
LATTICES IN VECTOR SPACES OVER R, C, AND H

STEPHANIE VANCE

1. Introduction

Sphere packings in n-dimensional Euclidean space are configurations of congru-
ent non-overlapping spheres. Sphere packings in which the sphere centers form a
lattice are referred to as lattice packings. The best or densest packings are charac-
terized by having a packing density, the proportion of space occupied by the spheres,
maximal among all sphere packings in the same dimension. The problem of finding
and proving optimality of any lattice packing remains open for dimensions larger
than eight except for dimension 24 [CS].

For the dimensions in which lattice packings have been found and proven op-
timally dense, many of the lattices of sphere centers have an additional algebraic
structure. This structure allows them to be viewed as Eisenstein lattices in Cn or
Hurwitz lattices in Hn, C and H denoting the complex numbers and the Hamiltonian
quaternions respectively. Such lattices include the Leech lattice Λ24, Barnes-Wall
lattice Λ16, Coxeter-Todd lattice Λ12, and the root lattices D4, E8. Given the al-
gebraic structure exhibited by these optimal low-dimensional lattice packings, an
interesting sphere packing problem variant is to determine the densest Eisenstein
and Hurwitz lattice packings in Cn and Hn respectively. However, to address this
new problem we need to define what it means to be a such a one of these two types
of lattices. Ideally the definition of lattices in these spaces would also generalize to
include the lattices in Rn over Z, referred to in this paper as Z-lattices.

This paper is divided into two parts. The first half of this paper only pertains
to Z-lattices in Rn. Here some basic definitions and propositions are presented for
such lattices. In the second half of this paper, a general construction of lattices in
Rn, Cn, and Hn is presented. This construction follows one outlined in Jacques
Martinet’s book, Perfect Lattices in Euclidean Spaces, and will be used to explicitly
define Eisenstein and Hurwitz lattices.

2. Z-Lattices in Euclidean spaces

Throughout this section E will always denote a n-dimensional real vector space
endowed with a Euclidean structure. Recall that a Euclidean structure on E is just
a positive definite bilinear form (x, y) → 〈x, y〉, commonly referred to as a scalar
product.

Definition 2.1. A Z-lattice in E is a free sub-Z-module with basis {b1, ..., bn}
which generates E as a vector space over R. A Z-lattice in any subspace of E is
called a relative Z-lattice. If Λ is a Z-lattice with the property that 〈x, y〉 ∈ Z for
every pair of lattice vectors x and y, then Λ is called an integral Z-lattice.
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Due to a result commonly referred to as the Jacobi-Bravais theorem, relative
Z-lattices can be characterized completely as discrete subgroups of E with rank at
most n, E endowed with its natural Euclidean topology [Ma]. This characterization
is useful in lattice sphere packing problems because in order for a lattice to even
define a sphere packing with non-zero density, the lattice points must be discrete.

2.1. Lattice Norms and Determinants. There is a natural norm defined on E
via its Euclidean structure. For each vector in v in E, its norm is defined to be the
non-negative real number, N(v) = 〈v, v〉.

Definition 2.2. Let Λ be a Z-lattice in E. A minimal vector in Λ is a non-zero
vector contained in Λ of minimal norm. The norm of Λ , denoted by N(Λ), is the
quantity,

N(Λ) = minv∈Λ\{0}N(v).

The norm of any lattice is the length of its minimal vectors. This is a well defined
non-zero quantity because the points of a lattice are discrete in the topology defined
by the vector norm N defined on E. In context of the sphere packing problem,
the densest sphere packing determined by a Z-lattice Λ is the packing of congruent
spheres with radius 1

2N(Λ) whose centers are the lattice points of Λ. This particular
sphere packing called the sphere packing determined by Λ and its packing density
is called the density of Λ. The density of a lattice can be computed in terms of
its lattice norm and the volume of a fundamental parallelotope, the latter quantity
being defined below.

Definition 2.3. Let Λ be a Z-lattice with basis B = {b1, ..., bn}. The fundamental
parallelotope of Λ with respect to B is the set,

P = {
∑

i

αibi : 0 ≤ αi < 1}.

One interesting property of P in the definition above is that the Euclidean space
E can be tiled with infinitely many copies of P . More explicitly,

E =
∐

x∈Λ
{x + p : p ∈ P}.

Observe that this tiling of E is dependent on the basis B for Λ. However, the
volume of each fundamental region is not [Eb]. This leads to a nice method for
computing the packing density of Λ, denoted by ρ(Λ), with only its lattice norm,
the volume of P , and the volume Vn of the n-dimensional unit sphere [CS]. The
packing density of Λ is the quantity,

ρ(Λ) =
N(Λ)n

Vn

Volume(P )
.

Let Λ be the Z-lattice in definition 2.3. The volume of P used in the formula
for ρ(Λ) can be easily computed by taking the determinant of a matrix in GLn(R).
To compute this value, first fix an orthonormal basis for E and construct a matrix
M ∈ GLn(R) whose ith row is the vector bi represented in this basis. This matrix
M is called the generating matrix for Λ. Observe that the construction of M is
dependent on the basis B for Λ and the choice of orthonormal basis for E. Thus
M may not be unique as the generating matrix for Λ. However, M is unique up to
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conjugation by a matrix in GLn(Z) as a generating matrix for Λ [Ma]. Hence the
the any volume fundamental parallelotope P is unique and is this is the absolute
value of the determinant of any generating matrix M . To avoid absolute values
(and for simplifying proofs of propositions), the determinant of the gram matrix,

(〈bi, bj〉)1≤i,j≤n = MM t,

is usually computed instead to calculate the squared volume of P . This quantity is
called the determinant of Λ and will be denoted by det(Λ).

2.2. Duality. For the Z-lattice Λ in E, using Euclidean structure of E one can
define a new lattice Λ∗ by setting,

Λ∗ = {x ∈ Rn : 〈x,Λ〉 ⊆ Z}.
The lattice Λ∗ is called the dual lattice of Λ. This lattice may also be constructed
by finding a Z-basis B for Λ and then computing its dual as a basis for E. The
dual basis B∗ for E is then a Z-basis for Λ∗. Observe that since (B∗)∗ = B, the
lattice (Λ∗)∗ is just the original lattice Λ. The following proposition is provides a
useful relation between the determinants of lattice and its dual.

Proposition 2.4. Let Λ be a Z-lattice in n-dimensional Euclidean space E. The
real numbers det Λ and det Λ∗ satisfy the equation,

det(Λ) det(Λ∗) = 1.

Proof. Let M1 be a generating matrix for Λ (with respect to any fixed orthonor-
mal basis for E). Let M2 be the matrix whose rows are the dual basis vectors
corresponding to each of the row vectors in M1. The matrix M2 is a generating
matrix for the dual lattice Λ∗. Moreover, the inner product of a row vector vector
bi of M1 with a row vector bj

∗ in M2 is equal to δi,j . Thus the two generating
matrices satisfy the equation M1M2

t = In. Now since det(Λ) = det(M1M1
t) and

det(Λ∗) = det(M2M2
t), using the properties of the determinant function,

det(Λ) det(Λ∗) = det(M1M1
t) det(M2M2

t)
= det(M1) det(M1

t) det(M2) det(M2
t)

= det(M1M2
t)

2

= 1

�

2.3. Sub-Lattices. Continue to let Λ denote a Z-lattice in E. Observe that any
sub-Z-module Λ′ ⊆ Λ of free rank r satisfies the definition of a relative lattice in E.
Moreover, the relative lattice Λ′ is a lattice in the r-dimensional Euclidean space
generated by its lattice vectors and is called a sub-lattice of Λ. Sub-lattices are a
useful tool when working with larger lattices.

For the following series of propositions, let Λ be a Z-lattice in the the n-dimensional
Euclidean space E and let F be any r-dimensional subspace of E. It is always the
case that the set of vectors in Λ∩F form a relative lattice in both E and F . (This
is because Λ is a discrete sub-Z-module in E and so Λ′ is a discrete sub-Z-module
in F ). However, Λ ∩ F is not always a (full) lattice in F . The following is an
attempt to give some criteria for when Λ ∩ F is a lattice in F . The statements of
the propositions can be found in [Ma]
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Lemma 2.5. Let {b1, ..., br′} be a basis for Λ ∩ F as a Z-lattice. This basis can
which can be extended to a basis {b1, ..., br′ , br′+1, ..., bn} for Λ.

Proof. Let Λ′ denote the relative Z-lattice Λ∩F in F . Consider the quotient module
Λ/Λ′ which is a finitely generated torsion free Z-module and hence a free Z-module
of finite rank n− r′. Any basis for Λ′ can be extended to a basis for Λ by adjoining
the vectors obtained by lifting in Λ a basis for Λ/Λ′. �

Let F⊥ denote the subspace perpendicular to F with respect to the Euclidean
structure endowed on E. The projection of Λ onto this subspace will be denoted
by πF⊥(Λ). This set πF⊥(Λ)will not always be a discrete subset of F⊥ and hence in
not necessarily a lattice in F perp.

Proposition 2.6. The relative lattice Λ∩F is a lattice in F if and only if πF⊥(Λ)
is a lattice in F⊥

Proof. Let r′ denote the rank of the kernel of the projection πF⊥(Λ) as a free Z-
module. In particular r′ is the rank of the relative lattice Λ ∩ F in E with r′ ≤ r.
The projection πF⊥(Λ) is discrete if and only if r′ ≤ n− r which happens if and
only if r′ = r. In particular, Λ ∩ F is a free sub-Z-module in F of rank r if and
only if πF⊥(Λ) has rank n− r as a free sub Z-module in F⊥ and so the proposition
now follows. �

Proposition 2.7. Λ ∩ F is an Z-lattice in F if and only if Λ∗ ∩ F⊥ is a Z-lattice
in F⊥

Proof. First suppose that Λ ∩ F is an Z-lattice in F . Let B∗ = {b1, ..., bn} be a
basis for Λ such that {b1, ..., br} is a basis for Λ∩F . The n− r vectors {b∗r+1, ..., b

∗
n}

of the dual basis B∗ belong to the relative Z-lattice Λ∗ ∩ F⊥ and since F⊥ is a
(n− r)-dimensional real vector space, Λ∗ ∩ F⊥ is a lattice in F⊥.

Now using the fact that (Λ∗)∗ = Λ and interchanging the roles of Λ and Λ∗ in
the above paragraph the converse now follows. �

3. Lattices in Vector Spaces over R, C, and H

Throughout this section K will always denote a skew field of either real, complex,
or quaternionic numbers, and E will denote a n-dimensional vector space over K.
All of the three choices for K are finite-dimensional R-algebras on which we can
define an anti-involution map, x 7→ x. If K = R this map will simply be the identity
on K. If K = C for each x = a + bi in K, define x = a− bi. Finally, if K = H for
each x = a+bi+cj +dk in K, define x = a−bi−cj−dk. Using this anti-involution
on K a Hermitian structure can be endowed on E as a vector space over K. This is
done by fixing any basis for E and naturally extending the the multiplication map
h(x, y) = xy defined on H.

Recall that the Z-lattices in the previous section were defined with respect to
a Euclidean structure on the ambient space. The same will be done for E in this
section. If r is the rank of K as a finite dimensional R-algebra, E has an algebraic
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structure as a (2r)-dimensional real vector space. Let f : K → R be a linear
functional on K such that the map

Tf : K ×K −→ R

(x, y) 7−→ f(xȳ)

defines an Euclidean structure on K as a real vector space. Then fix any basis
{b1, ...bn} for E and define a Euclidean structure T by

T (
∑

i
αibi,

∑
i
βibi) =

∑
i
Tf (αi, βi)

Note that the trace form on E as a vector space over R may be used to define T .
Next, let O be an order in K which is invariant under the anti-involution, i.e

O = O. An order in K is a subring which is also is a free Z-module with rankZO =
rankRK. Observe that any order O in K is a Z-lattice with respect to the Euclidean
structure T endowed on K as an (rn)-dimensional real vector space.

Now we are finally ready to give a formal definition of a lattice in a vector space
over R, C, or H.

Definition 3.1. Let K be either R, C, or the skew field H and let O be an order
in K. Let E be a n-dimensional vector space over K with a Euclidean structure
T constructed as above. A O-lattice is a free sub-O-module of E with free basis
{b1, b2, ..., bn} which generates E as a vector space over K. If Λ is a O-lattice in
any subspace of E, Λ is called a relative O-lattice in E.

The definition given above for O-lattices is a natural generalization of the defi-
nition previously given for Z-lattices in any n-dimensional Euclidean space. Defi-
nition 2.1 is recovered by setting K = R and O = Z. Also, since any order O is a
Z-module, any O-lattice in E has the structure as a Z-lattice. So as in the previous
section a O-lattices, we can define the to use the invariants N(Λ),det(Λ), andρ(Λ)
for Λ to just be those previously defined.

Two interesting types of O-lattices in Cn and Hn which contain optimally dense
lattice packings are the Eisenstein lattices and the Hurwitz lattices. Each of these
two types of lattices are described in more detail below.

3.1. Eisenstein Lattices. In C, the Eisenstein integers are the elements in the
subring,

E = {a + (
1− i

√
3

2
)b : a, b ∈ Z}.

This subring is a maximal order in C (with respect to inclusion). If E is a n-
dimensional complex vector space, an Eisenstein lattice is a E-lattice in E. Exam-
ples of Eisenstein lattices include the hexagonal lattice, the 4-dimensional root lat-
tice D4, the 12-dimensional Coxeter-Todd lattice, the 16-dimensional Barnes-Wall
lattice, and the 24-dimensional Leech lattice. Each of these examples is proven or
conjectured to achieve optimal density in the lattice sphere packing problem [CS].
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3.2. Hurwitz Lattices. In the skew field H, the Hurwitz integers are the elements
in the subring,

H = {a + bi + cj + dk : a, b, c, d ∈ Z or a, b, c, d ∈ Z +
1
2
}

The subring H is a maximal order in H. If E is a now a n-dimensional quaternionic
vector space, a Hurwitz lattice in E is a H-lattice. Examples of Hurwitz lattices
include the 4-dimensional root lattice D4, the 8-dimensional root lattice E8, the 16-
dimensional Barnes-Wall lattice, and the 24-dimensional Leech lattice. As stated
above, each of these examples is proven or conjectured to achieve optimal density
in the lattice sphere packing problem [CS].

3.3. Duality. Let Λ be a O-lattice for some order O in K. As a Z-lattice, Λ possess
a dual lattice Λ∗ = {x ∈ E : 〈x,Λ〉 ⊆ Z}. However the construction of the dual
lattice Λ∗ does not use any of the additional algebraic structure that Λ has as a
O-lattice. This leaves the possibility that Λ∗ may not even be a O-lattice. Below
is a more general defition for dual lattices which does incorporate the O-lattice
structure of Λ.

Definition 3.2. Let Λ be the O-lattice in definition 3.1. The dual O-lattice of Λ
is the O-lattice

Λ = {x ∈ E : T (x,Λ) ⊆ O}.

If Λ is a Z-lattice in a real vector space, definition 2.1 and definition 3.1 for its
dual yield the same lattice Λ∗. Also, the construction using dual bases to define a
dual Z-lattices in the previous section applies to this general setting. However in
the quaternionic case, one has to take care to consistently use left (or right) bases
and their corresponding left (or right) dual bases.

3.4. sub-lattices. Sub-lattices of O-lattices are defined the same way as sub-
lattices of Z-lattices were in the previous section. The only modification needed
is to replace Z with O. With this change the lemma and two propositions for
sub-lattices of Z-lattices still hold for sub-lattices of O-lattices.
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