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Boolean Formulas (Propositional Calculus) in Sage

1 Background

1.1 Simplification Methods

There are a few widely used algorithms for minimizing Boolean formulas, most notable of which
are the Quine-McCluskey algorithm, and the Espresso method. Both work by taking a Boolean
formula and compute an equivalent expression using simpler operators and/or fewer terms. Both
methods return a solution expressed in sum-of-products terms, a formula involving and terms or ’ed
together.

The computational and spatial complexity of Quine-McCluskey is exponential, and can quickly
become unreasonable for complex formulas involving many variables. It is guaranteed to find a
solution with the minimum number of terms.

The Espresso method uses heuristics to minimize a formula much more quickly, however it does
not guarantee the simplest form of the expression. It typically finds solutions that are relatively
short, and much more quickly than Quine-McCluskey.

2 Logic in Sage (The logic Module)

2.1 Current Release

As of version 3.0.1, the logic module relies the SymbolicLogic class to deal with Boolean logical
statements and expressions. It has several function stubs, such as prove, simplify, and combine.

While SymbolicLogic did implement basic Boolean operations and functions, there were some
poor design choices and holes left that left much to be desired. For example, it used the strings
”OPAREN” and ”CPAREN” to internally store parentathes, and used the name eval for evaluating
a statement, which is generally bad style since python has a built in eval function.

2.2 Active Development

The logic module in sage is currently undergoing active development. The sage ticket
http://sagetrac.org/sage_trac/ticket/545 shows the current progress. There were many sig-
nificant changes to the logic module:

• The code was refactored into several files. Before it all resided in logic.py, and now is sepp up
according to functionality. For example, the parsing of the statement now is the responsibility
of logicparser.py, and boolformula.py holds the related class

• The names were changed. Instead of being called through SymbolicLogic, a boolean function
is initialized through the propcalc module, and uses the BooleanFormula class.

• Boolean formulas are stored internally in a tree structure now

2.2.1 Simplification

BooleanFormula objects in sage have a simplify method that can be used to reduce expressions
to their minterms (sum-of-products form) by using the Quine-McCluskey algorithm. This is accom-
plished using the boolopt package developed by Michael Greenberg (http://www.weaselhat.com/
boolopt/).
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2.2.2 Suggested Improvements

Ticket 545 contains a patch that completely reworked the logic module, and is currently awaiting
review. After inspection it seems that the patch still issues that need to be addressed.

• It seems like there should be a way to evaluate a given BooleanFormula with specified inputs.
It may possible by calling booleval.eval formula), however there should probably be an interface
for such basic functionality, without having to resort to making an entire truth table.

• propcalc.formula includes the following code:

#verify the syntax
f.truthtable(0, 1)

The truthtable construction doesn’t do any (direct) error checking, and won’t throw any helpful
error messages. Meanwhile the logicparser does plenty of syntax checking for valid input – is
the truthtable call necessary?

• Currently boolopt.py is imported by propcalc by calling sys.path.append(’boolopt-1.1’),
and then importing the module. Applying the patch directly didn’t work, and python com-
plained about not finding the boolopt import. I had to fix it by copying boolopt.py to the
parent directory (sage/logic).

• BooleanFormula. latex doesn’t work properly, as it doesn’t escape any latex reserved charac-
ters. Particularly the symbols &, ^ and ~.

It may be possible to enter the latex formula in verbatim block, however this should probably
be mentioned in the docstring if it’s to be the case

• BooleanFormula eq has very naive behavior - it just performs literal comparison of trees,
and you get behavior like the following:

sage: p = propcalc.formula("a|b")
sage: q = propcalc.formula("b|a")
sage: p == q
False

This may be the desired behavior, but then maybe there should be a method equivalent that
can find out if something is logically equivalent. This presents certain challenges, such as

• The docstring examples for BooleanFormula.convert expression and BooleanFormula.convert cnf
are the same, and yet the functions do different things. Both contain the following:

EXAMPLES:
sage: import propcalc
sage: s = propcalc.formula("a^b<->c")
sage: s.convert_cnf_recur() #long time
(a|a)&(b|a)&(a|c)&(b|c)

• There are a few methods that would be nice for a logic module to have, such as is tautology or
is contradition. These would not be hard to implement, just an enumeration over possible
inputs until a counterexample is found, or all inputs have been exhastively searched.

• booleval.py contains a few very poorly written methods: eval ifthen op and eval iff off.
The body of eval ifthen op, for example, is:
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if(lval == False and rval == False):
return True

elif(lval == False and rval == True):
return True

elif(lval == True and rval == False):
return False

elif(lval == True and rval == True):
return True

which could be simplified to (not lval) or rval

• BooleanFormula.simplify would sometimes cause system hangs, even on small numbers of
variables. I Was able to establish that this was only when the formula involed <->, ^, and ->.
It’s possible my test code was incorrect, but then one would hope the parser would have
caught that, and rejected my attempt at created a BooleanFormula object. It could also be the
BooleanFormula.reduce op method, which is responsible for converting all <->, ^, and ->
into &, | and ~.

3 The Quine-McCluskey Algorithm

The Quine-McCluskey Algorithm (also known as the Prime Implicant method is guaranteed to
find a minimized equivalent form of a boolean expression. Minimized means the smallest number of
sum-of-product terms, that is, a series of and terms or ’ed together. This method is often chosen for
automation because it is a relatively simple process. The steps are as follows:

1. Iterate over all possible inputs to the boolean expression, and build up a table of the combina-
tions that result in an evaluation to true, grouping the table entries by the number of true’s
they have as in. These combinations are known as minterms.

Note: because each input variable has 2 possible inputs, this means there are a possible 2n

input combinations for n variables.

2. Compare each element of each group with the elements of the neighboring group. If there are
any elements in a neighboring group that only differs by a single input, you know you can
simplify away that variable, since leaving it out of the term covers both cases (if the input had
been T or F ). This variable entry is replaced with a ”−” as a place holder, which is known as
a dont-care.

3. Iterate over the entire column, putting terms created with don’t cares in the next column,
until there are no more combinations to be formed.

4. Repeat this process for the newly created column: look for terms that differ by only 1 input
(the dont-care’s have to be matched too – only one variable of input is allowed to differ), and
comtinue to make new columns that include more dont-care terms.

5. Once no more terms can be combined, create a list out of every term that was unable to
combine with any other terms (regardless of which column they ended up in). These are
known as prime implicants. Mark in the table which minterms are covered by which prime
implicants.

6. Create a prime implicant table, with the prime implicants along the left (the first column),
and the minterms along the top.

7. Find the smallest number of implicants that will cover all the minterms - this is done by first
figuring out which (if any) prime implicants exclusively provide cover for any minterms. Mark
these as necessary for your final solution; these are known as essential prime implicants. Then
successively try combinations of the remaining prime implicants until the smallest combination
is found that covers all of the minterms
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