
Sage Worksheet: math 480 -- april 7, 2008 https://localhost:8000/home/admin/61/print

1 of 13 4/7/08 12:26 PM

math 480 -- april 7, 2008

Errors and Exceptions: Recovering
from problems gracefully

Reference: Chapter 8 of the Python Tutorial

Syntax Errors

 Syntax Error: while True print 'Hello world'

Exceptions

Python has excellent very fast support for exception handling, which makes
writing code much much cleaner. Here is an example. The last line of the
error message indicates what happened!

while True print 'Hello world'

10 * (1/0)

Sage Worksheet: math 480 -- april 7, 2008 https://localhost:8000/home/admin/61/print

2 of 13 4/7/08 12:26 PM

This page http://docs.python.org/lib/module-exceptions.html lists all the
standard builtin exceptions along with what each means. Some common
exceptions that appear in mathematical programming include

TypeError1.
ZeroDivisionError2.
ArithmeticError3.
ValueError4.
RuntimeError5.
NotImplementedError6.
OverflowError7.
IndexError8.

Exception (click to the left for traceback):
...
TypeError: sequence item 0: expected string, sage.rings.integer.Integer found

Exception (click to the left for traceback):
...
ZeroDivisionError: Rational division by zero

Exception (click to the left for traceback):
...
ArithmeticError: Prime factorization of 0 not defined.

Exception (click to the left for traceback):
...
ValueError: arguments a and b must be coprime

Exception (click to the left for traceback):
...
RuntimeError: no zero in the interval, since constant expression is not 0.

Exception (click to the left for traceback):
...
NotImplementedError: Brun's constant only available up to 41 bits

''.join([1,2])

1/0

factor(0)

CRT(2, 1, 3, 3)

find_root(SR(1), 0, 5)

brun.str(50)

float(5)^float(902830982304982)

Sage Worksheet: math 480 -- april 7, 2008 https://localhost:8000/home/admin/61/print

3 of 13 4/7/08 12:26 PM

Exception (click to the left for traceback):
...
OverflowError: (34, 'Result too large')

Exception (click to the left for traceback):
...
IndexError: list index out of range

Handling Exceptions

You can often handle specific exceptions by doing a specific action only if
the exception occurs.

 A zero division error occured.

The ArithmeticError exception is the base class for those built-in exceptions
that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError, FloatingPointError. Thus the following also works.

 something went wrong

Exception (click to the left for traceback): print "a runtime error!"
...
ZeroDivisionError: Rational division by zero

v = [1,2,3]
v[10]

try:
 1/0
except ZeroDivisionError:
 print "A zero division error occured."

try:
 1/0
except ArithmeticError:
 print "something went wrong"

try:
 1/0
except RuntimeError:
 print "a runtime error!"

Sage Worksheet: math 480 -- april 7, 2008 https://localhost:8000/home/admin/61/print

4 of 13 4/7/08 12:26 PM

This always gets executed.
Traceback (most recent call last): except RuntimeError:
 File "element.pyx", line 1480, in
sage.structure.element.RingElement.__div__
 File "coerce.pxi", line 138, in sage.structure.element._div_c
 File "integer.pyx", line 1095, in
sage.rings.integer.Integer._div_c_impl
 File "integer_ring.pyx", line 204, in
sage.rings.integer_ring.IntegerRing_class._div
ZeroDivisionError: Rational division by zero

Everything ran fine!
This always gets executed.

This is an example use of exception handling in a function. We make a
division function that returns +infinity instead upon division by 0.

try:
 a = 5
 b = 0
 c = a/b
 d = 10
except RuntimeError:
 print "a runtime error"
else:
 print "Everything ran fine!" # only executed if no exception
raised.
finally:
 print "This always gets executed."

try:
 a = 5
 b = 1
 c = a/b
 d = 10
except RuntimeError:
 print "a runtime error"
else:
 print "Everything ran fine!" # only executed if no exception
raised.
finally:
 print "This always gets executed."

def mydiv(a,b):
 return a/b

mydiv(2, 0)

Sage Worksheet: math 480 -- april 7, 2008 https://localhost:8000/home/admin/61/print

5 of 13 4/7/08 12:26 PM

Exception (click to the left for traceback):
...
ZeroDivisionError: Rational division by zero

 2/3

You tried to divide by 0, but that's OK, I'll give you infinity
back.
+Infinity

Raising exceptions

Use the raise keyword to raise an exception.

 2/3

Exception (click to the left for traceback):
...
ZeroDivisionError: Oops -- you can't divide by 0

def mydiv(a,b):
 try:
 return a/b
 except ZeroDivisionError:
 print "You tried to divide by 0, but that's OK, I'll give
you infinity back."
 return infinity

mydiv(2,3)

mydiv(2,0)

def mydiv(a,b):
 if b == 0:
 raise ZeroDivisionError, "Oops -- you can't divide by 0"
 return a/b

mydiv(2,3)

mydiv(2,0)

Sage Worksheet: math 480 -- april 7, 2008 https://localhost:8000/home/admin/61/print

6 of 13 4/7/08 12:26 PM

 an error occurederror: Oops -- you can't divide by 0

WARNING: Handling multiple exceptions!

We define a function that can raise three different types of exceptions.

This is a *very* common and painful mistake people (=me many many
times) make:
The code looks fine. What is wrong?

 An error occured

 NotImplementedError('dividing 0 by something is too difficult!',)

Instead give a tuple of different exception types, and catch the message as the
second output:

try:
 mydiv(2,0)
except ZeroDivisionError, msg:
 print "an error occured"
 print "error: ", msg

def mydiv(a,b):
 if b == 0:
 raise ZeroDivisionError, "Oops -- you can't divide by 0"
 if a == 0:
 raise NotImplementedError, "dividing 0 by something is too
difficult!"
 if a == b:
 raise ValueError, "dividing equal things not allowed for
no good reason"
 return a/b

try:
 mydiv(0,4)
except NotImplementedError, ZeroDivisionError:
 print "An error occured"

ZeroDivisionError

reset('ZeroDivisionError') # reset to default state at startup.

Sage Worksheet: math 480 -- april 7, 2008 https://localhost:8000/home/admin/61/print

7 of 13 4/7/08 12:26 PM

 An error occured: Oops -- you can't divide by 0

Classes: Defining your own new
data types
Reference: Chapter 9 of the Python Tutorial

The Python class construction allows you to define your own new data types.
It is modeled on C++ classes, though Python classes are simpler and easier to
use. They support both single and multiple inheritance and one can derive
from builtin classes.

Defining a new class

try:
 mydiv(2,0)
except (NotImplementedError, ZeroDivisionError, ValueError), msg:
 print "An error occured:", msg

Sage Worksheet: math 480 -- april 7, 2008 https://localhost:8000/home/admin/61/print

8 of 13 4/7/08 12:26 PM

 __main__.NaturalNumber

 <type 'classobj'>

 <__main__.NaturalNumber instance at 0x834ae68>

 <type 'instance'>

 5

You can define any new class you want very easily at any point,
even inside the body of a function, etc.
It's very nice. Here are some examples.

class NaturalNumber:
 pass

A class itself is a Python object, just like anything else

print NaturalNumber

type(NaturalNumber)

This is how to make instances of a class
n = NaturalNumber()

n

type(n)

The above class is very boring. Let's add printing capabilities
and a value
class NaturalNumber:
 def __init__(self, n):
 self.__n = n
 def __repr__(self):
 return str(self.__n)

n = NaturalNumber(5)

n

Sage Worksheet: math 480 -- april 7, 2008 https://localhost:8000/home/admin/61/print

9 of 13 4/7/08 12:26 PM

Exception (click to the left for traceback):
...
ValueError: n must be nonnegative

 3

 {{{{}}, {}}, {{}}, {}}

0 {}
1 {{}}
2 {{{}}, {}}
3 {{{{}}, {}}, {{}}, {}}
4 {{{{}}, {}}, {{}}, {}, {{{{}}, {}}, {{}}, {}}}

Single Inheritance

Lets add a little error handling and a set function.
class NaturalNumber:
 def __init__(self, n):
 if n < 0:
 raise ValueError, "n must be nonnegative"
 self.__n = n

 def number(self):
 return self.__n

 def __repr__(self):
 return str(self.__n)

 def set(self):
 # The set corr. to n is {n-1} union n-1; this is how the
integers
 # are built up using set theory in Axiom Set Theory.
 if self.__n > 0:
 z = NaturalNumber(self.__n-1).set()
 return Set([z]).union(z)
 return Set([]) # empty set

n = NaturalNumber(-1)

n = NaturalNumber(3); n

n.set()

for n in [0..4]:
 print n, NaturalNumber(n).set()

Sage Worksheet: math 480 -- april 7, 2008 https://localhost:8000/home/admin/61/print

10 of 13 4/7/08 12:26 PM

Exception (click to the left for traceback):
...
ValueError: n must be positive

 3

 'we redefined set'

 1/3

Multiple Inheritance

In Python a class B inherits from another class A by simply
putting the A in parenthesis.
This makes all the methods of class A available for instances of
B.
However, if methods are defined in B with the same name as
methods in A,

class PositiveNatural(NaturalNumber):
 def __init__(self, n):
 if n <= 0:
 raise ValueError, "n must be positive"
 # Call the base class constructor
 NaturalNumber.__init__(self, n)
 def inverse(self): # a new function
 return 1/self.number()
 def set(self): # refine function from base class
 return 'we redefined set'

n = PositiveNatural(0)

n = PositiveNatural(3)
n

n.set()

n.inverse()

IMPORTANT: instances of derived class should always satisfy an
"is a" relationship, are you
are doing something seriously wrong.

Sage Worksheet: math 480 -- april 7, 2008 https://localhost:8000/home/admin/61/print

11 of 13 4/7/08 12:26 PM

 10

 1/10

 2 * 5

 X

We can also list several class to derive from.

class PositiveNatural(NaturalNumber, Rational):
 def __init__(self, n):
 if n <= 0:
 raise ValueError, "n must be positive"
 # Call the base class constructor
 NaturalNumber.__init__(self, n)
 Rational.__init__(self, n)
 def inverse(self):
 "Return the inverse of this positive natural number"
 return 1/self.number()

n = PositiveNatural(10); n

n.inverse()

n.factor()

Method resolution order.
Check to see whether the first (left-most) class defines the
function; if so, use it.
If not, try the next class.

class X:
 def foo(self):
 print "X"
class A(X):
 pass
class B:
 def foo(self):
 print "B"
class C(A,B):
 pass

c = C()
c.foo()

Sage Worksheet: math 480 -- april 7, 2008 https://localhost:8000/home/admin/61/print

12 of 13 4/7/08 12:26 PM

Object-Oriented Programming

Class corresponding to the mathematical objects you are working
with,
e.g., a Matrix class for matrices, a DifferentialEquations class
for
differential equations, etc.
This works very very nicely for expressing mathematics, and is
much different and conceptually superior to
what you get in Mathematica and Matlab.

Sage Worksheet: math 480 -- april 7, 2008 https://localhost:8000/home/admin/61/print

13 of 13 4/7/08 12:26 PM

