
Computing in Science & Engineering 	 This article has been peer-reviewed.� 31

S c i e n t i f i c
P y t h o n

Cython is a Python language extension that allows explicit type declarations and is
compiled directly to C. As such, it addresses Python’s large overhead for numerical loops
and the difficulty of efficiently using existing C and Fortran code, which Cython can
interact with natively.

Cython: The Best of Both Worlds

P ython’s success as a platform for sci-
entific computing to date is primarily
due to two factors. First, Python tends
to be readable and concise, leading

to a rapid development cycle. Second, Python
provides access to its internals from C via the
Python/C API. This makes it possible to inter-
face with existing C, C++, and Fortran code, as
well as to write critical sections in C when speed
is essential.

Although Python is fast enough for many tasks,
low-level computational code written in Python
tends to be slow, largely due to Python’s extremely
dynamic nature. In particular, low-level compu-
tational loops are simply infeasible. Although
NumPy eliminates the need for many such loops,1
there will always be computations that can be
expressed well only through looping constructs.
Cython aims to be a good companion to NumPy
in such cases.

Given the magnitude of existing, well-tested
code in Fortran and C, rewriting it in Python
would waste valuable resources. A big part of
Python’s role in science is its ability to couple
existing components instead of reinventing the
wheel. For example, the Python-specific SciPy
library contains more than 200,000 lines of C++,
60,000 lines of C, and 75,000 lines of Fortran,
compared to about 70,000 lines of Python code.
Wrapping existing code has traditionally been the
domain of Python experts because the Python/C
API has a high learning curve. Although you can
use such wrappers without ever knowing their in-
ternals, this approach draws a sharp line between
users (using Python) and developers (using C with
the Python/C API).

Cython solves both of these problems by com-
piling Python code (with some extensions) di-
rectly to C, which is then compiled and linked
against Python and ready to use from the inter-
preter. Because it uses C types, Cython makes
it possible to embed numerical loops, running at
C speed, directly in Python code. Cython also
significantly lowers the learning curve for call-
ing C, C++, and Fortran code from Python. Us-
ing Cython, any programmer with knowledge of
both Python and C, C++, or Fortran can easily
use them together.

Here, we present an overview of the Cython
language and compiler in several examples. We
then offer guidelines as to when Cython can pro-
vide significantly higher performance than pure
Python and NumPy code, and when NumPy is
a good choice in its own right. We further show
how the Cython compiler speeds up Python code,
and how you can use it to interact directly with C
code. Finally, we describe Fwrap, a close Cython

Stefan Behnel
Senacor Technologies AG
Robert Bradshaw and Craig Citro
Google
Lisandro Dalcin
National Council for Scientific and Technological Research, Argentina
Dag Sverre Seljebotn
University of Oslo
Kurt Smith
University of Wisconsin–Madison

1521-9615/11/$26.00 © 2011 IEEE

Copublished by the IEEE CS and the AIP

CISE-13-2-Behn.indd 31 09/02/11 2:57 PM

32� Computing in Science & Engineering

relative that automatically creates fast wrappers
around Fortran code to make it callable from C,
Cython, and Python.

Cython at a Glance
As the “Related Work: Beyond Pure Python”
sidebar describes, Cython is based on Greg Ew-
ing’s Pyrex (www.cosc.canterbury.ac.nz/greg.
ewing/python/Pyrex). Cython extends the Py-
thon language with explicit type declarations of
native C types. You can annotate attributes and
function calls to be resolved at compile-time (as
opposed to runtime). With the extra informa-
tion from the annotations, Cython can gener-
ate code that sidesteps most of the usual runtime
costs.

The generated code can take advantage of all
the optimizations the C/C++ compiler is aware
of without having to reimplement them as part
of Cython. By integrating C and the Python
runtime by automatically converting between
Python types and C types, Cython lets program-
mers switch between the two without having to
do anything by hand. The same applies when
calling into external libraries written in C, C++,
or Fortran. Accessing them is a native operation
in Cython code, so it’s trivial to call back and
forth between Python code, Cython code, and
native library code.

Of course, if we’re manually annotating every
variable, attribute, and return type with type
information, we might as well be writing
C/C++ directly. This is where Cython’s approach
to extending the Python language really shines.
Anything that Cython can’t determine statically
is compiled with the usual Python semantics,
meaning that you can selectively speed up only
those parts of your program that expose signifi-
cant execution times. The key thing to keep in
mind here is the Pareto Principle, also known
as the 80/20 rule—80 percent of the runtime is
spent in 20 percent of the source code. So, a bit
of annotation in the right spot can go a long way.

Cython thus has an extremely productive work-
flow: users can simply develop with Python, and
if they find that they’re spending significant time
paying Python overheads, they can compile parts
or all of their project with Cython, possibly pro-
viding some annotations to speed up the critical
parts of the code. For code that spends almost all
of its execution time in libraries doing things like
fast Fourier transforms (FFTs), matrix multiplica-
tion, or linear system solving, Cython fills the same
rapid development role as Python. However, as you
extend the code with new functionality and algo-
rithms, you can do this directly in Cython; by sim-
ply providing a little extra type information, you
can get all of C’s speed without all of the headaches.

Related Work:
Beyond Pure Python

The Cython-Pyrex fork has been one of the friendlier
forks in open source, and we’re thankful for Greg

Ewing’s cooperation. The two projects have somewhat
different goals. Pyrex (www.cosc.canterbury.ac.nz/greg.
ewing/python/Pyrex) aims to be a “smooth blend of
Python and C,” while Cython focuses more on preserving
Python semantics where it can. Cython also contains fea-
tures for numerical computation that aren’t found in Pyrex
(in particular, fast NumPy array access). Although there’s a
subset of syntax that works both in Pyrex and Cython, the
languages are diverging; typically, you must choose one
or the other. For example, the syntax for calling C++ code
is different in Pyrex and Cython because this feature was
added long after the fork.

Other projects—such as Weave and Instant—also make
it possible to include compiled code in Python.1 Another
common approach is to implement the core algorithm in
C, C++, or Fortran and then create wrappers for Python.
You can create such wrappers using Cython or more spe-
cialized tools, such as the simplified wrapper and interface

generator (SWIG), ctypes, Boost.Python, or Fortran to
Python (F2PY). Each tool has its own flavor. SWIG can au-
tomatically wrap C or C++ code, while Cython and ctypes
require redeclaration of the functions to wrap. SWIG and
Cython require a compilation stage; ctypes doesn’t. On
the other hand, if you get a declaration wrong using ctypes,
it can result in unpredictable program crashes. With Boost.
Python, you implement a Python module in C++, which
depending on whom you ask is either a great feature or
a great disadvantage. Finally, as we describe in the main
article, numexpr (http://code.google.com/p/numexpr) and
Theano (http://deeplearning.net/software/theano) are spe-
cialized tools for quickly evaluating numerical expressions.

Generally speaking, Cython can be viewed as a Swiss
army knife: it lacks the targeted functionality of more spe-
cialized tools, but its generality and versatility let you apply
it in almost any situation that requires going beyond pure
Python code.

Reference
1.	 I.M. Wilbers, H.P. Langtangen, and A. Oedegaard, “Using Cython

to Speed up Numerical Python Programs,” Proc. 7th Nat’l Conf.

Computational Mechanics (MekIT’09), Norwegian Univ. Science

and Technology, 2009, pp. 495–512.

CISE-13-2-Behn.indd 32 09/02/11 2:57 PM

March/April 2011 � 33

A Simple Cython Example
As an introductory example, consider naive nu-
merical integration of the Gamma function.
A fast C implementation of the Gamma func-
tion is available (in the GNU Scientific Library,
for example) and can easily be made available
to Cython through some C declarations in
Cython code:

cdef extern from "gsl/gsl_sf.h":

 double gsl_sf_gamma(double x)

 double GSL_SF_GAMMA_XMAX

where double refers to the double-precision
floating-point type in C. As Figure 1 shows, you
can then write a Cython function, callable from
Python, to approximate the definite integral.
This is pure Python code, except that C types
(int, double) are statically declared for some
variables using Cython-specific syntax. The cdef
keyword is a Cython extension to the language,
as is prepending the type in the argument list. In
effect, Cython provides a mixture of C and
Python programming.

The code example in Figure 1 is 30 times faster
than the corresponding Python loop, and much
more memory efficient (although not any faster)
than the corresponding NumPy expression
(see Figure 2).

As we describe later, Cython especially shines
in more complicated examples for which loops
are the most natural—or only viable—solution.

Writing Fast, High-Level Code
Python is a high-level programming language
that constrains itself to a comparatively small set
of simple yet powerful language constructs. To
map them to efficient C code, the Cython com-
piler applies tightly tailored and optimized imple-
mentations for different use patterns. It therefore
becomes possible to write simple code that exe-
cutes efficiently.

Given how much time most programs spend
in loops, an important target for optimizations is
Python’s for loop, which is really a for-each loop
that can run over any iterable object. For example,
the following code iterates over the lines of a file:

f = open('a_file.txt')

for line in f:

 handle(line)

f.close()

The Python language avoids special cases where
possible, so there’s no special syntax for a plain in-
teger for loop. However, there’s a common idiom
for it, such as an integer loop from 0 to 999:

for i in range(1000):

 do_something(i)

The Cython compiler recognizes this pattern
and transforms it into an efficient for loop in C if
the value range and the loop variable’s type allow
it. Similarly, when iterating over a sequence, it’s

Figure 2. The NumPy expression corresponding to the Cython expression in Figure 1. Although no faster
than NumPy, the Cython expression is much more memory efficient.

import numpy as np
y = scipy.special.gamma(np.linspace(a, b, n, endpoint=False))
y *= ((b - a) / n)
result = np.sum(y)

def integrate_gamma(double a, double b, int n=10000):
 if (min(a, b) <= 0 or max(a, b) >= GSL_SF_GAMMA_XMAX):
 raise ValueError('Limits out of range (0, %f)' % GSL_SF_GAMMA_XMAX)

 cdef int i
 cdef double dx = (b - a) / n, result = 0
 for i in range(n):
 result += gsl_sf_gamma(a + i * dx) * dx
 return result

Figure 1. A Cython function to approximate the definite integral. The function is callable from Python and,
with the exception of C types, is pure Python code.

CISE-13-2-Behn.indd 33 09/02/11 2:57 PM

34� Computing in Science & Engineering

sometimes necessary to know the current index
within the loop body. Python has a special func-
tion for this, called enumerate(), which wraps
the iterable in a counter:

f = open('a_file.txt')

for line_no, line in enumerate(f):

 # prepend line number to line

 print("%d: %s" % (line_no, line))

Cython knows this pattern, too, and reduces the
wrapping of the iterable to a simple counter vari-
able so that the loop can run over the iterable itself,
with no additional overhead. Cython’s for loop has
optimizations for the most important built-in Py-
thon container and string types and it can even it-
erate directly over low-level types, such as C arrays
of a known size or sliced pointers (see Figure 3).

Another example where high-level language id-
ioms lead to specialized low-level code is cascaded
if statements. Many languages provide a special
switch statement for testing integer(-like) values
against a set of different cases. A common Python
idiom uses the standard if statement:

if int_value == 1:

 func_A()

elif int_value in (2,3,7):

 func_B()

else:

 func_C()

This reads well, without needing a special syn-
tax. However, C compilers often fold switch
statements into more efficient code than sequen-
tial or nested if-else statements. If Cython
knows that the type of the int_value variable
is compatible with a C integer (such as an enum
value), it can extract an equivalent switch state-
ment directly from the previous code.

Several of these patterns have been implemented
in the Cython compiler, and new optimizations

are easy to add. It therefore becomes reasonable
for code writers to

•	 stick to the Python language’s simple and read-
able idioms;

•	 rely on the compiler to transform them into fast,
well-specialized C language constructs; and

•	 take a closer look only at any code sections that
prove to be performance critical in benchmarks.

Apart from its powerful control flow constructs,
a high-level language feature that makes Python so
productive is its support for object-oriented pro-
gramming. True to the rest of the language, Python
classes are highly dynamic: methods and attributes
can be added, inspected, and modified at runtime,
and new types can be dynamically created on the
fly. Of course, this flexibility comes with a per-
formance cost. Cython lets you statically compile
classes into C-level struct layouts (with virtual
function tables) such that they integrate seamlessly
into the Python class hierarchy without any of the
Python overhead. Although scientific data often
fits nicely into arrays, that’s not always the case,
and Cython’s support for compiled classes lets you
efficiently create and manipulate more complicated
data structures, including trees, graphs, maps, and
other heterogeneous, hierarchal objects.

Typical Use Cases
Developers have successfully used Cython in
many situations—from the half-million lines of
Cython code in Sage (www.sagemath.org), to pro-
viding Python-friendly wrappers to C libraries, to
creating small, personal projects. The following
example use cases demonstrate Cython’s value.

Sparse Matrices
SciPy and other libraries provide the basic high-
level operations for working with sparse matrices.
However, constructing sparse matrices often fol-
lows complicated rules for which elements are non-
zero. Such code can rarely be expressed in terms
of NumPy expressions—the most naive method
would need temporary arrays of the same size as
the corresponding dense matrix, thus defeating the
purpose! As Figure 4 shows, Cython is ideal for
this, however, because we can easily and quickly
populate sparse matrices element by element.

Data Transformation and Reduction
Consider computing a simple expression for a
large number of different input values, such as

v = np.sqrt(x**2 + y**2 + z**2)

Figure 3. An example of Cython’s for loop optimizations. In addition
to optimizing for the most important built-in Python container and
string types, Cython can iterate directly over low-level types, such as
C arrays of a known size or sliced pointers.

cdef char* c_string = get_pointer_to_chars(10)
cdef char charval

check if chars at offsets 3..9 are any of
'abcABC'
for char_val in c_string[3:10]:
 print(char_val in b'abcABC')

CISE-13-2-Behn.indd 34 09/02/11 2:57 PM

March/April 2011 � 35

where the variables are arrays for three vectors x,
y, and z. For such expressions, you usually don’t
need to use Cython because the NumPy opera-
tions tend to be fast enough.

The exceptions are for either very small or
very large amounts of data. For small data sets
that are evaluated numerous times, the Python
overhead of the NumPy expression will domi-
nate, and making a loop in Cython removes this
overhead. For large amounts of data, NumPy has
two problems: it requires large amounts of tem-
porary memory, and it repeatedly moves tem-
porary results over the memory bus. In most
scientific settings, the memory bus can eas-
ily become the main bottleneck, not the CPU.2
In the last example, NumPy will first square x
in a temporary buffer, then square y in another
temporary buffer, then add them together us-
ing a third temporary buffer, and so on. As
Figure 5 shows, in Cython, it’s possible to manu-
ally write a loop running at native speed that
avoids these problems because it doesn’t require a
temporary buffer. The speedup, for large arrays,
is on the order of a factor of 10.

If you do many transformations like this, you
should also evaluate numexpr (http://code.google.
com/p/numexpr) and Theano (http://deeplearning.
net/software/theano), which are dedicated to such
tasks. Theano, for example, can reformulate the
expression for optimal numerical stability and
compute it on a highly parallel graphics process-
ing unit (GPU).3

Optimization and Equation Solving
For numerical optimization or equation solv-
ing, the algorithm in question must be handed a

function (a callback) that evaluates the function.
The algorithm then relies on making new steps
based on previously computed function values;
the process is thus inherently sequential.

Depending on the problem’s nature and size,
you can use different optimization levels. For me-
dium to large problems, the standard scientific
Python routines integrate well with Cython. You
simply declare types within the callback func-
tion and hand the callback to the solver just as
you would with a pure Python function. Given
the frequency with which this function might be
called, the act of typing the callback function’s
variables combined with the Cython-implemented
Python functions’ reduced call overhead can have
a noticeable impact on performance. How much
impact depends heavily on the problem in ques-
tion; as a rough indicator, we’ve noted a 40 times
speedup when using this method on an ordinary
differential equation in 12 variables.

For computationally simple problems in only a
few variables, evaluating the function can be such

Figure 4. Constructing sparse matrices. Unlike SciPy and other libraries, which can complicate this process,
Cython lets users easily and quickly populate sparse matrices element by element.

import numpy as np
cimport numpy as np
...
cdef np.ndarray[np.intc_t] rows = np.zeros(nnz, dtype=np.intc)
cdef np.ndarray[np.intc_t] cols = np.zeros(nnz, dtype=np.intc)
cdef np.ndarray[double] values = np.zeros(nnz, dtype=np.double)
cdef int idx = 0

for idx in range(0, nnz):
 # Compute next non-zero matrix element
 ...
 rows[idx] = row; cols[idx] = col; values[idx] = value

Finally, we construct a regular SciPy sparse matrix:
return scipy.sparse.coo_matrix((values, (rows, cols)), shape=(N,N))

Figure 5. Manually writing a loop that runs at native speed. Because
this loop doesn’t require a temporary buffer, it offers considerable
speedup for large arrays.

cimport libc
...
cdef np.ndarray[double] x = ..., y = ...,
 z = ...
cdef np.ndarray[double] v = np.zeros_
 like(x) ...
for i in range(x.shape[0]):
 v[i] = libc.sqrt(x[i]**2 + y[i]**2 +
 z[i]**2)

CISE-13-2-Behn.indd 35 09/02/11 2:57 PM

36� Computing in Science & Engineering

a quick operation that the Python function call’s
overhead for each step becomes relevant. In these
cases, you might want to explore calling existing
C or Fortran code directly from Cython. Some
libraries have ready-made Cython wrappers: for
example, Sage has Cython wrappers around the
ordinary differential equation solvers in the GNU
Scientific Library. In some cases, you might opt
for implementing the algorithm directly in
Cython to avoid any callback whatsoever—using
Newton’s method on equations in a single vari-
able, for example.

Nonrectangular Arrays and Data Repacking
Cython is especially well suited to those situations
in which data doesn’t fit naturally in rectangu-
lar arrays. One such example arises in cosmol-
ogy. Satellite experiments, such as the Wilkinson
microwave anisotropy probe, have produced
high-resolution images of the cosmic microwave
background, a primary source of information

about the early universe. The resulting images are
spherical because they contain values for all direc-
tions of the sky.

The spherical harmonic transform of these
maps, a Fourier transform on the sphere, is es-
pecially important. It has complex coefficients
alm, where the indices run over 0 ≤ l ≤ lmax, -l, ≤
m ≤ l. An average of the entire map is stored in
a0,0, followed by three elements to describe the
dipole component, a1,-1, a1,0, a1,1, and so on. Data
such as this can be stored in a 1D array and ele-
ments looked up at position l 2 + l + m.

It’s possible, but not trivial, to operate on such
data using NumPy whole-array operations. The
problem is that NumPy functions, such as finding
the variance, are primarily geared toward rectan-
gular arrays. If the data was rectangular, we could
estimate the variance per l, averaging over m, by
calling np.var(data, axis=1). This doesn’t
work for nonrectangular data. Although there
are workarounds, such as the reduceat method

and masked arrays, we’ve found it much more
straightforward to write the obvious loops over l
and m using Cython. In our case (lmax = 1,500),
this is more than 1,000 times faster than the same
loop written in Python. Using NumPy, we could
loop over l and repeatedly call np.var for data
subslices, but the Cython loops are still faster by
a factor of 27. (Incidentally, the variance per l, or
power spectrum, is the primary quantity of inter-
est to observational cosmologists.)

The spherical harmonic transform we men-
tioned earlier is computed using the Fortran
Hierarchical Equal Area isoLatitude Pixelization
Library (HEALPix, http://healpix.jpl.nasa.gov),
which can be called readily from Cython with the
help of Fwrap. However, HEALPix spits out the
result as a 2D array, with roughly half of the ele-
ments unoccupied. The waste of storage aside, 2D
arrays are often inconvenient—with 1D arrays,
we can treat each set of coefficients as a vector and
perform linear algebra, estimate covariance ma-
trices, and so on in the usual way. Again, it’s pos-
sible to quickly reorder the data the way we want
it with a Cython loop. With all the existing code
out there wanting data in slightly different orders
and formats, for loops aren’t about to disappear.

Fwrap
Whereas C and C++ integrate closely with
Cython, Fortran wrappers in Cython are gener-
ated with Fwrap (http://fwrap.sourceforge.net),
a separate—and separately distributed—utility.
The Fwrap tool automates wrapping Fortran
source in C, Cython, and Python, which lets For-
tran code benefit from Python’s dynamism and
flexibility. Developers can seamlessly integrate
Fwrapped code into C, Cython, or Python proj-
ects. The utility transparently supports most of
Fortran’s 90/95/2003 features and handles nearly
all Fortran 77 sources. Although Fwrap doesn’t
currently support derived types or function call-
backs, such support is planned for an upcoming
release.

Thanks to the Fortran 2003 standard’s C in-
teroperability features—which are supported in
recent versions of all widely used Fortran 90/95
compilers—Fwrap generates wrappers that are
portable across platforms and compilers. Fwrap is
intended to be as friendly as possible, and it auto-
matically handles Fortran parsing and generation.
It also generates a project build script that will
portably build a Python extension module from
the wrapper files.

Fwrap is similar in intent to other Fortran-
Python tools, including F2PY, PyFort, and

It’s possible to quickly reorder the data the way

we want it with a Cython loop. With all the

existing code out there wanting data in slightly

different orders and formats, for loops aren’t

about to disappear.

CISE-13-2-Behn.indd 36 09/02/11 2:57 PM

March/April 2011 � 37

Forthon. F2PY is distributed with NumPy and
is a capable tool for wrapping Fortran 77 codes.
Fwrap’s approach differs in that it leverages
Cython to create Python bindings. Manual tun-
ing of the wrapper can be easily accomplished by
simply modifying the generated Cython code,
rather than using a restricted domain-specific lan-
guage. Another benefit is reduced overhead when
calling Fortran code from Python.

Consider a real-world example: wrapping a sub-
routine from netlib’s Lapack Fortran 90 source.
We’ll use the Fortran 90 subroutine interface for
dgesdd, which is used to compute the singular
value decomposition arrays U, S, and VT of a real
array A, such that A = U * DIAG(S) * VT. This
routine is typical of Fortran 90 source code; it
has scalar and array arguments with different in-
tents and different data types. To simplify it here,
we’ve augmented the argument declarations with
INTENT attributes and removed extraneous work
array arguments (see Figure 6).

When invoked on this Fortran code, Fwrap
parses the code and makes it available to C,
Cython, and Python. If desired, we can generate
a deployable package for use on computers that
don’t have Fwrap or Cython installed. To use the
wrapped code from Python, we must first set up
the subroutine arguments—in particular, the a
array argument. To do this, we set the array di-
mensions and then create the array, filling it with
random values. To simplify matters, we set all ar-
ray dimensions equal to m (see Figure 7).

The asfortranarray() function is impor-
tant; it ensures that the array a is laid out in
column-major ordering, or Fortran ordering.
This ensures that no copying is required when
passing arrays to Fortran subroutines. Any sub-
routine argument that is an INTENT(OUT) array
must be passed to the subroutine. The subroutine
will modify the array in place; no copies are made

for arrays of numeric types (this isn’t required for
scalar INTENT(OUT) arguments, such as the INFO
argument). As Figure 8 shows, we create three
empty arrays of appropriate dimensions. The
order='F' keyword argument serves the same
purpose as the asfortranarray() function.

Next, we import dgesdd from it and call it
from Python (see Figure 9). The return value is
a tuple that contains all arguments that were de-
clared intent out, inout, or no intent spec. The
a argument (intent inout) is in both the argu-
ment list and the return tuple, but no copy has
been made.

Figure 6. Augmenting the Fortran 90 subroutine interface for dgesdd. To do this, we augment argument
declarations with INTENT attributes and remove extraneous work array arguments.

SUBROUTINE DGESDD(JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, INFO)
! . . Scalar Arguments . .
 CHARACTER, INTENT(IN) :: JOBZ
 INTEGER, INTENT(OUT) :: INFO
 INTEGER, INTENT(IN) :: LDA, LDU, LDVT, M, N
! . . Array Arguments . .
 DOUBLE PRECISION, INTENT(INOUT) :: A(LDA, *)
 DOUBLE PRECISION, INTENT(OUT) :: S(*), U(LDU, *), VT(LDVT, *)

! DGESDD subroutine body END SUBROUTINE DGESDD

Figure 7. Using wrapped Python code. We first set up subroutine
arguments, setting the array dimensions and creating an array filled
with random values. To simplify matters, we set all array dimensions
equal to m.

>>> import numpy as np
>>> from numpy.random import rand

>>> m = 10

>>> rand_array = rand(m, m)
>>> a = np.asfortranarray(rand_array,
 dtype=np.double)

>>> s = np.empty(m, dtype=np.double,
 order='F')
>>> u = np.empty((m, m), dtype=np.double,
 order='F')
>>> vt = np.empty((m, m), dtype=np.double,
 order='F')

Figure 8. Three empty arrays. The order='F' keyword argument
serves the same purpose as the asfortranarray() function.

CISE-13-2-Behn.indd 37 09/02/11 2:57 PM

38� Computing in Science & Engineering

We now verify that the result is correct.
As Figure 10 shows, to do this, we create a_
computed, which is equivalent to the matrix
product u * s_diag * vt, and we verify that a
and a_computed are equal to within machine
precision. When calling the routine from within
Cython code, the invocation is identical, and the
arguments can be typed to reduce function call
overhead.

Fwrap handles any kind of Fortran array decla-
ration, whether assumed-size (as in our example),
assumed-shape, or explicit shape. Options exist
for hiding redundant arguments (such as the array
dimensions LDA, LDU, and LDVT) and are covered
in Fwrap’s documentation.

Our example here covers the basics of what
Fwrap can do. For more information, examples,
downloads, and help using Fwrap, see http://
fwrap.sourceforge.net. You can reach other users
and the Fwrap developers on the Fwrap users
mailing list, http://groups.google.com/group/
fwrap-users.

Limitations
Compared to writing code in pure Python, Cyth-
on’s primary disadvantages are compilation time
and the need for a separate build phase. Most proj-
ects using Cython are therefore written in a mix
of Python and Cython because Cython sources
don’t need to be recompiled when Python sources
change. Cython can still be used to compile some
Python modules for performance reasons. There’s
also an experimental “pure” mode in which deco-
rators indicate static type declarations, which

are valid Python and ignored by the interpreter
at runtime, but are used by Cython when com-
piled. This combines the advantage of a fast edit-
run cycle with the final product’s high runtime
performance. There’s also the question of code
distribution. Rather than requiring Cython as a
dependency, many projects ship the generated C
files that compile against Python 2.3 to 3.2 with-
out any modifications as part of the distutils setup
phase.

Compared to compiled languages such as For-
tran and C, Cython’s primary limitation is the
limited support for shared memory parallelism.
Python is inherently limited in its multithread-
ing capabilities because it uses a global interpreter
lock (GIL). Cython code can declare sections as
containing only C code (using a nogil direc-
tive), which are then able to run in parallel. How-
ever, this can quickly become tedious. Currently,
there’s also no support for OpenMP program-
ming in Cython. On the other hand, message
passing parallelism using multiple processes—
such as through MPI—is well supported.

Compared to C++, a major Cython weakness
is its lack of built-in template support, which can
help write code that works efficiently with many
different data types. In Cython, you must either
repeat code for each data type or use an external
templating system (as with Fortran codes). Many
template engines exist for Python, and most of
them should work well for generating Cython
code.

U sing a language that can be either
dynamic or static requires some ex-
perience. Cython is clearly useful
when talking to external libraries,

but when is it best to use Cython code in place
of normal Python code? The obvious factor to
consider is the code’s purpose—is it a single ex-
periment, for which the Cython compilation time
might overshadow the pure Python runtime? Or
is it a core library function, where every ounce of
speed matters?

>>> from fw_dgesdd import dgesdd

>>> jobz = 'A' # specify that we want all the output vectors
>>> (a, s, u, vt, info) = dgesdd(jobz, m, n, a, m, s, u, m, vt, m)

Figure 9. Importing dgesdd. The return value is a tuple that contains all arguments that were declared
intent out, inout, or no intent spec.

>>> s_diag = np.diag(s)
>>> a_computed = np.dot(u, np.dot(s_diag, vt))
>>> np.allclose(a, a_computed)
True

Figure 10. Verifying the result. a_computed is equivalent to the
matrix product u * s_diag * vt, and we verify that a and a_
computed are equal to within machine precision.

CISE-13-2-Behn.indd 38 09/02/11 2:57 PM

March/April 2011 � 39

It’s possible to paint some broad strokes when
it comes to the type of computation considered.
Are you spending the bulk of your time doing
low-level number crunching in your code, or is
the heavy lifting done through calls to external li-
braries? How easy is it to express the computation
in terms of NumPy operations? For sequential al-
gorithms such as equation solving and statistical
simulations, it’s indeed impossible to do without
a loop of some kind. Pure Python loops can be
very slow, but the impact varies depending on the
use case.

If you think Cython might help with your proj-
ect, your next stop is the Cython tutorial.4 Opti-
mization strategies and computation benchmarks
are also available.5 As always, the online documen-
tation at http://docs.cython.org provides the most
up-to-date information. Finally, if you’re ever
stuck, or just wondering if Cython can solve your
particular problem, Cython has an active and
friendly mailing list at http://groups.google.com/
group/cython-users.�

Acknowledgments
The US National Science Foundation partially sup-
ported the work of Robert Bradshaw (grant DMS
61-5655) and Craig Citro (grant DMS 0713225).

References
1.	 S. van der Walt, S.C. Colbert, and G. Varoquaux,

“The NumPy Array: A Structure for Efficient

Numerical Computation,” Computing in Science &

Eng., vol. 13, no. 2, 2011, pp. 22–30.

2.	 F. Alted, “Why Modern CPUs are Starving and What

Can Be Done About It,” Computing in Science & Eng.,

vol. 12, no. 2, 2010, pp. 68–71.

3.	 J. Bergstra et al., “Optimized Symbolic Expressions

and GPU Metaprogramming with Theano,” Proc.

9th Python in Science Conf., SciPy Community, 2010;

www.iro.umontreal.ca/~lisa/publications2/index.

php/publications/show/461.

4.	 S. Behnel, R.W. Bradshaw, and D.S. Seljebotn,

“Cython Tutorial,” Proc. 8th Python in Science Conf.,

SciPy Community, 2009, http://conference.scipy.org/

proceedings/SciPy2009/paper.1.

5.	 D.S. Seljebotn, “Fast Numerical Computations with

Cython,” Proc. 8th Python in Science Conf., SciPy

Community, 2009; http://conference.scipy.org/

proceedings/SciPy2009/paper.2.

Stefan Behnel is a senior software developer at Senacor
Technologies AG in Germany and a freelance develop-
er and consultant. His research interests include pro-
gramming languages and software tooling for server
architectures and high-performance computing.

He regularly contributes to open source projects and
is a core developer of two major projects in the Py-
thon community, including the Cython compiler. Beh-
nel has a doctoral degree in computer science from
the Darmstadt University of Technology. Contact him
at consulting@behnel.de.

Robert Bradshaw is a software engineer at Google.
His research interests include mathematical research
(especially questions related to the Birch and Swinnerton-
Dyer conjecture), programming language design, and
open source software. Bradshaw has a PhD in math-
ematics from the University of Washington. Contact
him at robertwb@gmail.com.

Craig Citro is a software engineer at Google. His
research interests include computational math-
ematics (especially number theory), programming
languages, and functional programming. Citro
has a PhD in mathematics from the University of
California, Los Angeles. Contact him at craigcitro@
gmail.com.

Lisandro D. Dalcin is an assistant researcher at the
National Council for Scientific and Technological
Research of Argentina. His research interests include
scientific computing in distributed memory architec-
tures, medium- to large-scale finite element simula-
tion, and computational fluid mechanics. Dalcin
has a PhD in engineering from the National Univer-
sity of Littoral, Santa Fe, Argentina. Contact him at
dalcini@gmail.com.

Dag Sverre Seljebotn is a doctoral student in the In-
stitute of Theoretical Astrophysics at the University of
Oslo, Norway, where he studies computational cos-
mology, in particular cosmic microwave background
analysis. Seljebotn has a MSc in computational sci-
ence from the University of Oslo, Norway. Contact
him at dagseljebotn@gmail.com.

Kurt Smith is a doctoral student in the Department
of Physics at the University of Wisconsin Madison,
where he studies small-scale plasma turbulence.
His research interests include numerical simula-
tion, computational fluid dynamics, and interlan-
guage programming. Smith has a BS in physics and
applied mathematics from the University of Dal-
las. He is a member of the American Physical
Society and the ACM. Contact him at kwsmith1@
wisc.edu.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

CISE-13-2-Behn.indd 39 09/02/11 2:57 PM

