then

1 Φk (ππ) ≡ Φk (ζ) ≡ 0 (mod r)
2 π − 1 ≡ 0 (mod r), so NK/Q(π − 1) ≡ 0 (mod r).

Conclusion: if q = ππ = NK/Q(ξ) is prime, then abelian
varieties A/Fq with Frobenius endomorphism π have
embedding degree k with respect to a subgroup of order r .
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Generalizing to Arbitrary CM-Fields

A CM-type of K is a set Φ = {φ1, . . . , φg} of half of the
embeddings K ↪→ C, one from each complex conjugate
pair.
The reflex type of (K ,Φ) is a CM-type Ψ = {ψ1, . . . , ψbg} of
a certain CM-subfield K̂ of the Galois closure of K .

K̂ = K if K is Galois; in general ĝ � g.

The type norm of Ψ is the map

NΨ : ξ 7→
∏bg

i=1 ψi(ξ).

Theorem (Shimura): NΨ maps ObK to OK .
To generalize construction, factor r in ObK , construct
ξ ∈ ObK with prescribed residues, and let π = NΨ(ξ) ∈ OK .
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The FSS Algorithm

1 Fix primitive CM-type (K ,Φ), prime subgroup size r (splits
completely in K ), embedding degree k ≡ 1 (mod r).

2 Compute the reflex type (K̂ ,Ψ), let ĝ = 1
2 deg K̂ .

3 Choose random α1, . . . , αbg−1, β1, . . . , βbg−1 ∈ F×r .

4 Choose αbg , βbg ∈ Fr such that
∏bg

i=1 αi is a k th root of unity,

and
∏bg

i=1 βi = 1.
5 Use Chinese Remainder Theorem to compute ξ ∈ ObK with

residues αi , βi modulo factors of rObK .
6 Let π = NΨ(ξ), q = ππ = NbK/Q(ξ).

7 If q is prime return q and π; otherwise go to (3).
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The Output

Need g ≥ 2 for algorithm to work.
Adaptation for g = 1 recovers the Cocks-Pinch algorithm.

For fixed K , expected running time to output prime q and
π ∈ OK is (heuristically) polynomial in log r .
Theorem (FSS): If prime q is unramified in K and
K = Q(π) (both of which happen with high probability) then
there is an ordinary, simple abelian variety A/Fq of
dimension g that has embedding degree k with respect to
a subgroup of order r .
How do we constuct this A? CM methods.
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Constructing Abelian Varieties with CM by K

CM theory: Abelian varieties A/Fq with CM by K arise as
reductions of varieties in characteristic zero with CM by K .
CM methods: Construct g-dimensional abelian varieties in
characteristic zero with CM by K .

g = 1 (elliptic curves): Compute Hilbert class polynomials;
roots are j-invariants of elliptic curves E with CM by K .
g = 2 (abelian surfaces): Compute Igusa class
polynomials; roots are Igusa invariants of genus 2 curves C
whose Jacobians have CM by K .
g = 3: Methods developed only for fields containing i or ζ3.
Higher dimensions: only a few explicit examples,
e.g. Jacobian of y2 = xp + 1 for prime p.

David Freeman Constructing Abelian Varieties for Pairing-Based Cryptography



Pairing-Based Cryptography
Constructing Pairing-Friendly Ordinary Elliptic Curves

Constructing Pairing-Friendly Ordinary Abelian Varieties

Abelian Varieties and Complex Multiplication
The FSS Construction
Extending the Algorithm

A small example (g = 2)

Algorithm inputs:
1 CM-field K = Q(ζ5); CM-type Φ = {φ1, φ2},

where φn : ζ5 7→ e2πin/5.
2 Embedding degree k = 10,
3 Prime r = 2011 = NextPrime(2008),

Algorithm outputs:
1 Prime q = 2086780871011,
2 π = 835578 + 552276ζ5 − 845235ζ2

5 + 313882ζ3
5 .

CM methods produce curve C : y2 = x5 + 22 over Fq.
If A = Jac(C) is the Jacobian of C, then

1 A(Fq) has a subgroup of order r .

#A(Fq) = 4354647472611861083688755 ≡ 0 (mod r)

2 A has embedding degree 10 with respect to r .
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Improving the ρ-value

For abelian varieties A of dimension g over Fq, define a
parameter

ρ =
log qg

log r
.

Since #A ≈ qg , ρ measures ratio of pairing-friendly
subgroup size to entire group size (in bits).

Want ρ small for maximum efficiency. (Minimum is 1.)
Expected ρ-value produced by our algorithm is 2gĝ.

ρ = 7.46 in the example above (g = ĝ = 2).

Major open problem: produce pairing-friendly ordinary
abelian varieties with g ≥ 2 and ρ ≤ 2.
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A New Result

Used the ideas of FSS algorithm to generalize
Brezing-Weng elliptic curve construction to arbitrary
dimension.
Implemented for Galois cyclic CM-fields K .
Algorithm produces pairing-friendly abelian varieties with
ρ < 2g2.

Dimension g = 2 Dimension g = 3
k ρ CM-field
5 4 Q(ζ5)

10 6 Q(ζ5)

13 6.7 Q(
√
−13 + 2

√
13)

16 7 Q(
√
−2 +

√
2)

k ρ CM-field
7 12 Q(ζ7)
9 15 Q(ζ9)
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