Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000 0 0000000	0000 00	0 00 0000	

Artin's Conjecture: Unconditional Approach and Elliptic Curve Analogue

Sourav Sen Gupta

University of Washington

November 14, 2008

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
● 00			
	00	00	00
0000000		0000	
Problem Statement			

Artin's 'Primitive Root' Conjecture

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000 0 0000000	0000 00	0 00 0000	
Problem Statement			

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000	0	0
0000000		0000	
Problem Statement			

Primitive Root

Definition (Primitive Root)

An integer *a* is called the *primitive root* of a prime *p* if *a* generates the cyclic group $(\mathbb{Z}/p\mathbb{Z})^*$, i.e, the order of *a* modulo *p* is p-1.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000			
	00	00	00
0000000		0000	
Problem Statement			

Primitive Root

Definition (Primitive Root)

An integer *a* is called the *primitive root* of a prime *p* if *a* generates the cyclic group $(\mathbb{Z}/p\mathbb{Z})^*$, i.e, the order of *a* modulo *p* is p - 1.

• Question 1

"How many primitive roots are there for a fixed prime p?"

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000	0	0
0000000		0000	
Problem Statement			

Primitive Root

Definition (Primitive Root)

An integer *a* is called the *primitive root* of a prime *p* if *a* generates the cyclic group $(\mathbb{Z}/p\mathbb{Z})^*$, i.e, the order of *a* modulo *p* is p-1.

• Question 1

"How many primitive roots are there for a fixed prime p?"

Answer 1

"If we fix p, there are $\phi(p-1)$ primitive root modulo p, where ϕ is the Euler totient function."

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
00 ● 0	0000 00	0 00	
OOOOOOO Problem Statement		0000	

How about reversing the question?

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000	0	
ဝိဝဝဝဝဝဝ		0000	õ
Problem Statement			

How about reversing the question?

What if we fix an integer a instead of fixing a prime p and ask a similar question?

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
00● 0 0000000	0000 00	0 00 0000	
Problem Statement			

How about reversing the question?

What if we fix an integer a instead of fixing a prime p and ask a similar question?

• Question 2

"If we fix an integer, 10 say, then for how many primes p will 10 be a primitive root?"

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000 0 0000000	0000 00	0 00 0000	
Problem Statement			

How about reversing the question?

What if we fix an integer a instead of fixing a prime p and ask a similar question?

 Question 2 "If we fix an integer, 10 say, then for how many primes p will 10 be a primitive root?"

• Answer 2 "10 is probably a primitive root for infinitely many primes *p*."

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
_ <u>o</u> o●	0000		
0000000	00	0000	0
Problem Statement			

How about reversing the question?

What if we fix an integer a instead of fixing a prime p and ask a similar question?

 Question 2 "If we fix an integer, 10 say, then for how many primes p will 10 be a primitive root?"

• Answer 2 "10 is probably a primitive root for infinitely many primes *p*."

- Gauss

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
0000000		0000	
Artin's Conjecture			

Conjecture (Emil Artin, 1927)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
•	00	00	00
0000000		0000	
Artin's Conjecture			

Conjecture (Emil Artin, 1927)

For any given integer a, if $a \neq 0, 1, -1$ and if a is not a perfect square, then there exist infinitely many primes p for which a is a primitive root modulo p.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
•	00	00	00
0000000		0000	
Artin's Conjecture			

Conjecture (Emil Artin, 1927)

For any given integer a, if $a \neq 0, 1, -1$ and if a is not a perfect square, then there exist infinitely many primes p for which a is a primitive root modulo p.

Conjecture (Stronger Form)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
•	00	00	00
0000000		0000	
Artin's Conjecture			

Conjecture (Emil Artin, 1927)

For any given integer a, if $a \neq 0, 1, -1$ and if a is not a perfect square, then there exist infinitely many primes p for which a is a primitive root modulo p.

Conjecture (Stronger Form)

If a \neq 0, 1, -1 and a is not a perfect square, then there exists a positive constant A(a) depending on a

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
•	00	00	00
0000000		0000	
Artin's Conjecture			

Conjecture (Emil Artin, 1927)

For any given integer a, if $a \neq 0, 1, -1$ and if a is not a perfect square, then there exist infinitely many primes p for which a is a primitive root modulo p.

Conjecture (Stronger Form)

If $a \neq 0, 1, -1$ and a is not a perfect square, then there exists a positive constant A(a) depending on a such that for $x \to \infty$,

$$N_a(x) = \# \{ p \leq x : \langle \overline{a} \rangle = (\mathbb{Z}/p\mathbb{Z})^* \} \sim A(a) \frac{x}{\log x}$$

where $\overline{a} = a \pmod{p}$.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
000000		0000	
Approaches to Prove the Conject	ture		

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion	
	00	00	00	
000000		0000		
Approaches to Prove the Conjecture				

The necessary and sufficient condition for a being a primitive root of p is

 $a^{(p-1)/q}
ot\equiv 1 \pmod{p} \quad orall ext{ prime } q|p-1$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000000		0000	
Approaches to Prove the Conjecture			

The necessary and sufficient condition for a being a primitive root of p is

 $a^{(p-1)/q} \not\equiv 1 \pmod{p}$ \forall prime q|p-1

Heuristic Idea

 $\langle\overline{a}\rangle=\left(\mathbb{Z}/p\mathbb{Z}\right)^*$ if the following two events do not occur simultaneously for any prime q

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000000		0000	
Approaches to Prove the Conjecture			

The necessary and sufficient condition for a being a primitive root of p is

 $a^{(p-1)/q} \not\equiv 1 \pmod{p} \quad \forall \text{ prime } q|p-1$

Heuristic Idea

 $\langle\overline{a}\rangle=\left(\mathbb{Z}/p\mathbb{Z}\right)^*$ if the following two events do not occur simultaneously for any prime q

 $p \equiv 1 \pmod{q}$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
000000		0000	
Approaches to Prove the Conjecture			

The necessary and sufficient condition for a being a primitive root of p is

 $a^{(p-1)/q}
ot\equiv 1 \pmod{p} \quad \forall ext{ prime } q|p-1$

Heuristic Idea

 $\langle\overline{a}\rangle=\left(\mathbb{Z}/p\mathbb{Z}\right)^*$ if the following two events do not occur simultaneously for any prime q

 $p \equiv 1 \pmod{q}$ $a^{\frac{p-1}{q}} \equiv 1 \pmod{p}$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion	
	00	00	00	
000000		0000		
Approaches to Prove the Conjecture				

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion	
0	00	00	õo	
000000		0000		
Approaches to Prove the Conjecture				

Probabilities of the events:

 $P_1 := \mathcal{P} (p \text{ prime } : p \equiv 1 \pmod{q})$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion	
000000		0000		
Approaches to Prove the Conjecture				

$$P_1 := \mathcal{P} (p \text{ prime } : p \equiv 1 \pmod{q})$$
$$= \mathcal{P} (p \text{ prime } : p \in \{aq + 1\}_{a \in \mathbb{Z}})$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion	
0	00	00	00	
000000		0000		
Approaches to Prove the Conjecture				

$$P_1 := \mathcal{P} (p \text{ prime } : p \equiv 1 \pmod{q})$$
$$= \mathcal{P} (p \text{ prime } : p \in \{aq + 1\}_{a \in \mathbb{Z}})$$
$$= \frac{1}{\phi(q)} = \frac{1}{q-1}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000 00	0	
0000000		0000	
Approaches to Prove the Conjecture			

$$\begin{array}{l} P_1 := \mathcal{P} \left(p \text{ prime } : p \equiv 1 \pmod{q} \right) \\ &= \mathcal{P} \left(p \text{ prime } : p \in \{aq+1\}_{a \in \mathbb{Z}} \right) \\ &= \frac{1}{\phi(q)} = \frac{1}{q-1} \quad \text{by Dirichlet's Theorem} \end{array}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000 0	0000 00	0 00	
000000		0000	
Approaches to Prove the Conjecture			

$$\begin{array}{l} P_1 := \mathcal{P} \left(p \text{ prime } : p \equiv 1 \pmod{q} \right) \\ &= \mathcal{P} \left(p \text{ prime } : p \in \{aq+1\}_{a \in \mathbb{Z}} \right) \\ &= \frac{1}{\phi(q)} = \frac{1}{q-1} \quad \text{by Dirichlet's Theorem} \end{array}$$

$$P_2:=\mathcal{P}\left(p ext{ prime }: a^{(p-1)/q}\equiv 1 \pmod{p}
ight)$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion	
000	0000 00	000	ို	
		0000		
Approaches to Prove the Conjecture				

$$P_1 := \mathcal{P} (p \text{ prime } : p \equiv 1 \pmod{q})$$
$$= \mathcal{P} (p \text{ prime } : p \in \{aq + 1\}_{a \in \mathbb{Z}})$$
$$= \frac{1}{\phi(q)} = \frac{1}{q-1} \text{ by Dirichlet's Theorem}$$

$$egin{aligned} &\mathcal{P}_2:=\mathcal{P}\left(p ext{ prime }: a^{(p-1)/q}\equiv 1 \pmod{p}
ight) & ext{ for } a=b^k, \ 1\leq k\leq p-1\ &=\mathcal{P}\left(p ext{ prime }: rac{k(p-1)}{q}\equiv 0 \pmod{p-1}
ight) \end{aligned}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion	
000	0000 00	000	ို	
		0000		
Approaches to Prove the Conjecture				

$$egin{aligned} &\mathcal{P}_1 := \mathcal{P} \left(p \text{ prime } : \ p \equiv 1 \pmod{q}
ight) \ &= \mathcal{P} \left(p \text{ prime } : \ p \in \{aq+1\}_{a \in \mathbb{Z}}
ight) \ &= rac{1}{\phi(q)} = rac{1}{q-1} \quad ext{by Dirichlet's Theorem} \end{aligned}$$

$$egin{aligned} &\mathcal{P}_2:=\mathcal{P}\left(p \text{ prime }:\ a^{(p-1)/q}\equiv 1 \pmod{p}
ight) & ext{ for } a=b^k,\ 1\leq k\leq p-1\ &=\mathcal{P}\left(p ext{ prime }:\ rac{k(p-1)}{q}\equiv 0 \pmod{p-1}
ight) & ext{ as } (\mathbb{Z}/p\mathbb{Z})^*\cong \mathbb{Z}/(p-1)\mathbb{Z} \end{aligned}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion	
000	0000 00	000	ို	
		0000		
Approaches to Prove the Conjecture				

$$egin{aligned} & P_1 := \mathcal{P} \left(p \text{ prime } : \ p \equiv 1 \pmod{q}
ight) \ &= \mathcal{P} \left(p \text{ prime } : \ p \in \{aq+1\}_{a \in \mathbb{Z}}
ight) \ &= rac{1}{\phi(q)} = rac{1}{q-1} \quad ext{by Dirichlet's Theorem} \end{aligned}$$

$$\begin{aligned} & P_2 := \mathcal{P}\left(p \text{ prime } : \ a^{(p-1)/q} \equiv 1 \pmod{p}\right) \quad \text{for } a = b^k, \ 1 \le k \le p-1 \\ & = \mathcal{P}\left(p \text{ prime } : \ \frac{k(p-1)}{q} \equiv 0 \pmod{p-1}\right) \quad \text{as } (\mathbb{Z}/p\mathbb{Z})^* \cong \mathbb{Z}/(p-1)\mathbb{Z} \\ & = \mathcal{P}\left(p \text{ prime } : \ q|k\right) \end{aligned}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion	
000	0000 00	000	ို	
		0000		
Approaches to Prove the Conjecture				

$$egin{aligned} & P_1 := \mathcal{P} \, (p \ \mathsf{prime} \ : \ p \equiv 1 \pmod{q}) \ & = \mathcal{P} \, (p \ \mathsf{prime} \ : \ p \in \{aq+1\}_{a \in \mathbb{Z}}) \ & = rac{1}{\phi(q)} = rac{1}{q-1} \quad \mathsf{by \ Dirichlet's \ Theorem} \end{aligned}$$

$$\begin{aligned} \mathcal{P}_2 &:= \mathcal{P}\left(p \text{ prime }: a^{(p-1)/q} \equiv 1 \pmod{p}\right) \quad \text{for } a = b^k, \ 1 \le k \le p-1 \\ &= \mathcal{P}\left(p \text{ prime }: \frac{k(p-1)}{q} \equiv 0 \pmod{p-1}\right) \quad \text{as } (\mathbb{Z}/p\mathbb{Z})^* \cong \mathbb{Z}/(p-1)\mathbb{Z} \\ &= \mathcal{P}\left(p \text{ prime }: q|k\right) \quad = \quad \frac{(p-1)/q}{p-1} \quad = \quad \frac{1}{q} \end{aligned}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	00	00	00
000000		0000	
Approaches to Prove the C	Conjecture		

Heuristic estimate

$$N_a(x) \sim \left[\prod_{q \text{ prime}} (1 - P_1 P_2)\right] \frac{x}{\log x}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000	0	000
ŏo•oooo		ŏŏoo	
Approaches to Prove the Conj	ecture		

Heuristic estimate $N_a(x) \sim \left[\prod_{q \text{ prime}} (1 - P_1 P_2)\right] \frac{x}{\log x} = \left[\prod_{q \text{ prime}} \left(1 - \frac{1}{q(q-1)}\right)\right] \frac{x}{\log x}$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
0 000000	00	0000	00
Approaches to Prove the C	Conjecture		

Heuristic estimate $N_{a}(x) \sim \left[\prod_{q \text{ prime}} (1 - P_{1}P_{2})\right] \frac{x}{\log x} = \left[\prod_{q \text{ prime}} \left(1 - \frac{1}{q(q-1)}\right)\right] \frac{x}{\log x}$

Value of <i>a</i>	$N_a(x)$	$A(a) \cdot \operatorname{li}(x)$	% of Error
2	18701	17175	8.16
3	18761	17175	8.45
5	19699	17175	12.81
7	18687	17175	8.09
8	11225	17175	53.01
11	18772	17175	8.51

Here x is chosen to be the 50000-th prime, i.e, 611953.

Sourav Sen Gupta

Artin's Conjecture: Unconditional Approach and Elliptic Curve Analogue

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
000000			
Approaches to Prove the Co	onjecture		

Problem with the heuristic argument

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000	0 00	
000000		0000	
Approaches to Prove the Conjecture			

Problem with the heuristic argument : Incorrect Assumption

The event $a^{(p-1)/q} \equiv 1 \pmod{p}$ and P_2 are independent of a.
Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	00	00	00
0000000		0000	
Approaches to Prove the C	Conjecture		

Problem with the heuristic argument : Incorrect Assumption

The event $a^{(p-1)/q} \equiv 1 \pmod{p}$ and P_2 are independent of a.

Why is this not true?

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
o 000●000	00	0000	00
Approaches to Prove the C	Conjecture		

Problem with the heuristic argument : Incorrect Assumption

The event $a^{(p-1)/q} \equiv 1 \pmod{p}$ and P_2 are independent of a.

Why is this not true?

Not *always* true, because if we choose an *a* such that $a = b^k$ for *b* being a primitive root of *p*, then *a* is *not necessarily* a primitive root of *p*.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
o 000●000	00	0000	00
Approaches to Prove the C	Conjecture		

Problem with the heuristic argument : Incorrect Assumption

The event $a^{(p-1)/q} \equiv 1 \pmod{p}$ and P_2 are independent of a.

Why is this not true?

Not always true, because if we choose an a such that $a = b^k$ for b being a primitive root of p, then a is not necessarily a primitive root of p.

Example: If $a = 2^5 = 32$ in $(\mathbb{Z}/11\mathbb{Z})^*$, then $a^{10/q} \equiv 1 \pmod{11}$ is always true for q = 5, i.e, $P_2 = 1$.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
0		00	00
0000000		0000	
Approaches to Prove the C	onjecture		

Problem with the heuristic argument : Incorrect Assumption

The event $a^{(p-1)/q} \equiv 1 \pmod{p}$ and P_2 are independent of a.

Why is this not true?

Not *always* true, because if we choose an *a* such that $a = b^k$ for *b* being a primitive root of *p*, then *a* is *not necessarily* a primitive root of *p*.

Example: If $a = 2^5 = 32$ in $(\mathbb{Z}/11\mathbb{Z})^*$, then $a^{10/q} \equiv 1 \pmod{11}$ is always true for q = 5, i.e, $P_2 = 1$.

Intuition:

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
0		00	00
0000000		0000	
Approaches to Prove the C	onjecture		

Problem with the heuristic argument : Incorrect Assumption

The event $a^{(p-1)/q} \equiv 1 \pmod{p}$ and P_2 are independent of a.

Why is this not true?

Not *always* true, because if we choose an *a* such that $a = b^k$ for *b* being a primitive root of *p*, then *a* is *not necessarily* a primitive root of *p*.

Example: If $a = 2^5 = 32$ in $(\mathbb{Z}/11\mathbb{Z})^*$, then $a^{10/q} \equiv 1 \pmod{11}$ is always true for q = 5, i.e, $P_2 = 1$.

Intuition:

"The density A(a) does depend on a"

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
0		00	00
0000000		0000	
Approaches to Prove the C	onjecture		

Problem with the heuristic argument : Incorrect Assumption

The event $a^{(p-1)/q} \equiv 1 \pmod{p}$ and P_2 are independent of a.

Why is this not true?

Not *always* true, because if we choose an *a* such that $a = b^k$ for *b* being a primitive root of *p*, then *a* is *not necessarily* a primitive root of *p*.

Example: If $a = 2^5 = 32$ in $(\mathbb{Z}/11\mathbb{Z})^*$, then $a^{10/q} \equiv 1 \pmod{11}$ is always true for q = 5, i.e, $P_2 = 1$.

Intuition:

"The density A(a) does depend on a" - D.H. Lehmer

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Annuagebas to Dusing the (Paulasture		

Theorem (Christopher Hooley, 1967)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Approaches to Prove the C	oniecture		

Theorem (Christopher Hooley, 1967)

Let us denote by \tilde{a} the square-free part of a and h the largest integer such that a is a perfect h-th power.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Approaches to Prove the C	oniecture		

Theorem (Christopher Hooley, 1967)

Let us denote by \tilde{a} the square-free part of a and h the largest integer such that a is a perfect h-th power.

Then for $\tilde{a} \not\equiv 1 \pmod{4}$,

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
0000000		0000	00
Approaches to Prove the	Conjecture		

Theorem (Christopher Hooley, 1967)

Let us denote by \tilde{a} the square-free part of a and h the largest integer such that a is a perfect h-th power.

Then for $\tilde{a} \not\equiv 1 \pmod{4}$, we have

$$N_a(x) = C(h) \frac{x}{\log x} + O\left(\frac{x \log \log x}{\log^2 x}\right)$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
0000000		0000	00
Approaches to Prove the	Conjecture		

Theorem (Christopher Hooley, 1967)

Let us denote by \tilde{a} the square-free part of a and h the largest integer such that a is a perfect h-th power.

Then for $\tilde{a} \not\equiv 1 \pmod{4}$, we have

$$N_a(x) = C(h) \frac{x}{\log x} + O\left(\frac{x \log \log x}{\log^2 x}\right)$$

and for $\tilde{a} \equiv 1 \pmod{4}$,

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
0000000		0000	00
Approaches to Prove the	Conjecture		

Theorem (Christopher Hooley, 1967)

Let us denote by \tilde{a} the square-free part of a and h the largest integer such that a is a perfect h-th power.

Then for $\tilde{a} \not\equiv 1 \pmod{4}$, we have

$$N_a(x) = C(h) \frac{x}{\log x} + O\left(\frac{x \log \log x}{\log^2 x}\right)$$

and for $\tilde{a} \equiv 1 \pmod{4}$, we have

$$\begin{split} N_{a}(x) &= C(h) \left(1 - \mu(|\tilde{a}|) \prod_{\substack{q \mid h \\ q \mid \tilde{a}}} \left(\frac{1}{q-2} \right) \prod_{\substack{q \nmid h \\ q \mid \tilde{a}}} \left(\frac{1}{q^{2} - q - 1} \right) \right) \frac{x}{\log x} \\ &+ O\left(\frac{x \log \log x}{\log^{2} x} \right) \end{split}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000 0	0000 00	0 00	
0000000		0000	
Approaches to Prove the Cor	liecture		

Where

$$\mathcal{C}(h):=\prod_{q\mid h}\left(1-rac{1}{q-1}
ight)\prod_{q
eq h}\left(1-rac{1}{q(q-1)}
ight)$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000 0 0000000	0000 00	0 00 0000	
Approaches to Prove the Co	njecture		

Where

$$\mathcal{C}(h) := \prod_{q \mid h} \left(1 - rac{1}{q-1}
ight) \prod_{q \nmid h} \left(1 - rac{1}{q(q-1)}
ight)$$

Value of <i>a</i>	$N_a(x)$	Hooley's Estimate	% of Error
2	18701	18724	0.12
3	18761	18724	0.20
5	19699	19709	0.05
7	18687	18724	0.20
8	11225	11235	0.10
11	18772	18724	0.26

Here x is chosen to be the 50000-th prime, i.e, 611953.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
000000		0000	
Approaches to Prove the Co	onjecture		

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000000		0000	
Approaches to Prove the Co	onjecture		

Condition

The generalized Riemann hypothesis holds for the class of Dedekind zeta functions over Galois extensions of the type $\mathbb{Q}(\sqrt[k_1]{b}, \sqrt[k_1]{1})$, where $b \in \mathbb{Z}$, k is a square-free integer and $k_1|k$.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
000000		0000	
Approaches to Prove the Conje	ecture		

Condition

The generalized Riemann hypothesis holds for the class of Dedekind zeta functions over Galois extensions of the type $\mathbb{Q}(\sqrt[k_1]{b}, \sqrt[k]{1})$, where $b \in \mathbb{Z}$, k is a square-free integer and $k_1|k$.

• What if generalized Riemann hypothesis is FALSE ??

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
000000		0000	
Approaches to Prove the Conje	ecture		

Condition

The generalized Riemann hypothesis holds for the class of Dedekind zeta functions over Galois extensions of the type $\mathbb{Q}(\sqrt[k_1]{b}, \sqrt[k]{1})$, where $b \in \mathbb{Z}$, k is a square-free integer and $k_1|k$.

- What if generalized Riemann hypothesis is FALSE ??
- Hooley's proof does not work anymore !!

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
000000		0000	
Approaches to Prove the Conje	ecture		

Condition

The generalized Riemann hypothesis holds for the class of Dedekind zeta functions over Galois extensions of the type $\mathbb{Q}(\sqrt[k_1]{b}, \sqrt[k]{1})$, where $b \in \mathbb{Z}$, k is a square-free integer and $k_1|k$.

- What if generalized Riemann hypothesis is FALSE ??
- Hooley's proof does not work anymore !!
- Is there something one can do about it ?

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
000000		0000	
Approaches to Prove the Conje	ecture		

Condition

The generalized Riemann hypothesis holds for the class of Dedekind zeta functions over Galois extensions of the type $\mathbb{Q}(\sqrt[k_1]{b}, \sqrt[k]{1})$, where $b \in \mathbb{Z}$, k is a square-free integer and $k_1|k$.

- What if generalized Riemann hypothesis is FALSE ??
- Hooley's proof does not work anymore !!
- Is there something one can do about it ?
- Figure out an unconditional proof !

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
000000		0000	

Unconditional Proof of Artin's Conjecture

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Theorem (Rajiv Gupta and M. Ram Murty, 1984)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Theorem (Rajiv Gupta and M. Ram Murty, 1984)

Let q, r and s denote three distinct primes.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Theorem (Rajiv Gupta and M. Ram Murty, 1984)

Let q, r and s denote three distinct primes. If we define the following set

$$S = \left\{ qs^2, q^3r^2, q^2r, r^3s^2, r^2s, q^2s^3, qr^3, q^3rs^2, rs^3, q^2r^3s, q^3s, qr^2s^3, qrs \right\}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Theorem (Rajiv Gupta and M. Ram Murty, 1984)

Let q, r and s denote three distinct primes. If we define the following set

$$S = \left\{ qs^{2}, q^{3}r^{2}, q^{2}r, r^{3}s^{2}, r^{2}s, q^{2}s^{3}, qr^{3}, q^{3}rs^{2}, rs^{3}, q^{2}r^{3}s, q^{3}s, qr^{2}s^{3}, qrs \right\}$$

then for some $a \in S$, there exists a $\delta > 0$ such that

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion	
000	0000			
0000000		0000		
Gupta and Murty's Unconditional Approach				

Theorem (Rajiv Gupta and M. Ram Murty, 1984)

Let q, r and s denote three distinct primes. If we define the following set

$$S = \left\{ qs^{2}, q^{3}r^{2}, q^{2}r, r^{3}s^{2}, r^{2}s, q^{2}s^{3}, qr^{3}, q^{3}rs^{2}, rs^{3}, q^{2}r^{3}s, q^{3}s, qr^{2}s^{3}, qrs \right\}$$

then for some $a \in S$, there exists a $\delta > 0$ such that

$$N_a(x) \geq rac{\delta x}{\log^2 x}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Theorem (Rajiv Gupta and M. Ram Murty, 1984)

Let q, r and s denote three distinct primes. If we define the following set

$$S = \left\{ qs^{2}, q^{3}r^{2}, q^{2}r, r^{3}s^{2}, r^{2}s, q^{2}s^{3}, qr^{3}, q^{3}rs^{2}, rs^{3}, q^{2}r^{3}s, q^{3}s, qr^{2}s^{3}, qrs \right\}$$

then for some $a \in S$, there exists a $\delta > 0$ such that

$$\mathsf{N}_{\mathsf{a}}(x) \geq rac{\delta x}{\log^2 x}$$

Here,

$$N_a(x) = \#\{p \le x : a \text{ is a primitive root of } p\}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion	
000	0000			
0000000		0000		
Gupta and Murty's Unconditional Approach				

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion		
	0000				
	00	00	00		
000000		0000			
Gupta and Murty's Unconditional Approach					

Notation: $(q, r, s)^u := q^{u_1} r^{u_2} s^{u_3}$ where $u := (u_1, u_2, u_3) \in \mathbb{Z}^3$ [non-negative].

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
	00	00	00
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Notation:
$$(q,r,s)^u:=q^{u_1}r^{u_2}s^{u_3}$$
 where $u:=(u_1,u_2,u_3)\in\mathbb{Z}^3$ [non-negative].

Vector Space Argument

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Notation:
$$(q,r,s)^u := q^{u_1}r^{u_2}s^{u_3}$$
 where $u := (u_1,u_2,u_3) \in \mathbb{Z}^3$ [non-negative].

Vector Space Argument

Let us construct a set S_1 of 3-tuples u satisfying

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Notation:
$$(q,r,s)^u:=q^{u_1}r^{u_2}s^{u_3}$$
 where $u:=(u_1,u_2,u_3)\in\mathbb{Z}^3$ [non-negative].

Vector Space Argument

Let us construct a set S_1 of 3-tuples u satisfying

• For any $u \in S_1$, $u \not\equiv (0, 0, 0) \pmod{2}$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
0 0000000		00 0000	00
Gupta and Murty's Uncon	ditional Approach		

Notation:
$$(q,r,s)^u:=q^{u_1}r^{u_2}s^{u_3}$$
 where $u:=(u_1,u_2,u_3)\in\mathbb{Z}^3$ [non-negative].

Vector Space Argument

Let us construct a set S_1 of 3-tuples u satisfying

- For any $u \in S_1$, $u \not\equiv (0, 0, 0) \pmod{2}$
- **2** For each $u \in S_1$, \exists at most one $v \in S_1$: $v \neq u$ and $v \equiv u \pmod{2}$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
0 0000000		00 0000	00
Gupta and Murty's Uncon	ditional Approach		

Notation:
$$(q,r,s)^u:=q^{u_1}r^{u_2}s^{u_3}$$
 where $u:=(u_1,u_2,u_3)\in\mathbb{Z}^3$ [non-negative].

Vector Space Argument

Let us construct a set S_1 of 3-tuples u satisfying

- For any $u \in S_1$, $u \not\equiv (0, 0, 0) \pmod{2}$
- 3 For each $u \in S_1$, \exists at most one $v \in S_1$: $v \neq u$ and $v \equiv u \pmod{2}$
- For each 2-dimensional subspace $V \subset \left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^3$, any three elements of $S_V = \{u \in S_1 : u \neq v \pmod{2} \ \forall v \in V\}$ are linearly independent

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
0	00	00	00
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Notation:
$$(q,r,s)^u:=q^{u_1}r^{u_2}s^{u_3}$$
 where $u:=(u_1,u_2,u_3)\in\mathbb{Z}^3$ [non-negative].

Vector Space Argument

Let us construct a set S_1 of 3-tuples u satisfying

- For any $u \in S_1$, $u \not\equiv (0, 0, 0) \pmod{2}$
- 3 For each $u \in S_1$, \exists at most one $v \in S_1$: $v \neq u$ and $v \equiv u \pmod{2}$
- For each 2-dimensional subspace $V \subset \left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^3$, any three elements of $S_V = \{u \in S_1 : u \neq v \pmod{2} \forall v \in V\}$ are linearly independent

The Set S_1

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
0		00	00
Gupta and Murty's Uncon	ditional Approach		

Notation:
$$(q,r,s)^u := q^{u_1}r^{u_2}s^{u_3}$$
 where $u := (u_1,u_2,u_3) \in \mathbb{Z}^3$ [non-negative].

Vector Space Argument

Let us construct a set S_1 of 3-tuples u satisfying

- For any $u \in S_1$, $u \not\equiv (0, 0, 0) \pmod{2}$
- 3 For each $u \in S_1$, \exists at most one $v \in S_1$: $v \neq u$ and $v \equiv u \pmod{2}$
- For each 2-dimensional subspace $V \subset \left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^3$, any three elements of $S_V = \{u \in S_1 : u \neq v \pmod{2} \forall v \in V\}$ are linearly independent

The Set S_1

$$\begin{split} S_1 &= \{(1,0,2), (3,2,0), (2,1,0), (0,3,2), (0,2,1), (2,0,3), \\ &\quad (1,3,0), (3,1,2), (0,1,3), (2,3,1), (3,0,1), (1,2,3), (1,1,1)\} \end{split}$$
Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
	00	00	00
0000000		0000	
Gupta and Murty's Uncondi	tional Approach		

Lemma (Gupta and Murty)

If $\mathbb{F}_p^* = \langle q, r, s \rangle$, then for some $u \in S_1$, $(q, r, s)^u$ is a primitive root modulo p.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Lemma (Gupta and Murty)

If $\mathbb{F}_p^* = \langle q, r, s \rangle$, then for some $u \in S_1$, $(q, r, s)^u$ is a primitive root modulo p.

Lemma (Gupta and Murty)

There exists a $\delta > 0$ such that

$$\#\{p \le x : \mathbb{F}_p^* = \langle q, r, s \rangle\} \ge \frac{\delta x}{\log^2 x}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Lemma (Gupta and Murty)

If $\mathbb{F}_p^* = \langle q, r, s \rangle$, then for some $u \in S_1$, $(q, r, s)^u$ is a primitive root modulo p.

Lemma (Gupta and Murty)

There exists a $\delta > 0$ such that

$$\#\{p \le x : \mathbb{F}_p^* = \langle q, r, s \rangle\} \ge \frac{\delta x}{\log^2 x}$$

So, we have at least one element satisfying the result in $S = (q, r, s)^u$ for u in $S_1 = \{(1,0,2), (3,2,0), (2,1,0), (0,3,2), (0,2,1), (2,0,3), (1,3,0), (3,1,2), (0,1,3), (2,3,1), (3,0,1), (1,2,3), (1,1,1)\},\$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Lemma (Gupta and Murty)

If $\mathbb{F}_p^* = \langle q, r, s \rangle$, then for some $u \in S_1$, $(q, r, s)^u$ is a primitive root modulo p.

Lemma (Gupta and Murty)

There exists a $\delta > 0$ such that

$$\#\{p \le x : \mathbb{F}_p^* = \langle q, r, s \rangle\} \ge \frac{\delta x}{\log^2 x}$$

So, we have at least one element satisfying the result in $S = (q, r, s)^u$ for u in $S_1 = \{(1,0,2), (3,2,0), (2,1,0), (0,3,2), (0,2,1), (2,0,3), (1,3,0), (3,1,2), (0,1,3), (2,3,1), (3,0,1), (1,2,3), (1,1,1)\}$, i.e, in the set

$$S = \left\{qs^{2}, q^{3}r^{2}, q^{2}r, r^{3}s^{2}, r^{2}s, q^{2}s^{3}, qr^{3}, q^{3}rs^{2}, rs^{3}, q^{2}r^{3}s, q^{3}s, qr^{2}s^{3}, qrs\right\}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Lemma (Gupta and Murty)

If $\mathbb{F}_p^* = \langle q, r, s \rangle$, then for some $u \in S_1$, $(q, r, s)^u$ is a primitive root modulo p.

Lemma (Gupta and Murty)

There exists a $\delta > 0$ such that

$$\#\{p \le x : \mathbb{F}_p^* = \langle q, r, s \rangle\} \ge \frac{\delta x}{\log^2 x}$$

So, we have at least one element satisfying the result in $S = (q, r, s)^u$ for u in $S_1 = \{(1,0,2), (3,2,0), (2,1,0), (0,3,2), (0,2,1), (2,0,3), (1,3,0), (3,1,2), (0,1,3), (2,3,1), (3,0,1), (1,2,3), (1,1,1)\}$, i.e, in the set

$$S = \left\{ qs^{2}, q^{3}r^{2}, q^{2}r, r^{3}s^{2}, r^{2}s, q^{2}s^{3}, qr^{3}, q^{3}rs^{2}, rs^{3}, q^{2}r^{3}s, q^{3}s, qr^{2}s^{3}, qrs \right\}$$

Important: Both the lemmas are true provided that (p-1) has at most 3 odd prime divisors, all sufficiently large.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion	
000	0000			
0000000		0000		
Gupta and Murty's Unconditional Approach				

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
0 0000000		00 0000	00
Gupta and Murty's Uncon	ditional Approach		

Lemma (Gupta and Murty)

Let us fix a prime q and a constant $\epsilon \in (0, \frac{1}{4})$.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
0 0000000		00 0000	00
Gupta and Murty's Uncon	ditional Approach		

Lemma (Gupta and Murty)

Let us fix a prime q and a constant $\epsilon \in (0, \frac{1}{4})$. If $\alpha = \frac{1}{4} + \epsilon$, then there exists a constant c > 0 such that

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
	00	00	00
0000000		0000	
Gupta and Murty's Uncone	ditional Approach		

Lemma (Gupta and Murty)

Let us fix a prime q and a constant $\epsilon \in (0, \frac{1}{4})$. If $\alpha = \frac{1}{4} + \epsilon$, then there exists a constant c > 0 such that

$$\#\left\{p \leq x : \left(\frac{q}{p}\right) = -1, \ t \ \text{prime \& } t | (p-1) \Rightarrow t = 2 \ \text{or} \ t > x^{\alpha}\right\} \geq \frac{cx}{\log^2 x}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
	00	00	00
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Lemma (Gupta and Murty)

Let us fix a prime q and a constant $\epsilon \in (0, \frac{1}{4})$. If $\alpha = \frac{1}{4} + \epsilon$, then there exists a constant c > 0 such that

$$\#\left\{p \leq x \ : \ \left(\frac{q}{p}\right) = -1, \ t \text{ prime \& } t | (p-1) \Rightarrow t = 2 \text{ or } t > x^{\alpha}\right\} \ \geq \ \frac{cx}{\log^2 x}$$

Stretching the Backbone

Artin's Conjecture: Unconditional Approach and Elliptic Curve Analogue

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
	00	00	00
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Lemma (Gupta and Murty)

Let us fix a prime q and a constant $\epsilon \in (0, \frac{1}{4})$. If $\alpha = \frac{1}{4} + \epsilon$, then there exists a constant c > 0 such that

$$\#\left\{p \leq x \ : \ \left(\frac{q}{p}\right) = -1, \ t \text{ prime \& } t | (p-1) \Rightarrow t = 2 \text{ or } t > x^{\alpha}\right\} \ \geq \ \frac{cx}{\log^2 x}$$

Stretching the Backbone

• Lemma with $\alpha = \frac{1}{4} + \epsilon$: a result in Linear Sieve by H. Iwaniec.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
	00	00	00
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Lemma (Gupta and Murty)

Let us fix a prime q and a constant $\epsilon \in (0, \frac{1}{4})$. If $\alpha = \frac{1}{4} + \epsilon$, then there exists a constant c > 0 such that

$$\#\left\{p \leq x \ : \ \left(\frac{q}{p}\right) = -1, \ t \text{ prime \& } t | (p-1) \Rightarrow t = 2 \text{ or } t > x^{\alpha}\right\} \ \geq \ \frac{cx}{\log^2 x}$$

Stretching the Backbone

- Lemma with $\alpha = \frac{1}{4} + \epsilon$: a result in Linear Sieve by H. Iwaniec.
- Lemma with $\alpha = \frac{1}{4} \epsilon$: another result by Iwaniec and the Bombieri-Vinogradov theorem.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
	00	00	00
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Lemma (Gupta and Murty)

Let us fix a prime q and a constant $\epsilon \in (0, \frac{1}{4})$. If $\alpha = \frac{1}{4} + \epsilon$, then there exists a constant c > 0 such that

$$\#\left\{p \leq x \ : \ \left(\frac{q}{p}\right) = -1, \ t \text{ prime \& } t | (p-1) \Rightarrow t = 2 \text{ or } t > x^{\alpha}\right\} \ \geq \ \frac{cx}{\log^2 x}$$

Stretching the Backbone

- Lemma with $\alpha = \frac{1}{4} + \epsilon$: a result in Linear Sieve by H. Iwaniec.
- Lemma with $\alpha = \frac{1}{4} \epsilon$: another result by Iwaniec and the Bombieri-Vinogradov theorem.
- Lemma with $\alpha = \frac{1}{6} \epsilon$: lower bound Selberg sieve along with the Bombieri-Vinogradov theorem.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
	00	00	00
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Lemma (Gupta and Murty)

Let us fix a prime q and a constant $\epsilon \in (0, \frac{1}{4})$. If $\alpha = \frac{1}{4} + \epsilon$, then there exists a constant c > 0 such that

$$\#\left\{p \leq x \ : \ \left(\frac{q}{p}\right) = -1, \ t \text{ prime \& } t | (p-1) \Rightarrow t = 2 \text{ or } t > x^{\alpha}\right\} \ \geq \ \frac{cx}{\log^2 x}$$

Stretching the Backbone

- Lemma with $\alpha = \frac{1}{4} + \epsilon$: a result in Linear Sieve by H. Iwaniec.
- Lemma with $\alpha = \frac{1}{4} \epsilon$: another result by Iwaniec and the Bombieri-Vinogradov theorem.
- Lemma with $\alpha = \frac{1}{6} \epsilon$: lower bound Selberg sieve along with the Bombieri-Vinogradov theorem.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	0000		
	00	00	00
0000000		0000	
Gupta and Murty's Uncon	ditional Approach		

Lemma (Gupta and Murty)

Let us fix a prime q and a constant $\epsilon \in (0, \frac{1}{4})$. If $\alpha = \frac{1}{4} + \epsilon$, then there exists a constant c > 0 such that

$$\#\left\{p \leq x \ : \ \left(\frac{q}{p}\right) = -1, \ t \text{ prime \& } t|(p-1) \Rightarrow t = 2 \text{ or } t > x^{\alpha}\right\} \ \geq \ \frac{cx}{\log^2 x}$$

Stretching the Backbone

- Lemma with $\alpha = \frac{1}{4} + \epsilon$: a result in Linear Sieve by H. Iwaniec.
- Lemma with $\alpha = \frac{1}{4} \epsilon$: another result by Iwaniec and the Bombieri-Vinogradov theorem.
- Lemma with $\alpha = \frac{1}{6} \epsilon$: lower bound Selberg sieve along with the Bombieri-Vinogradov theorem.

Crucial Observation: The size of the set *S* in Gupta and Murty's theorem decreases if the previous lemma is strengthened by increasing the value of α .

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
	•0		
0000000		0000	

Heath-Brown's (Improved) Result

Theorem (Heath-Brown, 1986)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
	● 0		
0000000		0000	

Heath-Brown's (Improved) Result

Theorem (Heath-Brown, 1986)

Let us define the following set of multiplicatively independent non-zero integers

$$ilde{S} = \{q, r, s : q^e r^f s^g = 1 \Rightarrow e = f = g = 0 \text{ for } e, f, g \in \mathbb{Z}\}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
	● 0		
0000000		0000	

Heath-Brown's (Improved) Result

Theorem (Heath-Brown, 1986)

Let us define the following set of multiplicatively independent non-zero integers

$$ilde{S} = \{q,r,s : q^e r^f s^g = 1 \Rightarrow e = f = g = 0 \ \ \text{for } e,f,g \in \mathbb{Z}\}$$

Now, if we suppose that none of q, r, s, -3qr, -3qs, -3rs, qrs is a square

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
	0		
0000000		0000	

Heath-Brown's (Improved) Result

Theorem (Heath-Brown, 1986)

Let us define the following set of multiplicatively independent non-zero integers

$$ilde{S} = \{q,r,s : q^e r^f s^g = 1 \Rightarrow e = f = g = 0 \ \ \text{for } e,f,g \in \mathbb{Z}\}$$

Now, if we suppose that none of q, r, s, -3qr, -3qs, -3rs, qrs is a square, then at least for one $a \in \tilde{S}$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
	0		
0000000		0000	

Heath-Brown's (Improved) Result

Theorem (Heath-Brown, 1986)

Let us define the following set of multiplicatively independent non-zero integers

$$ilde{S} = \{q,r,s : q^e r^f s^g = 1 \Rightarrow e = f = g = 0 \ \ \text{for } e,f,g \in \mathbb{Z}\}$$

Now, if we suppose that none of q, r, s, -3qr, -3qs, -3rs, qrs is a square, then at least for one $a \in \tilde{S}$, we have

$$N_a(x) \gg rac{x}{\log^2 x}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
	•0		
000000		0000	

Heath-Brown's (Improved) Result

Theorem (Heath-Brown, 1986)

Let us define the following set of multiplicatively independent non-zero integers

$$\widetilde{S} = \{q, r, s : q^e r^f s^g = 1 \Rightarrow e = f = g = 0 \text{ for } e, f, g \in \mathbb{Z}\}$$

Now, if we suppose that none of q, r, s, -3qr, -3qs, -3rs, qrs is a square, then at least for one $a \in \tilde{S}$, we have

$$N_a(x) \gg rac{x}{\log^2 x}$$

Corollary (Heath-Brown)

There are at most two primes for which Artin's conjecture does not hold.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
	•0		
000000		0000	

Heath-Brown's (Improved) Result

Theorem (Heath-Brown, 1986)

Let us define the following set of multiplicatively independent non-zero integers

$$ilde{S} = \{q,r,s : q^e r^f s^g = 1 \Rightarrow e = f = g = 0 \ \ ext{for} \ e,f,g \in \mathbb{Z}\}$$

Now, if we suppose that none of q, r, s, -3qr, -3qs, -3rs, qrs is a square, then at least for one $a \in \tilde{S}$, we have

$$N_a(x) \gg \frac{x}{\log^2 x}$$

Corollary (Heath-Brown)

There are at most two primes for which Artin's conjecture does not hold.

Corollary (Heath-Brown)

There are at most three square free integers greater than 1 for which Artin's conjecture does not hold.

Sourav Sen Gupta

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
	00		
0000000		0000	
Heath-Brown's Uncondition	nal Approach		

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	00		
0000000		0000	
Heath-Brown's Uncondition	nal Approach		

Questions

For any problem in number theory

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
	00		
0000000		0000	
Heath-Brown's Uncondition	nal Approach		

Questions

For any problem in number theory

• What if the problem is too hard in \mathbb{Z} ? [That's frustrating !]

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
	00		
0000000		0000	
Heath-Brown's Uncondition	nal Approach		

Questions

For any problem in number theory

- What if the problem is too hard in \mathbb{Z} ? [That's frustrating !]
- What if it is trivial in \mathbb{Z} ? [Now, that's boring]

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	00		
0000000		0000	
Heath-Brown's Uncondition	nal Approach		

Questions

For any problem in number theory

- What if the problem is too hard in \mathbb{Z} ? [That's frustrating !]
- What if it is trivial in \mathbb{Z} ? [Now, that's boring]

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	00		
0000000		0000	
Heath-Brown's Uncondition	nal Approach		

Questions

For any problem in number theory

- What if the problem is too hard in \mathbb{Z} ? [That's frustrating !]
- What if it is trivial in \mathbb{Z} ? [Now, that's boring]

The most accepted solution

• Try to solve the problem in a different setting.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
	00		
0000000		0000	
Heath-Brown's Uncondition	nal Approach		

Questions

For any problem in number theory

- What if the problem is too hard in \mathbb{Z} ? [That's frustrating !]
- What if it is trivial in \mathbb{Z} ? [Now, that's boring]

The most accepted solution

- Try to solve the problem in a different setting.
- Try to formulate and solve an analogous case.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
	00		
0000000		0000	
Heath-Brown's Uncondition	nal Approach		

Questions

For any problem in number theory

- What if the problem is too hard in \mathbb{Z} ? [That's frustrating !]
- What if it is trivial in \mathbb{Z} ? [Now, that's boring]

The most accepted solution

- Try to solve the problem in a different setting.
- Try to formulate and solve an analogous case.
- And try to carry the information back to solve the original problem.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	

Elliptic Curve analogue of Artin's Conjecture

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
		•	
	00	00	00
0000000		0000	
Elliptic Curves			

An elliptic curve over a field \mathbb{K} is a nonsingular cubic curve (genus 1) in two variables, having \mathbb{K} -rational points.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000	00	0
ŏoooooo		0000	ŏ
Elliptic Curves			

An elliptic curve over a field \mathbb{K} is a nonsingular cubic curve (genus 1) in two variables, having \mathbb{K} -rational points.

A general elliptic curve over \mathbb{K} with char $\mathbb{K} \neq 2, 3$ can be written in the Weierstrass form $E: y^2 = x^3 + ax + b$ with $a, b \in \mathbb{K}$.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000 00	•	000
Elliptic Curves		0000	
Emptic Curves			

An elliptic curve over a field \mathbb{K} is a nonsingular cubic curve (genus 1) in two variables, having \mathbb{K} -rational points.

A general elliptic curve over \mathbb{K} with char $\mathbb{K} \neq 2, 3$ can be written in the Weierstrass form $E: y^2 = x^3 + ax + b$ with $a, b \in \mathbb{K}$.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000	• 00	0
Elliptic Curves			

An elliptic curve over a field \mathbb{K} is a nonsingular cubic curve (genus 1) in two variables, having \mathbb{K} -rational points.

A general elliptic curve over \mathbb{K} with char $\mathbb{K} \neq 2, 3$ can be written in the Weierstrass form $E: y^2 = x^3 + ax + b$ with $a, b \in \mathbb{K}$.

Some useful facts

• Discriminant of E: $\Delta_E = -16(4a^3 + 27b^2) \neq 0$ for nonsingular curve.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000	• 00	0
Elliptic Curves			

An elliptic curve over a field \mathbb{K} is a nonsingular cubic curve (genus 1) in two variables, having \mathbb{K} -rational points.

A general elliptic curve over \mathbb{K} with char $\mathbb{K} \neq 2, 3$ can be written in the Weierstrass form $E: y^2 = x^3 + ax + b$ with $a, b \in \mathbb{K}$.

Some useful facts

- Discriminant of E: $\Delta_E = -16(4a^3 + 27b^2) \neq 0$ for nonsingular curve.
- We will choose $\mathbb{K} = \mathbb{Q}$, i.e, $E = E(\mathbb{Q})$ for this talk.
| Introduction | Unconditional Approach | Elliptic Curve Analogue | Conclusion |
|---------------------|------------------------|-------------------------|------------|
| 000
0
0000000 | 0000
00 | •
00
0000 | |
| Elliptic Curves | | | |

A brief introduction

An elliptic curve over a field \mathbb{K} is a nonsingular cubic curve (genus 1) in two variables, having \mathbb{K} -rational points.

A general elliptic curve over \mathbb{K} with char $\mathbb{K} \neq 2, 3$ can be written in the Weierstrass form $E: y^2 = x^3 + ax + b$ with $a, b \in \mathbb{K}$.

Some useful facts

- Discriminant of E: $\Delta_E = -16(4a^3 + 27b^2) \neq 0$ for nonsingular curve.
- We will choose $\mathbb{K} = \mathbb{Q}$, i.e, $E = E(\mathbb{Q})$ for this talk.
- $E(\mathbb{Q})$ is an additive group with the identity O, a projective point at infinity.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000 0 0000000	0000 00	• 00 0000	
Elliptic Curves			

A brief introduction

An elliptic curve over a field \mathbb{K} is a nonsingular cubic curve (genus 1) in two variables, having \mathbb{K} -rational points.

A general elliptic curve over \mathbb{K} with char $\mathbb{K} \neq 2, 3$ can be written in the Weierstrass form $E: y^2 = x^3 + ax + b$ with $a, b \in \mathbb{K}$.

Some useful facts

- Discriminant of E: $\Delta_E = -16(4a^3 + 27b^2) \neq 0$ for nonsingular curve.
- We will choose $\mathbb{K} = \mathbb{Q}$, i.e, $E = E(\mathbb{Q})$ for this talk.
- $E(\mathbb{Q})$ is an additive group with the identity O, a projective point at infinity.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		•0	
000000		0000	
Lang Trotter Conjecture			

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		●O	
000000		0000	
Lang Trotter Conjecture			

Definition (Primitive Point)

Given an elliptic curve $E(\mathbb{Q})$ defined over the rationals and a prime p, let the reduction of the elliptic curve modulo p be denoted as $\overline{E}(\mathbb{F}_p)$.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		•0	
000000		0000	
Lang Trotter Conjecture			

Definition (Primitive Point)

Given an elliptic curve $E(\mathbb{Q})$ defined over the rationals and a prime p, let the reduction of the elliptic curve modulo p be denoted as $\overline{E}(\mathbb{F}_p)$.

Then, a rational point $a \in E(\mathbb{Q})$ is said to be a *primitive point* of the curve modulo *p*

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		•0	
000000		0000	
Lang Trotter Conjecture			

Definition (Primitive Point)

Given an elliptic curve $E(\mathbb{Q})$ defined over the rationals and a prime p, let the reduction of the elliptic curve modulo p be denoted as $\overline{E}(\mathbb{F}_p)$.

Then, a rational point $a \in E(\mathbb{Q})$ is said to be a *primitive point* of the curve modulo p if \overline{a} , the reduction of a modulo p generates $\overline{E}(\mathbb{F}_p)$.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		•0	
000000		0000	
Lang Trotter Conjecture			

Definition (Primitive Point)

Given an elliptic curve $E(\mathbb{Q})$ defined over the rationals and a prime p, let the reduction of the elliptic curve modulo p be denoted as $\overline{E}(\mathbb{F}_p)$.

Then, a rational point $a \in E(\mathbb{Q})$ is said to be a *primitive point* of the curve modulo p if \overline{a} , the reduction of a modulo p generates $\overline{E}(\mathbb{F}_p)$.

Put in mathematical notation, a rational point $a \in E(\mathbb{Q})$ is a *primitive point* of the curve modulo p if

$$\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle$$

where \overline{a} is the reduction of *a* modulo *p*.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		00	
0000000		0000	
Lang Trotter Conjecture			

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		00	
0000000		0000	
Lang Trotter Conjecture			

The analogous question

If we fix a rational point *a* on an elliptic curve, then, for how many primes *p* will \overline{a} generate $\overline{E}(\mathbb{F}_p)$?

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		00	
0000000		0000	
Lang Trotter Conjecture			

The analogous question

If we fix a rational point *a* on an elliptic curve, then, for how many primes *p* will \overline{a} generate $\overline{E}(\mathbb{F}_p)$?

Conjecture (Lang and Trotter, 1977)

If we consider an elliptic curve $E(\mathbb{Q})$ defined over the rationals and a rational point $a \in E(\mathbb{Q})$ of infinite order

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		00	
0000000		0000	
Lang Trotter Conjecture			

The analogous question

If we fix a rational point *a* on an elliptic curve, then, for how many primes *p* will \overline{a} generate $\overline{E}(\mathbb{F}_p)$?

Conjecture (Lang and Trotter, 1977)

If we consider an elliptic curve $E(\mathbb{Q})$ defined over the rationals and a rational point $a \in E(\mathbb{Q})$ of infinite order, then a will be a primitive point of $\overline{E}(\mathbb{F}_p)$ for infinitely many primes p.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion	
000	0000			
000000		0000		
Curto and Mustica Arrange				

Gupta and Murty's Approach

Result 1 (Gupta and Murty)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gupta and Murty's Approac	h		

Theorem (Gupta and Murty, 1986)

Let $E(\mathbb{Q})$ be an elliptic curve defined over the rationals with complex multiplication by $\mathcal{O}_{\mathbb{K}}$ (entire ring of integers in an imaginary quadratic extension \mathbb{K} over \mathbb{Q}) and let a be a rational point of infinite order.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gunta and Murty's Approac	h		

Theorem (Gupta and Murty, 1986)

Let $E(\mathbb{Q})$ be an elliptic curve defined over the rationals with complex multiplication by $\mathcal{O}_{\mathbb{K}}$ (entire ring of integers in an imaginary quadratic extension \mathbb{K} over \mathbb{Q}) and let a be a rational point of infinite order. If we define

 $N_a^*(x) = \#\{p \le x : p \nmid a, p \text{ splits completely in } \mathbb{K}, \langle \overline{a} \rangle = \overline{E}(\mathbb{F}_p)\}$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
C	L		

Theorem (Gupta and Murty, 1986)

Let $E(\mathbb{Q})$ be an elliptic curve defined over the rationals with complex multiplication by $\mathcal{O}_{\mathbb{K}}$ (entire ring of integers in an imaginary quadratic extension \mathbb{K} over \mathbb{Q}) and let a be a rational point of infinite order. If we define

 $N_a^*(x) = \#\{p \le x : p \nmid a, p \text{ splits completely in } \mathbb{K}, \langle \overline{a} \rangle = \overline{E}(\mathbb{F}_p)\}$

then under the assumption of generalized Riemann hypothesis,

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gunta and Murty's Approac	h		

Theorem (Gupta and Murty, 1986)

Let $E(\mathbb{Q})$ be an elliptic curve defined over the rationals with complex multiplication by $\mathcal{O}_{\mathbb{K}}$ (entire ring of integers in an imaginary quadratic extension \mathbb{K} over \mathbb{Q}) and let a be a rational point of infinite order. If we define

 $N_a^*(x) = \#\{p \le x : p \nmid a, p \text{ splits completely in } \mathbb{K}, \langle \overline{a} \rangle = \overline{E}(\mathbb{F}_p)\}$

then under the assumption of generalized Riemann hypothesis, we obtain the following as $x\to\infty$:

$$N_a^*(x) = C_E(a) \frac{x}{\log x} + O\left(\frac{x \log \log x}{\log^2 x}\right)$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Cupto and Murty's Approx	-h		

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gupta and Murty's Approac	ch		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
000000		0000	
Gupta and Murty's Approach			

Index Divisibility Criteria:

$$\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right]$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
000000		0000	
Gupta and Murty's Approach			

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gupta and Murty's Approa	ch		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gupta and Murty's Approa	ch		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Define: $\mathbb{K}_q = \mathbb{K}(E[q])$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		0000	
Gunta and Murty's Approa	ich.		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Define: $\mathbb{K}_q = \mathbb{K}(E[q])$ and $\mathbb{L}_q = \mathbb{K}(E[q], q^{-1}a)$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gunta and Murty's Approa	ch		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Define: $\mathbb{K}_q = \mathbb{K}(E[q])$ and $\mathbb{L}_q = \mathbb{K}(E[q], q^{-1}a)$, where E[q]: *q*-division points

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gunta and Murty's Approa	ch		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Define: $\mathbb{K}_q = \mathbb{K}(E[q])$ and $\mathbb{L}_q = \mathbb{K}(E[q], q^{-1}a)$, where E[q]: *q*-division points

Lemma (Modified Index Divisibility Criteria)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gunta and Murty's Approa	ch		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Define: $\mathbb{K}_q = \mathbb{K}(E[q])$ and $\mathbb{L}_q = \mathbb{K}(E[q], q^{-1}a)$, where E[q]: *q*-division points

Lemma (Modified Index Divisibility Criteria)

Suppose that p splits in \mathbb{K} as $p = \pi_p \overline{\pi_p}$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		0000	
Gunta and Murty's Approx	ach		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Define: $\mathbb{K}_q = \mathbb{K}(E[q])$ and $\mathbb{L}_q = \mathbb{K}(E[q], q^{-1}a)$, where E[q]: *q*-division points

Lemma (Modified Index Divisibility Criteria)

Suppose that p splits in \mathbb{K} as $p = \pi_p \overline{\pi_p}$ and $p \nmid q \Delta_E$.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		0000	
Gunta and Murty's Approx	ach		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Define: $\mathbb{K}_q = \mathbb{K}(E[q])$ and $\mathbb{L}_q = \mathbb{K}(E[q], q^{-1}a)$, where E[q]: *q*-division points

Lemma (Modified Index Divisibility Criteria)

Suppose that p splits in \mathbb{K} as $p = \pi_p \overline{\pi_p}$ and $p \nmid q \Delta_E$. Then

• If q is inert in \mathbb{K}

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gunta and Murty's Approa	ch		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Define: $\mathbb{K}_q = \mathbb{K}(E[q])$ and $\mathbb{L}_q = \mathbb{K}(E[q], q^{-1}a)$, where E[q]: *q*-division points

Lemma (Modified Index Divisibility Criteria)

Suppose that p splits in \mathbb{K} as $p = \pi_p \overline{\pi_p}$ and $p \nmid q \Delta_E$. Then

1 If q is inert in \mathbb{K} , then q|i(p) if and only if p splits completely in \mathbb{K}_q .

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gunta and Murty's Approa	ch		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Define: $\mathbb{K}_q = \mathbb{K}(E[q])$ and $\mathbb{L}_q = \mathbb{K}(E[q], q^{-1}a)$, where E[q]: *q*-division points

Lemma (Modified Index Divisibility Criteria)

Suppose that p splits in \mathbb{K} as $p = \pi_p \overline{\pi_p}$ and $p \nmid q \Delta_E$. Then

- **1** If q is inert in \mathbb{K} , then q|i(p) if and only if p splits completely in \mathbb{K}_q .
- **2** If q ramifies or splits in \mathbb{K} as $q = q_1q_2$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		0000	
Gunta and Murty's Approx	ach		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Define: $\mathbb{K}_q = \mathbb{K}(E[q])$ and $\mathbb{L}_q = \mathbb{K}(E[q], q^{-1}a)$, where E[q]: *q*-division points

Lemma (Modified Index Divisibility Criteria)

Suppose that p splits in \mathbb{K} as $p = \pi_p \overline{\pi_p}$ and $p \nmid q \Delta_E$. Then

- **1** If q is inert in \mathbb{K} , then q|i(p) if and only if p splits completely in \mathbb{K}_q .
- If q ramifies or splits in K as q = q₁q₂, then q|i(p) if and only if (π_p) splits completely in L_{q1} or L_{q2} or K_q.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		0000	
Gunta and Murty's Approx	ach		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Define: $\mathbb{K}_q = \mathbb{K}(E[q])$ and $\mathbb{L}_q = \mathbb{K}(E[q], q^{-1}a)$, where E[q]: *q*-division points

Lemma (Modified Index Divisibility Criteria)

Suppose that p splits in \mathbb{K} as $p = \pi_p \overline{\pi_p}$ and $p \nmid q \Delta_E$. Then

- **1** If q is inert in \mathbb{K} , then q|i(p) if and only if p splits completely in \mathbb{K}_q .
- If q ramifies or splits in K as q = q₁q₂, then q|i(p) if and only if (π_p) splits completely in L_{q1} or L_{q2} or K_q.

Goal:

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		0000	
Gunta and Murty's Approx	ach		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Define: $\mathbb{K}_q = \mathbb{K}(E[q])$ and $\mathbb{L}_q = \mathbb{K}(E[q], q^{-1}a)$, where E[q]: *q*-division points

Lemma (Modified Index Divisibility Criteria)

Suppose that p splits in \mathbb{K} as $p = \pi_p \overline{\pi_p}$ and $p \nmid q \Delta_E$. Then

- **1** If q is inert in \mathbb{K} , then q|i(p) if and only if p splits completely in \mathbb{K}_q .
- If q ramifies or splits in K as q = q₁q₂, then q|i(p) if and only if (π_p) splits completely in L_{q1} or L_{q2} or K_q.

Goal: Find the number of primes p satisfying $q \nmid i(p) \forall$ primes q.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gunta and Murty's Approa	ch		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Define: $\mathbb{K}_q = \mathbb{K}(E[q])$ and $\mathbb{L}_q = \mathbb{K}(E[q], q^{-1}a)$, where E[q]: *q*-division points

Lemma (Modified Index Divisibility Criteria)

Suppose that p splits in \mathbb{K} as $p = \pi_p \overline{\pi_p}$ and $p \nmid q \Delta_E$. Then

- **1** If q is inert in \mathbb{K} , then q|i(p) if and only if p splits completely in \mathbb{K}_q .
- If q ramifies or splits in K as q = q₁q₂, then q|i(p) if and only if (π_p) splits completely in L_{q1} or L_{q2} or K_q.

Goal: Find the number of primes p satisfying $q \nmid i(p) \forall$ primes q. General approach:

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gunta and Murty's Approac	•h		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Define: $\mathbb{K}_q = \mathbb{K}(E[q])$ and $\mathbb{L}_q = \mathbb{K}(E[q], q^{-1}a)$, where E[q]: *q*-division points

Lemma (Modified Index Divisibility Criteria)

Suppose that p splits in \mathbb{K} as $p = \pi_p \overline{\pi_p}$ and $p \nmid q \Delta_E$. Then

- **1** If q is inert in \mathbb{K} , then q|i(p) if and only if p splits completely in \mathbb{K}_q .
- If q ramifies or splits in K as q = q₁q₂, then q|i(p) if and only if (π_p) splits completely in L_{q1} or L_{q2} or K_q.

Goal: Find the number of primes p satisfying $q \nmid i(p) \forall$ primes q. General approach: Sieve through the primes p in \mathbb{Q} by the set of primes q|i(p).

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gunta and Murty's Approac	•h		

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Define: $\mathbb{K}_q = \mathbb{K}(E[q])$ and $\mathbb{L}_q = \mathbb{K}(E[q], q^{-1}a)$, where E[q]: *q*-division points

Lemma (Modified Index Divisibility Criteria)

Suppose that p splits in \mathbb{K} as $p = \pi_p \overline{\pi_p}$ and $p \nmid q \Delta_E$. Then

- **1** If q is inert in \mathbb{K} , then q|i(p) if and only if p splits completely in \mathbb{K}_q .
- If q ramifies or splits in K as q = q₁q₂, then q|i(p) if and only if (π_p) splits completely in L_{q1} or L_{q2} or K_q.

Goal: Find the number of primes p satisfying $q \nmid i(p) \forall$ primes q. General approach: Sieve through the primes p in \mathbb{Q} by the set of primes q|i(p). Modified approach:
Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gunta and Murty's Approac	•h		

Main idea behind the proof

Index Divisibility Criteria:

 $\overline{E}(\mathbb{F}_p) = \langle \overline{a} \rangle \iff i(p) := \left[\overline{E}(\mathbb{F}_p) : \langle \overline{a} \rangle \right] = 1 \iff q \nmid i(p) \forall \text{ primes } q$

Define: $\mathbb{K}_q = \mathbb{K}(E[q])$ and $\mathbb{L}_q = \mathbb{K}(E[q], q^{-1}a)$, where E[q]: *q*-division points

Lemma (Modified Index Divisibility Criteria)

Suppose that p splits in \mathbb{K} as $p = \pi_p \overline{\pi_p}$ and $p \nmid q \Delta_E$. Then

- **1** If q is inert in \mathbb{K} , then q|i(p) if and only if p splits completely in \mathbb{K}_q .
- If q ramifies or splits in K as q = q₁q₂, then q|i(p) if and only if (π_p) splits completely in L_{q1} or L_{q2} or K_q.

Goal: Find the number of primes p satisfying $q \nmid i(p) \forall$ primes q. General approach: Sieve through the primes p in \mathbb{Q} by the set of primes q|i(p). Modified approach: Sieve through the ideals (π_p) in \mathbb{K} by the primes q|i(p).

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gupta and Murty's Approach			

We obtain the asymptotic expression for $N_a^*(x)$ by sieving.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gunta and Murty's Approx	ach		

We obtain the asymptotic expression for $N_a^*(x)$ by sieving. But, what can we say about the density $C_E(a)$?

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		0000	
Gupta and Murty's Approa	ch		

We obtain the asymptotic expression for $N_a^*(x)$ by sieving. But, what can we say about the density $C_E(a)$?

Theorem (Gupta and Murty, 1986)

If 2 and 3 are inert in \mathbb{K} or if $\mathbb{K} = \mathbb{Q}(\sqrt{-11})$, then $C_E(a) > 0$.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		0000	
Gupta and Murty's Approa	ch		

We obtain the asymptotic expression for $N_a^*(x)$ by sieving. But, what can we say about the density $C_E(a)$?

Theorem (Gupta and Murty, 1986)

If 2 and 3 are inert in \mathbb{K} or if $\mathbb{K} = \mathbb{Q}(\sqrt{-11})$, then $C_E(a) > 0$. Hence, assuming GRH in these cases, we obtain

$$N_a^*(x) \gg \frac{x}{\log x}$$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		0000	
Gupta and Murty's Approa	ch		

We obtain the asymptotic expression for $N_a^*(x)$ by sieving. But, what can we say about the density $C_E(a)$?

Theorem (Gupta and Murty, 1986)

If 2 and 3 are inert in \mathbb{K} or if $\mathbb{K} = \mathbb{Q}(\sqrt{-11})$, then $C_E(a) > 0$. Hence, assuming GRH in these cases, we obtain

$$N_a^*(x) \gg \frac{x}{\log x}$$

Case Studies

• 2 and 3 are inert in \mathbb{K} : $C_E(a) > 0$ ($\mathbb{K} = \mathbb{Q}(\sqrt{-D})$, D = 19, 43, 67, 163)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		0000	
Gupta and Murty's Approa	ch		

We obtain the asymptotic expression for $N_a^*(x)$ by sieving. But, what can we say about the density $C_E(a)$?

Theorem (Gupta and Murty, 1986)

If 2 and 3 are inert in \mathbb{K} or if $\mathbb{K} = \mathbb{Q}(\sqrt{-11})$, then $C_E(a) > 0$. Hence, assuming GRH in these cases, we obtain

$$N_a^*(x) \gg \frac{x}{\log x}$$

Case Studies

• 2 and 3 are inert in \mathbb{K} : $C_E(a) > 0$ ($\mathbb{K} = \mathbb{Q}(\sqrt{-D})$, D = 19, 43, 67, 163)

• $\mathbb{K} = \mathbb{Q}(\sqrt{-11})$: $C_E(a) > 0$

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		0000	
Gupta and Murty's Approa	ch		

We obtain the asymptotic expression for $N_a^*(x)$ by sieving. But, what can we say about the density $C_E(a)$?

Theorem (Gupta and Murty, 1986)

If 2 and 3 are inert in \mathbb{K} or if $\mathbb{K} = \mathbb{Q}(\sqrt{-11})$, then $C_E(a) > 0$. Hence, assuming GRH in these cases, we obtain

$$N_a^*(x) \gg \frac{x}{\log x}$$

Case Studies

- 2 and 3 are inert in \mathbb{K} : $C_E(a) > 0$ ($\mathbb{K} = \mathbb{Q}(\sqrt{-D})$, D = 19, 43, 67, 163)
- $\mathbb{K} = \mathbb{Q}(\sqrt{-11})$: $C_E(a) > 0$
- $\mathbb{K} = \mathbb{Q}(\sqrt{-7})$: $C_E(a) = 0$ (2 splits in $\mathbb{Q}(\sqrt{-7})$)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		0000	
Gupta and Murty's Approac	:h		

We obtain the asymptotic expression for $N_a^*(x)$ by sieving. But, what can we say about the density $C_E(a)$?

Theorem (Gupta and Murty, 1986)

If 2 and 3 are inert in \mathbb{K} or if $\mathbb{K} = \mathbb{Q}(\sqrt{-11})$, then $C_E(a) > 0$. Hence, assuming GRH in these cases, we obtain

$$N_a^*(x) \gg \frac{x}{\log x}$$

Case Studies

- 2 and 3 are inert in \mathbb{K} : $C_E(a) > 0$ ($\mathbb{K} = \mathbb{Q}(\sqrt{-D})$, D = 19, 43, 67, 163)
- $\mathbb{K} = \mathbb{Q}(\sqrt{-11})$: $C_E(a) > 0$

•
$$\mathbb{K} = \mathbb{Q}(\sqrt{-7})$$
: $C_E(a) = 0$ (2 splits in $\mathbb{Q}(\sqrt{-7})$)

• $\mathbb{K} = \mathbb{Q}(\sqrt{-2})$: $C_E(a) > 0$ most of the time

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		0000	
Gupta and Murty's Approac	:h		

We obtain the asymptotic expression for $N_a^*(x)$ by sieving. But, what can we say about the density $C_E(a)$?

Theorem (Gupta and Murty, 1986)

If 2 and 3 are inert in \mathbb{K} or if $\mathbb{K} = \mathbb{Q}(\sqrt{-11})$, then $C_E(a) > 0$. Hence, assuming GRH in these cases, we obtain

$$N_a^*(x) \gg \frac{x}{\log x}$$

Case Studies

- 2 and 3 are inert in \mathbb{K} : $C_E(a) > 0$ ($\mathbb{K} = \mathbb{Q}(\sqrt{-D})$, D = 19, 43, 67, 163)
- $\mathbb{K} = \mathbb{Q}(\sqrt{-11})$: $C_E(a) > 0$

•
$$\mathbb{K} = \mathbb{Q}(\sqrt{-7})$$
: $C_E(a) = 0$ (2 splits in $\mathbb{Q}(\sqrt{-7})$)

• $\mathbb{K} = \mathbb{Q}(\sqrt{-2})$: $C_E(a) > 0$ most of the time

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
		0000	
Gupta and Murty's Approac	:h		

We obtain the asymptotic expression for $N_a^*(x)$ by sieving. But, what can we say about the density $C_E(a)$?

Theorem (Gupta and Murty, 1986)

If 2 and 3 are inert in \mathbb{K} or if $\mathbb{K} = \mathbb{Q}(\sqrt{-11})$, then $C_E(a) > 0$. Hence, assuming GRH in these cases, we obtain

$$N_a^*(x) \gg \frac{x}{\log x}$$

Case Studies

- 2 and 3 are inert in \mathbb{K} : $C_E(a) > 0$ ($\mathbb{K} = \mathbb{Q}(\sqrt{-D})$, D = 19, 43, 67, 163)
- $\mathbb{K} = \mathbb{Q}(\sqrt{-11})$: $C_E(a) > 0$

•
$$\mathbb{K} = \mathbb{Q}(\sqrt{-7})$$
: $C_E(a) = 0$ (2 splits in $\mathbb{Q}(\sqrt{-7})$)

• $\mathbb{K} = \mathbb{Q}(\sqrt{-2})$: $C_E(a) > 0$ most of the time

Hence we have a positive density in most of the cases.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gupta and Murty's Approach	h		

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
0		00	00
0000000		0000	
Gupta and Murty's Approach			

Let us suppose that Γ is a free subgroup of rational points of the elliptic curve.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gupta and Murty's Approac	h		

Let us suppose that Γ is a free subgroup of rational points of the elliptic curve.

Analogous problem of Artin's conjecture

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gunta and Murty's Approx	ach		

Let us suppose that Γ is a free subgroup of rational points of the elliptic curve.

Analogous problem of Artin's conjecture

Compute the density of the primes p for which the elliptic curve group reduced modulo p is generated by Γ_{p} , the reduction of the free subgroup modulo p.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
000000		0000	
Gunta and Murty's Approac	h		

Let us suppose that Γ is a free subgroup of rational points of the elliptic curve.

Analogous problem of Artin's conjecture

Compute the density of the primes p for which the elliptic curve group reduced modulo p is generated by Γ_{p} , the reduction of the free subgroup modulo p.

Higher Rank Results: Gupta and Murty (1986)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
000000		0000	
Gunta and Murty's Approac	h		

Let us suppose that Γ is a free subgroup of rational points of the elliptic curve.

Analogous problem of Artin's conjecture

Compute the density of the primes p for which the elliptic curve group reduced modulo p is generated by Γ_{p} , the reduction of the free subgroup modulo p.

Higher Rank Results: Gupta and Murty (1986)

The conjecture is true assuming generalized Riemann Hypothesis for

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
000000		0000	
Gunta and Murty's Approac	h		

Let us suppose that Γ is a free subgroup of rational points of the elliptic curve.

Analogous problem of Artin's conjecture

Compute the density of the primes p for which the elliptic curve group reduced modulo p is generated by Γ_{p} , the reduction of the free subgroup modulo p.

Higher Rank Results: Gupta and Murty (1986)

The conjecture is true assuming generalized Riemann Hypothesis for

• rank(Γ) \geq 18 for *E* with no complex multiplication.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gunta and Murty's Approach	h		

Let us suppose that Γ is a free subgroup of rational points of the elliptic curve.

Analogous problem of Artin's conjecture

Compute the density of the primes p for which the elliptic curve group reduced modulo p is generated by Γ_{p} , the reduction of the free subgroup modulo p.

Higher Rank Results: Gupta and Murty (1986)

The conjecture is true assuming generalized Riemann Hypothesis for

- rank(Γ) \geq 18 for *E* with no complex multiplication.
- $rank(\Gamma) \ge 10$ for *E* with CM over a quadratic extension of \mathbb{Q} .

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gunta and Murty's Approach	h		

Let us suppose that Γ is a free subgroup of rational points of the elliptic curve.

Analogous problem of Artin's conjecture

Compute the density of the primes p for which the elliptic curve group reduced modulo p is generated by Γ_{p} , the reduction of the free subgroup modulo p.

Higher Rank Results: Gupta and Murty (1986)

The conjecture is true assuming generalized Riemann Hypothesis for

- $rank(\Gamma) \ge 18$ for *E* with no complex multiplication.
- rank(Γ) ≥ 10 for E with CM over a quadratic extension of Q.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	
Gunta and Murty's Approx	ach		

Let us suppose that Γ is a free subgroup of rational points of the elliptic curve.

Analogous problem of Artin's conjecture

Compute the density of the primes p for which the elliptic curve group reduced modulo p is generated by Γ_{p} , the reduction of the free subgroup modulo p.

Higher Rank Results: Gupta and Murty (1986)

The conjecture is true assuming generalized Riemann Hypothesis for

- $rank(\Gamma) \ge 18$ for *E* with no complex multiplication.
- $\operatorname{rank}(\Gamma) \ge 10$ for *E* with CM over a quadratic extension of \mathbb{Q} .

The assumption of GRH can be somewhat relaxed for higher rank case with E having complex multiplication.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	

Concluding remarks

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
			•
0000000		0000	
Current Advances			

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		•
0000000		0000	
Current Advances			

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		•
0000000		0000	
Current Advances			

Original Conjecture

• Conditional Proof - Christopher Hooley (1967)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
			•
0000000		0000	
Current Advances			

- Conditional Proof Christopher Hooley (1967)
- Unconditional Proof

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		•
000000		0000	
Current Advances			

- Conditional Proof Christopher Hooley (1967)
- Unconditional Proof
 - Rajiv Gupta and M. Ram Murty (1983)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		•
0000000		0000	
Current Advances			

- Conditional Proof Christopher Hooley (1967)
- Unconditional Proof
 - Rajiv Gupta and M. Ram Murty (1983)
 - D. Roger Heath-Brown (1986)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		•
0000000		0000	
Current Advances			

- Conditional Proof Christopher Hooley (1967)
- Unconditional Proof
 - Rajiv Gupta and M. Ram Murty (1983)
 - D. Roger Heath-Brown (1986)
- Average Case P.J. Stephens (1969)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		•
0000000		0000	
Current Advances			

Original Conjecture

- Conditional Proof Christopher Hooley (1967)
- Unconditional Proof
 - Rajiv Gupta and M. Ram Murty (1983)
 - D. Roger Heath-Brown (1986)
- Average Case P.J. Stephens (1969)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		•
0000000		0000	
Current Advances			

Original Conjecture

- Conditional Proof Christopher Hooley (1967)
- Unconditional Proof
 - Rajiv Gupta and M. Ram Murty (1983)
 - D. Roger Heath-Brown (1986)
- Average Case P.J. Stephens (1969)

Analogous Conjectures

• Elliptic Curve Analogue

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		•
0000000		0000	
Current Advances			

Original Conjecture

- Conditional Proof Christopher Hooley (1967)
- Unconditional Proof
 - Rajiv Gupta and M. Ram Murty (1983)
 - D. Roger Heath-Brown (1986)
- Average Case P.J. Stephens (1969)

- Elliptic Curve Analogue
 - S. Lang and H. Trotter (1977)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
			•
000000		0000	
Current Advances			

Original Conjecture

- Conditional Proof Christopher Hooley (1967)
- Unconditional Proof
 - Rajiv Gupta and M. Ram Murty (1983)
 - D. Roger Heath-Brown (1986)
- Average Case P.J. Stephens (1969)

- Elliptic Curve Analogue
 - S. Lang and H. Trotter (1977)
 - Rajiv Gupta and M. Ram Murty (1986)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
			•
	00	00	õõ
0000000		0000	
Current Advances			

Original Conjecture

- Conditional Proof Christopher Hooley (1967)
- Unconditional Proof
 - Rajiv Gupta and M. Ram Murty (1983)
 - D. Roger Heath-Brown (1986)
- Average Case P.J. Stephens (1969)

- Elliptic Curve Analogue
 - S. Lang and H. Trotter (1977)
 - Rajiv Gupta and M. Ram Murty (1986)
- Composite Moduli Analogue S. Li and Carl Pomerance (2000)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
			•
	00	00	õõ
0000000		0000	
Current Advances			

Original Conjecture

- Conditional Proof Christopher Hooley (1967)
- Unconditional Proof
 - Rajiv Gupta and M. Ram Murty (1983)
 - D. Roger Heath-Brown (1986)
- Average Case P.J. Stephens (1969)

- Elliptic Curve Analogue
 - S. Lang and H. Trotter (1977)
 - Rajiv Gupta and M. Ram Murty (1986)
- Composite Moduli Analogue S. Li and Carl Pomerance (2000)
- Drinfeld Module Analogue Chih-Nung Hsu and Jing Yu (2001)

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
			0
0000000		0000	

Open Questions

Open Questions: Unconditional Proof
Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
			•0
0000000		0000	
Open Questions			

• The conjecture has been proven for almost all integers.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
			•0
0000000		0000	
0 0			

- The conjecture has been proven for almost all integers.
- It has not been proven completely without the assumption of the generalized Riemann hypothesis.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
			0
0000000		0000	
0			

- The conjecture has been proven for almost all integers.
- It has not been proven completely without the assumption of the generalized Riemann hypothesis.
- We know that there exist at most 2 exceptional primes for which the conjecture might fail.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
			00
0000000		0000	
Onen Ouestiens			

- The conjecture has been proven for almost all integers.
- It has not been proven completely without the assumption of the generalized Riemann hypothesis.
- We know that there exist at most 2 exceptional primes for which the conjecture might fail.
- Which 2 ? We can not explicitly point those two out.

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
			0
0000000		0000	
0			

- The conjecture has been proven for almost all integers.
- It has not been proven completely without the assumption of the generalized Riemann hypothesis.
- We know that there exist at most 2 exceptional primes for which the conjecture might fail.
- Which 2 ? We can not explicitly point those two out.

Open Question: Unconditional Proof of Artin's Conjecture

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
	00	00	00
0000000		0000	

Open Questions

Open Questions: Elliptic Curve Analogue

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
			00
0000000		0000	
Open Questions			

Open Questions: Elliptic Curve Analogue

• Is the analogous conjecture true unconditionally for all curves?

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
			00
0000000		0000	
Open Questions			

Open Questions: Elliptic Curve Analogue

- Is the analogous conjecture true unconditionally for all curves?
- Can we formulate the proof without the assumption of complex multiplication of the curve?

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
			00
0000000		0000	
Open Questions			

Open Questions: Elliptic Curve Analogue

- Is the analogous conjecture true unconditionally for all curves?
- Can we formulate the proof without the assumption of complex multiplication of the curve?
- Is the analogue in case of higher rank elliptic curves true without the assumption of GRH?

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000	00	0000	00
The End			

Questions ?

Introduction	Unconditional Approach	Elliptic Curve Analogue	Conclusion
000	0000		
0000000		0000	•
The End			

Thank you for your attention !