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What is a pairing?

@ Let Gy, Gy, Gt be finite cyclic groups of the same order.
@ A cryptographic pairing is a bilinear, nondegenerate map

e:Gy x Gy — Gr.

@ To be useful in crypto applications, we need:
@ the pairing to be easy to compute, and
@ the discrete logarithm problem in G4, Gz, and Gt to be
computationally infeasible.
@ Discrete logarithm problem (DLP): Given x, x@ in finite
group, compute a € Z/|x|Z.
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Example: One-round 3-way key exchange (Joux)

@ Three players A,B,C want to agree on a shared secret.

@ Choose (public) group G1 = G, = (g) and cryptographic
pairing € : Gy x Go — Gr.

@ A,B,C pick secret integers a, b, c € [1,|g]].

@ A broadcasts g2, B broadcasts g?, C broadcasts g°.

@ Shared secret is e(g, g)%° € Gr:
e A computes e(g®, g°)?,
e B computes e(g?, g°)?,
e C computes e(g?, g°)°.
@ If DLP in (g) and Gt are infeasible, then the shared secret
can’t be recovered from the public information.
e Can’t compute a from g, g2 or e(g, 9), (g, 9%).
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Pairings used in cryptography

@ Today, pairings used in many cryptographic applications,
including identity-based encryption, digital signatures,
private information retrieval, zero knowledge, and more...

@ Groups G+, G2 are groups of points on (principally
polarized) abelian varieties A/IFg.
@ Pairings e are (variants of) the Weil pairing

ewe,-,,, : A[I’] X A[r] — Ur
or the Tate (or Frey-Rlick) pairing
Ctate,r : A(Fqk)[r] X A(Fqk)/rA(Fqk) - F:;k/(F;k)r

@ If ris prime and F is the smallest field containing ., then
Gt = IF;k for both pairings.
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Embedding degrees

@ Let A be an g-dimensional abelian variety over I, with
r| #A(Fq), r prime.
o If keys, signatures, ciphertexts, etc. are elements of A[r],
we want g small to save bandwidth.
e Ideal case: A(Fg) has prime order (r = q9%).

@ Let k be the smallest integer such that u, C F;k

(equivalently, such that r | g5 — 1 or r | ®4(q)).
e Weil/Tate pairings can be used to embed A(Fg)[r] into ]F;k.
e k is the embedding degree of A (with respect to r).
@ Equivalently, k is the order of qin (Z/rZ)*.

e For “random?” varieties, k ~ r (Bal.-Kob.).
e If ris large (~ 2'%%), random A will have embedding degree
too large to be practical.
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The problem

@ The problem: find primes q and abelian varieties A/Fq
having

@ a subgroup of large prime order r, and
@ prescribed (small) embedding degree with respect to r.

@ In practice, want r > 2'%° and k < 50.
@ We call such varieties “pairing-friendly.”

@ Want to be able to control the number of bits of r to
construct varieties for various applications.
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Known results: Elliptic curves

@ Menezes-Okamoto-Vanstone: Supersingular elliptic curves
always have k < 6; easy to construct.

@ Cocks-Pinch, Dupont-Enge-Morain: Construct ordinary
elliptic curves with arbitrary k, g ~ r2.

@ Barreto-Lynn-Scott, Brezing-Weng: reduce size of q for
certain k, but no curves of prime order.

@ Miyaji-Nakabayashi-Takano, Barreto-Naehrig: Construct
ordinary elliptic curves with k = 3, 4, or 6 (MNT), or k =12
(BN) and prime order r = q.

@ Our result (ANTS-VII): Construct ordinary elliptic curves
with kK = 10 and prime order r = gq.
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The CM method

@ Complex Multiplication method (Atkin, Morain) generates
elliptic curves with a specified number of points.
@ For given square-free D > 0, CM method constructs elliptic
curve with CM by Q(v/—D).
@ Running time depends on the class number hp of
Q(v-D).
e Bottleneck is computing the Hilbert class polynomial, a

polynomial of degree hp.
e Best known algorithms run in (roughly) O(h3) = O(D)

(Enge).
@ Can be efficiently implemented if hp not too large.
e Current record is hp = 10° (Enge).

Constructing Abelian Varieties for Pairing-Based Cryptography

David Freeman



The CM Method of Curve Construction
Constructing Pairing-Friendly Ordinary Elliptic Curves The MNT Strategy
Curves with Embedding Degree 10

How to generate pairing-friendly curves

@ Recall: The trace of E /F satisfies #E(Fq) =g+ 1 —t.
@ To apply the CM method: Fix D, k. Look for t,r, g
(representing trace, order of subgroup, and size of field)
satisfying
@ q, rprime;
@ r| g+ 1 —t(formula for number of points);
© r | ©«(q), where ® is kth cyclotomic polynomial
(embedding degree k);
© Dy? = 4q — 2 for some integer y (“CM equation”).
@ For such t, r, g, if hp is not too large (~ 10°) we can
construct an elliptic curve E over Fq with an order-r
subgroup and embedding degree k.
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Generating curves of prime order

@ For curves of prime order, have r=q+1 —t.
e Condition r | ®x(q) equivalentto r | x(t —1).
@ Idea of Barreto-Lynn-Scott, others: parametrize t,r, g as
polynomials: t(x), r(x), g(x). Construct curves by finding
many integer solutions (x, y) to the “CM equaton”

Dy? = 4q(x) — t(x)? = 4r(x) — (t(x) - 2)°.

@ MNT strategy: Fix D, k, choose t(x), let r(x) be an
irreducible factor of ®(t(x) — 1), find solutions (x, y) to
CM equation.

@ Observation (F.): CM equation will have many solutions
only if RHS is quadratic or has a multiple root (Siegel’'s
theorem).
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Using the MNT strategy

@ Goal: Choose t(x), find factor r(x) of ®,(f(x) — 1), such
that f(x) = 4r(x) — (t(x) — 2)? is quadratic.
@ MNT solution for kK = 3,4, 6:
@ Choose t(x) linear; then r(x) is quadratic, and so is f(x).
@ Use standard Pell equation algorithms to find solutions
(X0, ¥o) to Dy? = f(x).
© Compute field size g(xp) and curve order r(xp).
© If no solutions of appropriate size, or g(xp) or r(xp) not
prime, choose different D and try again.
© Use CM method to construct curve equation.
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Our solution for k = 10

@ Goal: Choose t(x), find factor r(x) of ®41o(f(x) — 1), such
that f(x) = 4r(x) — (t(x) — 2)? is quadratic.
o Allirred. factors of ®1¢(¢(x) — 1) must have 4 | degree.
@ Key observation: Need to choose r(x), t(x) such that the
leading terms of 4r and t? cancel out.
e Smallest possible case: degr = 4, degt = 2.
@ Galbraith-McKee-Valenga: Characterized quadratic t(x)
such that ®4¢(t(x) — 1) factors into two quartics.

@ One of these t(x) gives the desired cancellation!
@ Construct curves via Pell-like equation as in MNT solution.
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Choice of Parameters

@ Choose t, r, g as follows:

t(x) = 10x®>+5x+3
r(x) = 25x*+25x3 4+ 15x2 4 5x + 1
q(x) = 25x*+425x3 +25x% + 10x + 3

@ Then r(x) divides ®1(t(x) — 1), and

f(x) = 4r(x) — (t(x) — 2)% = 15x% 4+ 10x + 3.
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Example: A 234-bit Curve (Computed by Mike Scott)

@ Set D = 1227652867 .
e Compute solution (x, y) to Dy? = 15x2 + 10x + 3.
@ Use this value of x to compute

t —  269901098952705059670276196260897153
I' = 18211650803969472064493264347375949776033155743952030750450033782306651
q —  18211650803969472064493264347375950045934254696657090420726230043203803

@ Use CM method to compute curve equation over [Fy:
y2 = x3—3x+15748668094913401184777964473522859086900831274922948973320684995903275.

@ This curve has r points and embedding degree 10.
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Known Results: Abelian Varieties of Dimension > 2

@ Rubin-Silverberg: Classified supersingular abelian
varieties of dimension g < 6.

e Easy to construct.
e Always have k < 7.5g.

@ Galbraith-McKee-Valenca, Hitt: Showed existence of
non-supersingular abelian surfaces (g = 2) with small
embedding degree, but no construction.

@ Result #1 (Pairings ‘07):

Construct ordinary abelian surfaces with arbitrary k.

@ Result #2 (ANTS-VIII, with P. Stevenhagen and M. Streng):

Abstract Result #1 and generalize to arbitrary dimension.
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Frobenius Endomorphism and CM fields

@ Let A be a g-dimensional ordinary, simple abelian variety
over Fq (q prime).

@ K =End(A) ® Q is a degree-2g number field, called a
CM-field — an imaginary quadratic extension of a totally
real field. (We say Ahas CM by K.)

@ The Frobenius endomorphism 7 of A can be interpreted as
an algebraic integer in K.

@ 71 € Ok is a g-Weil number: all embeddings K — C have
T =(q.

(] #A(Fq) = NK/Q(TF — 1)
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Pairing-Friendly Frobenius Elements

@ Honda-Tate: (conjugacy classes of) g-Weil numbers =
correspond to (isogeny classes of) abelian varieties A/Fg.

@ To guarantee that A/[F; has embedding degree k with
respect to a subgroup of order r, we require:

NK/Q(TF— 1) =0 (mOd f')
&y (n7) = 0 (modr)

where ¢ is the kth cyclotomic polynomial.

@ Construction of such = demonstrates existence of
pairing-friendly abelian varieties.

@ Problem: these varieties can only be constructed if K is
“small.”

@ Solution: Fix K in advance so that varieties with CM by K
can be constructed (more on this later...).
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Main Idea: A Modular Approach

@ Simple case: K Galois cyclic, degree 2g, Gal(K/Q) = (o).
@ Subgroup order r is a prime that splits completely in K:

rOk = vy STty Tg

with v; = o~/(t) for some prime ¢ over r.
@ Given ¢ € Ok, write
{=a; (modrv;), =g (modrt;)
for aj, Bi € Fr.
e Define 7 = [[7_, o/(¢).
@ Then ¢/(¢€) = a; (mod t) and o/(¢) = B; (mod ), so we
have

r=]17 e (mod r), m=[17,5 (mod ¥).
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Imposing The Pairing-Friendly Conditions

@ We have constructed m € Ok such that

=117, (mod ), 7#=[[L,8 (modr).

@ Suppose that
Q ¢ =11, ajis a kth root of unity in F), and
e Hig=1 ﬂ,‘ =1in F,.
@ Then
@ o«(77) = Pk(¢) =0 (mod t)
@ 7—1=0 (mod t), so Ng/g(r — 1) =0 (mod r).
@ Conclusion: if g = 77 = Ny g (€) is prime, then abelian
varieties A/IF4 with Frobenius endomorphism 7 have
embedding degree k with respect to a subgroup of order r.
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Generalizing to Arbitrary CM-Fields

@ A CM-type of Kiis aset ® = {¢1,...,¢g} of half of the
embeddings K — C, one from each complex conjugate
pair.

@ The reflex type of (K, ®) is a CM-type W = {91, ..., ¢35} of
a cerlain CM-subfield K of the Galois closure of K.

e K = K if K is Galois; in general g >> g.

@ The type norm of V¥ is the map

Ny : & — T12, i(9).

@ Theorem (Shimura): Ny maps Oz to Ok.
@ To generalize construction, factor r in O, construct
¢ € O with prescribed residues, and let 7 = Ny (¢) € Ok.
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The FSS Algorithm

@ Fix primitive CM-type (K, ®), prime subgroup size r (splits
completely in K), embedding degree k =1 (mod r).

@ Compute the reflex type (K, W), let g = 1 deg K.
© Choose random oy, ..., a5_1,51,..., 851 € F[.

() Choosg ag, By € Fr such that H,g:1 aj is a kth root of unity,

and [[7_, 8 =1.
© Use Chinese Remainder Theorem to compute £ € O with
residues «;, 3; modulo factors of rOx.

Q Letm=Ny(¢),g=n7 = N% o(8)-
@ If g is prime return g and «; otherwise go to (3).
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The Output

@ Need g > 2 for algorithm to work.
e Adaptation for g = 1 recovers the Cocks-Pinch algorithm.

@ For fixed K, expected running time to output prime g and
m € Ok is (heuristically) polynomial in log r.

@ Theorem (FSS): If prime q is unramified in K and
K = Q(n) (both of which happen with high probability) then
there is an ordinary, simple abelian variety A/F of
dimension g that has embedding degree k with respect to
a subgroup of order r.

@ How do we constuct this A? CM methods.
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Constructing Abelian Varieties with CM by K

@ CM theory: Abelian varieties A/IFy with CM by K arise as
reductions of varieties in characteristic zero with CM by K.

@ CM methods: Construct g-dimensional abelian varieties in
characteristic zero with CM by K.

e g =1 (elliptic curves): Compute Hilbert class polynomials;
roots are j-invariants of elliptic curves E with CM by K.

e g = 2 (abelian surfaces): Compute Igusa class
polynomials; roots are Igusa invariants of genus 2 curves C
whose Jacobians have CM by K.

e g = 3: Methods developed only for fields containing i or (3.

e Higher dimensions: only a few explicit examples,
e.g. Jacobian of y? = xP + 1 for prime p.
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A small example (g = 2)

@ Algorithm inputs:

@ CM-field K = Q({s); CM-type ® = {¢1, ¢2},
where ¢, : (5 — €7i/5,

@ Embedding degree k = 10,

© Prime r = 2011 = NextPrime(2008),

@ Algorithm outputs:

@ Prime g = 2086780871011,
@ r =835578 + 552276(5 — 845235(52 + 31 3882{53.

@ CM methods produce curve C : y2 = x° + 22 over Fy,.
@ If A= Jac(C) is the Jacobian of C, then
@ A(Fq) has a subgroup of order r.

#A(F,) = 4354647472611861083688755 =0 (mod r)

@ A has embedding degree 10 with respect to r.
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Improving the p-value

@ For abelian varieties A of dimension g over g, define a
parameter
_ log¢?
~logr’

@ Since #A ~ g9, p measures ratio of pairing-friendly
subgroup size to entire group size (in bits).
e Want p small for maximum efficiency. (Minimum is 1.)
@ Expected p-value produced by our algorithm is 2¢gg.
e p = 7.46 in the example above (g = g = 2).
@ Major open problem: produce pairing-friendly ordinary
abelian varieties with g > 2 and p < 2.
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A New Result

@ Used the ideas of FSS algorithm to generalize
Brezing-Weng elliptic curve construction to arbitrary
dimension.

@ Implemented for Galois cyclic CM-fields K.
@ Algorithm produces pairing-friendly abelian varieties with

p < 2g°.
Dimension g =2 Dimension g = 3
k] p CM-field
51 4 Q(¢s) k| p [ CM-ield
10| 6 Q(¢s) 7112 Q&)
13 /6.7 | Q(v—-13+2V13) 915| Q(¢)
16 7 | Q(V-2++2)
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