Homework 7 for Math 581F Due Friday, November 30, 2007

Each problem has equal weight, and parts of problems are worth the same amount as each other.

- 1. Give a very detailed outline of your final project. Your final project is due December 7, 2007.
- 2. Let $K = \mathbb{Q}(\zeta_5)$ and let r be the number of real embeddings and s the number of pairs of complex conjugate embeddings.
 - (a) Show that r = 0 and s = 2.
 - (b) Find explicit generators for the group of units U_K .
 - (c) Draw an illustration of the log map $\varphi : U_K \to \mathbb{R}^2$, including the hyperplane $x_1 + x_2 = 0$ and the lattice in the hyperplane spanned by the image of U_K .
- 3. Let n = 6. For a number field K, let e, f, g be the ramification, residue class degree, and number of primes over p for a rational prime p.
 - (a) Give an example of a number field K of degree 6 and a prime p such that e = 6, or prove no such field exists.
 - (b) Give an example of a number field K of degree 6 and a prime p such that f = 6, or prove no such field exists.
 - (c) Give an example of a number field K of degree 6 and a prime p such that g = 6, or prove no such field exists.
 - (d) Give an example of a number field K of degree 6 and a prime p such that e = f = 2, or prove no such field exists.
- (a) Give an example of a finite nontrivial Galois extension K of Q and a prime ideal p such that D_p = Gal(K/Q).
 - (b) Give an example of a finite nontrivial Galois extension K of Q and a prime ideal p such that D_p has order 1.
 - (c) Give an example of a finite Galois extension K of \mathbb{Q} and a prime ideal \mathfrak{p} such that $D_{\mathfrak{p}}$ is not a normal subgroup of $\operatorname{Gal}(K/\mathbb{Q})$.
 - (d) Give an example of a finite Galois extension K of Q and a prime ideal p such that I_p is not a normal subgroup of Gal(K/Q).