Homework 2 for Math 581F, Due FRIDAY October 12, 2007

Each problem has equal weight, and parts of problems are worth the same amount as each other.

- 1. Let $\varphi : R \to S$ be a homomorphism of (commutative) rings.
 - (a) Prove that if $I \subset S$ is an ideal, then $\varphi^{-1}(I)$ is an ideal of R.
 - (b) Prove moreover that if I is prime, then $\varphi^{-1}(I)$ is also prime.
- 2. Let \mathcal{O}_K be the ring of integers of a number field. The Zariski topology on the set $X = \text{Spec}(\mathcal{O}_K)$ of all prime ideals of \mathcal{O}_K has closed sets the sets of the form

$$V(I) = \{ \mathfrak{p} \in X : \mathfrak{p} \mid I \},\$$

where I varies through all ideals of \mathcal{O}_K , and $\mathfrak{p} \mid I$ means that $I \subset \mathfrak{p}$.

- (a) Prove that the collection of closed sets of the form V(I) is a topology on X.
- (b) Prove that the conclusion of (a) is still true if \mathcal{O}_K is replaced by an order in \mathcal{O}_K , i.e., a subring that has finite index in \mathcal{O}_K as a \mathbb{Z} -module.

3. Let $\alpha = \sqrt{2} + \frac{1+\sqrt{5}}{2}$.

- (a) Is α an algebraic integer?
- (b) Explicitly write down the minimal polynomial of α as an element of Q[x].
- 4. Which are the following rings are orders in the given number field.
 - (a) The ring $R = \mathbb{Z}[i]$ in the number field $\mathbb{Q}(i)$.
 - (b) The ring $R = \mathbb{Z}[i/2]$ in the number field $\mathbb{Q}(i)$.
 - (c) The ring $R = \mathbb{Z}[17i]$ in the number field $\mathbb{Q}(i)$.
 - (d) The ring $R = \mathbb{Z}[i]$ in the number field $\mathbb{Q}(\sqrt[4]{-1})$.
- 5. Give an example of each of the following, with proof:
 - (a) A non-principal ideal in a ring.
 - (b) A module that is not finitely generated.
 - (c) The ring of integers of a number field of degree 3.
 - (d) An order in the ring of integers of a number field of degree 5.
 - (e) A non-diagonal matrix of left multiplication by an element of K, where K is a degree 3 number field.
 - (f) An integral domain that is not integrally closed in its field of fractions.
 - (g) A Dedekind domain with finite cardinality.
 - (h) A fractional ideal of the ring of integers of a number field that is not an integral ideal.