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 Let E be an elliptic curve defined over Fq. 

 Let P be a fixed point on E of prime order n.

 Let k be the order of q mod n.  

 Then k is also the smallest integer such that n | (q k - 1).  

 k is called the embedding degree.

Pairings will be of the form 

We’ll also require that e(P,P) ≠ 1, which can be done using distortion 
maps.
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Computability and the Embedding Degree

The Weil pairing and Tate pairing are examples of pairings on curves.

Both are efficiently computable, provided that the embedding degree k is 
small.

For a random elliptic curve, k ≈ n, which is too large. 

Theorem:  If E is a supersingular elliptic curve, then k ≤ 6.

(Recall E is supersingular if #E(Fpr) ≡ 1 mod p.)

There are ordinary curves with low embedding degree 

(MNT curves have k = 2,3, or 4.)
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•MOV attack- Transfers the discrete logarithm problem on E to a 
 discrete logarithm in Fqk.

•Separating DDH from DH- Pairings can be used to show the                 
 Decision Diffie-Hellman problem is easier than the 
Diffie- Hellman problem on some curves.

•Identity based encryption- Public key encryption system where the 
 users public key is based on his own identity, i.e. an email 
 address.

•Short signatures- Signature schemes with signatures half the length 
 of other signature schemes.

•Key exchange- A tripartite key exchange can be done in one round.

•Group structure of E- can be determined efficiently using pairings.

•Identity based signatures, Identity based key exchange……..



The MOV attack

1993 (Menezes, Okamoto, and Vanstone)



The MOV attack

1993 (Menezes, Okamoto, and Vanstone)

Discrete Log (DL) Problem:  Given P and Q = [c]P on E, find c.



The MOV attack

1993 (Menezes, Okamoto, and Vanstone)

Discrete Log (DL) Problem:  Given P and Q = [c]P on E, find c.

The attack:



The MOV attack

1993 (Menezes, Okamoto, and Vanstone)

Discrete Log (DL) Problem:  Given P and Q = [c]P on E, find c.

The attack:

 1)  Find S of order n on E, such that e(P,S)≠1.



The MOV attack

1993 (Menezes, Okamoto, and Vanstone)

Discrete Log (DL) Problem:  Given P and Q = [c]P on E, find c.

The attack:

 1)  Find S of order n on E, such that e(P,S)≠1.

 2)  Compute  e(P,S) = ζ. 



The MOV attack

1993 (Menezes, Okamoto, and Vanstone)

Discrete Log (DL) Problem:  Given P and Q = [c]P on E, find c.

The attack:

 1)  Find S of order n on E, such that e(P,S)≠1.

 2)  Compute  e(P,S) = ζ. 

 3)  Compute  e(Q,S) = e([c]P,S) = e(P,S)c = ζc.



The MOV attack

1993 (Menezes, Okamoto, and Vanstone)

Discrete Log (DL) Problem:  Given P and Q = [c]P on E, find c.

The attack:

 1)  Find S of order n on E, such that e(P,S)≠1.

 2)  Compute  e(P,S) = ζ. 

 3)  Compute  e(Q,S) = e([c]P,S) = e(P,S)c = ζc.

 4)  Solve the DL in Fqk with ζ and ζc.

Best algorithms for solving DL on elliptic curves is O(√ n ).
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1993 (Menezes, Okamoto, and Vanstone)

Discrete Log (DL) Problem:  Given P and Q = [c]P on E, find c.

The attack:

 1)  Find S of order n on E, such that e(P,S)≠1.

 2)  Compute  e(P,S) = ζ. 

 3)  Compute  e(Q,S) = e([c]P,S) = e(P,S)c = ζc.

 4)  Solve the DL in Fqk with ζ and ζc.

Best algorithms for solving DL on elliptic curves is O(√ n ).

In Fqk, there are subexponential methods (index calculus).

Note, the attack is only efficient for small k.
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For the Diffie-Hellman key exchange, security is based 
on the (DH) problem:

 Given P, [a]P, and [b]P, compute [ab]P.

For Joux’s tripartite exchange, security is based on the Bilinear Diffie-
Hellman (BDH) problem:
 
 Given P, [a]P, [b]P, and [c]P, compute e(P,P)abc.

Clearly, if one can solve the discrete log problem, then one can solve 
the Diffie-Hellman problem.

Anyone who can solve the Diffie-Hellman problem can solve the 
bilinear Diffie-Hellman problem.
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Separating DH and DDH

The decision Diffie-Hellman (DDH) problem is:

 Given P, [a]P, b[P], and Q, determine if Q = [ab]P.

The DDH problem is no harder than the DH problem.

For awhile, there were no examples of groups where the DDH was 
strictly easier than the DH.  Such groups are called “gap Diffie-Hellman 
groups”.

Pairings make the DDH problem “easy”:

 1) Compute e(P,Q) 

 2) Compute  e([a]P,[b]P)=e(P,P)ab

 3) Q=[ab]P if and only if the above two results agree. 

Thus, elliptic curves with small k are gap Diffie-Hellman groups.

(Actually, the curve needs a distortion map so that e(P,P) ≠ 1.)
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2001 (Boneh, Lynn, and Schacham)

Parameters: E,e,P, and a hash function  

  Setup:  Private key is a secret integer r.
               Public key is R = [r]P. 

To sign a message M, Alice computes S =[r]H1(M). 

To verify the signature, check if e(P, S) = e(R,H1(M)). 

e(P, S) = e(P, [r]H1(M)) = e([r]P,H1(M)) = e(R,H1(M)).

To forge a signature on M, need to be able to find S = [r]H1(M), 
given P,R, and H1(M), which is a Diffie-Hellman problem in < P >.
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Using public key encryption, when Bob wants to send a message to 
Alice, he encrypts using Alice’s public key KA.

Suppose the malicious Mallory substitutes her own public key KM for 
Alice’s.  How does Bob know the key isn’t really Alice’s?

One solution is to require a trusted authority (TA) to give certificates for 
public keys.  Such a certificate has Alice’s ID and public key on it, signed 
by the TA.  Bob can check the trusted authority’s signature on the 
certificate, and be assured of what Alice’s public key is.

1984- Shamir proposed using Alice’s ID information as her public key.  
(Such a key could be an email address, for example.)

Bob then knows for sure who he is sending his message to.
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2001 (Boneh and Franklin)

Parameters:  E, P, e, and two hash functions:

Setup:    Alice’s public key is KA = H1(IDA).
 The TA has private key s, and public key S=[s]P.           
 TA gives Alice her secret decryption key DA = [s]KA.  

Encryption:  To send M, Bob selects a random r and computes 
R = [r]P and c = M    H2(e(KA, S)r). He sends Alice (R, c).

Decryption: Alice uses her private key DA to calculate 
c    H2(e(DA,R)) = c    H2(e([s]KA, [r]P)) = c    H2(e(KA, S)r) = M.

Anyone other than Alice wishing to decrypt the message from (R, c) 
needs to be able to compute e(KA, S)r = e(KA, P)rs given P, KA, S, and 
R. This requires solving the bilinear Diffie-Hellman problem.
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Miller’s algorithm to evaluate < P,Q >n

1. Given P,Q with order n, choose R with order n and R ≠ ∞,P,−Q,P−Q.
2. Write n in binary as n = (nt, ..., n1, n0).
3. Set f = 1, T = P and i = t.
4. If i < 0 then go to step 5. Else do the following:
 (a) Let l be the tangent line to E through T. Let v be the vertical 
      line through 2T.
 (b) Set T = 2T.
 (c) Set 
 
 (d) If ni = 1 then do the following:
  i. Let l be the line through T and P, and v the vertical 
                   line through T + P.
  ii. Set T = T + P.
  iii. Set 
 
 (e) Set i = i − 1 and return to step 4
5. The desired value is < P,Q >n = f.
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from µn to <P>, then the Diffie-Hellman problem can be efficiently 
solved in both µn and <P>.  
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What are the implications?

My dissertation generalizes Verheul’s theorem.
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Questions?



Thank You!


