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Abstract

This paper offers a brief overview of the basics of Witt vectors. As
an application, we summarize work of Bartolo and Falcone to prove that
Fermat’s Last Theorem does not hold true over the p-adic integers.

1 Fundamentals of Witt vectors

The goal of this paper is to define Witt vectors and develop some of the structure
surrounding them. In this section we describe how the Witt vectors generalize
the p-adics, and how Witt vectors over any commutative ring themselves form
a ring. In the second section we introduce the Teichmüller representative, show
that the integers are a subring of the p-adics, and prove De Moivre’s formula
for Witt vectors. In the third and last section we give necessary and sufficient
conditions for a p-adic integer to be a pk-th power, and show that that Fermat’s
Last Theorem is false over the p-adic integers.

For the following, fix a prime number p.

Definition. A Witt vector over a commutative ring R is a sequence (X0, X1, X2 . . .)
of elements of R.

Remark. Witt vectors are a generalization of p-adic numbers; indeed, if R = Fp

is the finite field with p elements, then any Witt vector over R is just a p−adic
number. The original formulation of p-adics integers were power series
a0 + a1p

1 + a2p
2 + . . ., with ai ∈ {0, 1, 2, . . . , p − 1}. While the power series

notation is suggestive of analytic inspiration, it proved unwieldy for actual cal-
culation. Teichmüller suggested what has become the current notation, wherein
each p-adic number is represented as an infinite sequence of elements of Fp.

Witt Vectors have lots of nice properties, and their applications range through
number theory and algebraic geometry. Ernst Witt (1911-1991) showed how to
put a canonical ring structure on the collection of Witt vectors over any ring.
To do this, he introduced Witt polynomials.
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Definition. Let p be a prime number, and (X0 . . . , Xn, . . .) be an infinite se-
quence of indeterminates.For n ≥ 0, we define the n-th Witt polynomial Wn

as

Wn =
n∑

i=0

piXpn−i

i = Xpn

0 + pXpn−1

1 + . . . + pnXn.

Example. The first three Witt polynomials are

W0 = X0,

W1 = Xp
0 + pX1,

W2 = Xp2

0 + pxp
1 + p2x2.

The next theorem, which we cite without proof from [1], provides the key to
adding and multiplying Witt vectors.

Theorem 1. Let (X0, X1, X2 . . .) and (Y0, Y1, Y2 . . .) be two sequences of in-
determinates. For every polynomial function Φ ∈ Z[X, Y ] there exist a unique
sequence (φ0, . . . , φn, . . .) of elements of Z[X0, . . . , Xn . . . ;Y0, . . . , Yn, . . .] such
that

Wn(φ0, . . . , φn, . . .) = Φ(Wn(X0, . . . , Xn . . .),Wn(Y0, . . . , Yn, . . .)), n = 0, 1, . . . .

Applying Theorem 1, we denote by Si (respectively Pi) the polynomials φi

associated to

Φ(X, Y ) = X + Y (respectively Φ(X, Y ) = X.Y ).

Letting R be an arbitrary commutative ring, and letting A = (a0, a1, . . .), and
B = (b0, b1, . . .) be Witt vectors over R, we have equations for adding and
multiplying Witt vectors:

A + B = (S0(A,B), S1(A,B), . . .)
A.B = (P0(A,B), P1(A,B), . . .)

Example. The first couple values of addition and multiplication of Witt vectors
are:

S0(A,B) = a0 + b0, S1(A,B) = a1 + b1 +
ap
0 + bp

0 − (a0 + b0)p

p
,

P0(A,B) = a0b0, P1(A,B) = bp
0a1 + ap

0b1 + pa1b1.

Note that each term of the numerator of the quotient in S1(A,B) is divisible
by p, so this makes sense even when we are in Fp. We will deal more with this
term in section 3.
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In fact, one can check that these operations make the Witt vectors into a ring.

Corollary 2. The Witt vectors over any commutative ring R form a commu-
tative ring, which we denote by W (R).

Example.
(i) If p is invertible in R, then W (R) = RN (the product of countable number

of copies of R). In fact, the Witt polynomials always give a homomorphism from
the ring of Witt vectors to RN , and if p is invertible this homomorphism is an
isomorphism.

(ii) The Witt ring of the finite field of order p is the ring of p-adic integers.
(iii) The Witt ring of a finite field of order pn is an unramified extension of

the ring of p-adic integers.

The functions Pk and Sk are actually functions of the first k terms of A
and B. In particular, if we truncate all the vectors at the k-th entry, we can
still add and multiply them. This allows us to define the truncated Witt ring
Wk(R) := {(a0, a1, . . . , ak−1)| ai ∈ R}.

Example. The truncated Witt ring Wk(Fp) = Z/pkZ.

Definition. The ”shift” map V : W (R) → W (R) is defined by

V (A) = (0, a0, a1, . . .).

When R is a ring of characteristic p, the map F : W (R) → W (R) is defined by

F (A) = (ap
0, a

p
1, . . .).

Considering p to denote the map that is multiplication by p, we also have
the identity V F = p = FV . This identity can easily be seen to be true when
R = Fp. In this case, W (R) is the ring of p-adic integers, F is the identity map,
and p = V .

Notice that Wk(R) = W (R)/(V kW (R)). In particular, when R = Fp we
have

Wk(Fp) = W (Fp)/(pkW (Fp)) = Z/pkZ.

This allows us to speak of Witt vectors being equivalent modulo pk when their
k-th truncations agree.

2 De Moivre’s Formula

Definition. The element (ā, 0, 0, . . .) ∈ W (Fp) is denoted by aτ and is called the
Teichmüller representative of a, where ā is the reduction of a modulo p. Notice
that

(aτ )p = (ā, 0, 0, . . .)p = (āp, 0, 0, . . .) = (ā, 0, 0, . . .) = aτ
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since āp = ā in Fp.
There is a natural injection Z → W (Fp) defined by taking 1 → 1τ . Follow-

ing [3] we can describe the representatives for n ∈ N in W (Fp) by the following
proposition.

Proposition 3. Let n ∈ N. For any k = 0, 1, . . ., let a0, . . . , ak ∈ Q be elements
such that the k-th Witt polynomial Wk(a0, . . . , ak) = n. Then

(i) a0 = n and ak+1 =
∑k

0
1

pk−i+1 (aipk−i − apk−i+1

i ) ∈ Z;
(ii) n× 1τ = (ā0, ā1, . . .); and
(iii) If p does not divide n, then n divides each ak.

Proof: [3].
Any Witt vector A = (a0, a1, . . .) with a0 6= 0 (mod p) can be written as

the product A = aτ
0(1, a1/a0, a2/a0, . . .). The invertible elements in W (Fp)

are precisely those A having a0 6= 0 (mod p). Therefore any element of the
quotient field of W (Fp), which is the field of p-adic numbers, can be written as
A = pzaτ

0(1, a1/a0, a2/a0, . . .).
This notation is suggestive (if you stare at it long enough) of the com-

plex number notation z = |z|eiθ. In fact, we can formulate a similar mod-
ule/argument notation for Witt vectors over Fp, and prove that multiplication
in this case also satisfies De Moivre’s formula. In order to do this, we must first
define the logarithmic and exponential maps for Witt vectors. Fortunately, we
can simply extend the formal power series definition.

Definition. Assume p > 2, and let A ∈ Wk(Fp) be a truncated Witt vector.
Then we define the functions

log(1 + pA) = pA− 1/2(pA)2 + 1/3(pA)3 − . . .

epA = 1 + pA + 1/2!(pA)2 + 1/3!(pA)3 + . . .

If A is a truncated Witt vectors over Fp, then log(1 + pA) and epA are just
(finite) polynomials in Wk(Fp), since pkA = 0 for all A ∈ Wk(Fp). However,
since these two maps can be defined for any k, we can define them on the whole
of

1 + pW (Fp) = {A = (1, a1, a2, . . .) ai ∈ Fp} and
pW (Fp) = {A = (0, a1, a2, . . .) ai ∈ Fp}.

Since they are defined via their power series expansion, the two maps are
mutually inverse.

Now writing an arbitrary Witt vector A = pzaτ
0(1, a1/a0.a2/a0, . . .), we may

define the module ρA := pzaτ
0 and the argument θA := log(1, a1/a0, a2, a0, . . .).

This allows us to write, even more suggestively

A = ρAeθA
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and recover De Moivre’s formula

ρAB = ρAρB , θAB = θA + θB

for the p-adics.

3 An Application: Fermat’s Last Theorem is
false for p-adic Integers.

Armed with this structure, we can determine when p-adics have pth roots. Let-
ting p > 2 as above, take an arbitrary A ∈ W (Fp), with first term x0 6=
0 (mod p). Using De Moivre, we have

Apk

= (ρAeθA)pk

= (ρA)pk

(eθA)pk

= (pzaτ
0)pk

(epkθA) = pzpk

aτ
0(1, 0, . . . , 0︸ ︷︷ ︸

k

, a1/a0, . . .)

where the entries to the right of a1/a0 get more complicated.
From this it is clear that having xi ≡ 0 for i = 1, . . . , k is a necessary

condition for a Witt vector to have a pk-th power. It turns out that it is a
sufficient condition as well. Let A = (ρAeθA) = pzaτ

0(1, a1/a0, a2/a0, . . .) be a
Witt vector such that pk divides z and ai ≡ 0 (mod p) for i = 1, 2, . . . , k. Then
we can calculate explicitly that

A1/pk

= p
z

pk aτ
oexp(

1
pk

log(1, 0, . . . , 0, ak+1/a0, . . .).

But

1
pk

log(1, 0, . . . , 0, ak+1/a0, . . .) =
1
pk

(0, . . . , 0, ak+1/a0, . . .) = (0, ak+1/a0, . . .) ∈ pW (Fp).

In other words, ( 1
pk log(1, 0, . . . , 0, ak+1/a0, . . .) is in the domain of the exponen-

tial function, so A1/pk

is well defined, and in fact, uniquely defined. Thus, we
have proven

Theorem 4. A Witt vector A = pzaτ
0(1, a1/a0, a2/a0, . . .) over Fp has a pk-th

root if and only if pk divides z and ai = 0 for i = 1, 2, . . . , k.

As an application of this theorem, we will exhibit an example of p-adics
which solve a Fermat equation an + bn = cn. In particular, we will let n = p
prime, and we will restrict ourselves to Witt vectors with z = 0 in the language
of Theorem 4. Now, to find such a solution, we need only concern ourselves
with the truncated Witt vectors W2(Fp), since a Witt vector A has a p-th root
according to the theorem when the second term–a1–is 0, and this term in a
sum is determined only by the zero-th and first terms of the summands. So the
problem of finding a solution to ap + bp = cp over the p-adics reduces to the
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problem of finding three truncated Witt vectors A,B,C ∈ W2(Fp) such that
A = (a0, 0), B = (b0, 0), C = (c0, 0) and A+B = C. This is, of course, a much
easier problem.

In particular, we need to choose (a0, 0), (b0, 0), and p such that (a0, 0) +
(b0, 0) = (c0, c1) satisfies c1 = 0. Looking back to our equations for sums (over
Fp, and hence modulo p, in this case) recall that

S1(A,B) = a1 + b1 +
ap
0 + bp

0 − (a0 + b0)p

p
=

ap
0 + bp

0 − (a0 + b0)p

p
(mod p)

because a1 = b1 = 0 in this case. Expanding (a0 + b0)p lets us rewrite this as

ap
0 + bp

0 − (a0 + b0)p

p
= −

p−1∑
i=1

(
p
i

)
p

ai
0b

p−i
0 .

Now notice that(
p
i

)
p

=
(p− 1)(p− 2) . . . (p− i + 1)

i(i− 1) . . . (1)
≡ (−1)(−2) . . . (−i + 1)

(1)(2) . . . (i)
≡ (−1)i−1

i
(mod p).

Which gives us the equivalence

S1(A,B) =
p−1∑
i=1

(−1)i

i
ai
0b

p−i
0 (mod p).

So to find our Fermat triple of p-adics is now a matter of finding a0, b0, and p
such that S1(A,B) = 0 (mod p).

For example, we check that S1(1, 2) ≡ 0 (mod 7).

S1((1, 0), (2, 0)) = (−1)26 +
1
2
25 − 1

3
24 +

1
4
23 − 1

5
22 +

1
6
21 ≡

−1 + 2− 3 + 2 + 2 + 5 ≡ 0 (mod7)

This means that (1, 0)+(2, 0) = (3, 0) gives a solution to the Fermat equation
for n = 7 in W2(Fp), since all three of the terms in the sum have 7-th roots.
Furthermore, any Witt vectors A,B ∈ W (Fp) with

A = (1, 0, a2, . . .), B = (2, 0, b2, . . .)

are seventh powers that sum to a seventh power. Note also that since

129 = 17 + 27 ≡ (1, 0) + (2, 0) = (3, 0) (mod 72)

using our association between truncated Witt vectors of length k and integers
modulo pk, we have that the image of 129 in W (Fp) has a seventh root.
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