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S c i e n t i f i c 
P y t h o n

Cython is a Python language extension that allows explicit type declarations and is 
compiled directly to C. As such, it addresses Python’s large overhead for numerical loops 
and the difficulty of efficiently using existing C and Fortran code, which Cython can  
interact with natively.

Cython: The Best of Both Worlds

P ython’s success as a platform for sci-
entific computing to date is primarily 
due to two factors. First, Python tends 
to be readable and concise, leading 

to a rapid development cycle. Second, Python 
provides access to its internals from C via the 
Python/C API. This makes it possible to inter-
face with existing C, C++, and Fortran code, as 
well as to write critical sections in C when speed 
is essential.

Although Python is fast enough for many tasks, 
low-level computational code written in Python 
tends to be slow, largely due to Python’s extremely 
dynamic nature. In particular, low-level compu-
tational loops are simply infeasible. Although 
NumPy eliminates the need for many such loops,1 
there will always be computations that can be 
expressed well only through looping constructs. 
Cython aims to be a good companion to NumPy 
in such cases.

Given the magnitude of existing, well-tested 
code in Fortran and C, rewriting it in Python 
would waste valuable resources. A big part of  
Python’s role in science is its ability to couple 
existing components instead of reinventing the 
wheel. For example, the Python-specific SciPy 
library contains more than 200,000 lines of C++, 
60,000 lines of C, and 75,000 lines of Fortran, 
compared to about 70,000 lines of Python code. 
Wrapping existing code has traditionally been the 
domain of Python experts because the Python/C 
API has a high learning curve. Although you can 
use such wrappers without ever knowing their in-
ternals, this approach draws a sharp line between 
users (using Python) and developers (using C with 
the Python/C API).

Cython solves both of these problems by com-
piling Python code (with some extensions) di-
rectly to C, which is then compiled and linked 
against Python and ready to use from the inter-
preter. Because it uses C types, Cython makes 
it possible to embed numerical loops, running at 
C speed, directly in Python code. Cython also 
significantly lowers the learning curve for call-
ing C, C++, and Fortran code from Python. Us-
ing Cython, any programmer with knowledge of 
both Python and C, C++, or Fortran can easily 
use them together.

Here, we present an overview of the Cython 
language and compiler in several examples. We 
then offer guidelines as to when Cython can pro-
vide significantly higher performance than pure 
Python and NumPy code, and when NumPy is 
a good choice in its own right. We further show 
how the Cython compiler speeds up Python code, 
and how you can use it to interact directly with C 
code. Finally, we describe Fwrap, a close Cython 
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relative that automatically creates fast wrappers 
around Fortran code to make it callable from C, 
Cython, and Python.

Cython at a Glance
As the “Related Work: Beyond Pure Python” 
sidebar describes, Cython is based on Greg Ew-
ing’s Pyrex (www.cosc.canterbury.ac.nz/greg.
ewing/python/Pyrex). Cython extends the Py-
thon language with explicit type declarations of 
native C types. You can annotate attributes and 
function calls to be resolved at compile-time (as 
opposed to runtime). With the extra informa-
tion from the annotations, Cython can gener-
ate code that sidesteps most of the usual runtime 
costs.

The generated code can take advantage of all 
the optimizations the C/C++ compiler is aware 
of without having to reimplement them as part 
of Cython. By integrating C and the Python 
runtime by automatically converting between 
Python types and C types, Cython lets program-
mers switch between the two without having to 
do anything by hand. The same applies when 
calling into external libraries written in C, C++, 
or Fortran. Accessing them is a native operation 
in Cython code, so it’s trivial to call back and 
forth between Python code, Cython code, and 
native library code. 

Of course, if we’re manually annotating every 
variable, attribute, and return type with type  
information, we might as well be writing  
C/C++ directly. This is where Cython’s approach 
to extending the Python language really shines. 
Anything that Cython can’t determine statically 
is compiled with the usual Python semantics, 
meaning that you can selectively speed up only 
those parts of your program that expose signifi-
cant execution times. The key thing to keep in 
mind here is the Pareto Principle, also known 
as the 80/20 rule—80 percent of the runtime is 
spent in 20 percent of the source code. So, a bit 
of annotation in the right spot can go a long way. 

Cython thus has an extremely productive work-
flow: users can simply develop with Python, and 
if they find that they’re spending significant time 
paying Python overheads, they can compile parts 
or all of their project with Cython, possibly pro-
viding some annotations to speed up the critical 
parts of the code. For code that spends almost all 
of its execution time in libraries doing things like 
fast Fourier transforms (FFTs), matrix multiplica-
tion, or linear system solving, Cython fills the same 
rapid development role as Python. However, as you 
extend the code with new functionality and algo-
rithms, you can do this directly in Cython; by sim-
ply providing a little extra type information, you 
can get all of C’s speed without all of the headaches.

Related Work:  
Beyond Pure Python

The Cython-Pyrex fork has been one of the friendlier 
forks in open source, and we’re thankful for Greg  

Ewing’s cooperation. The two projects have somewhat 
different goals. Pyrex (www.cosc.canterbury.ac.nz/greg.
ewing/python/Pyrex) aims to be a “smooth blend of 
Python and C,” while Cython focuses more on preserving 
Python semantics where it can. Cython also contains fea-
tures for numerical computation that aren’t found in Pyrex 
(in particular, fast NumPy array access). Although there’s a 
subset of syntax that works both in Pyrex and Cython, the 
languages are diverging; typically, you must choose one 
or the other. For example, the syntax for calling C++ code 
is different in Pyrex and Cython because this feature was 
added long after the fork.

Other projects—such as Weave and Instant—also make 
it possible to include compiled code in Python.1 Another 
common approach is to implement the core algorithm in 
C, C++, or Fortran and then create wrappers for Python. 
You can create such wrappers using Cython or more spe-
cialized tools, such as the simplified wrapper and interface 

generator (SWIG), ctypes, Boost.Python, or Fortran to 
Python (F2PY). Each tool has its own flavor. SWIG can au-
tomatically wrap C or C++ code, while Cython and ctypes 
require redeclaration of the functions to wrap. SWIG and 
Cython require a compilation stage; ctypes doesn’t. On  
the other hand, if you get a declaration wrong using ctypes, 
it can result in unpredictable program crashes. With Boost.
Python, you implement a Python module in C++, which 
depending on whom you ask is either a great feature or  
a great disadvantage. Finally, as we describe in the main  
article, numexpr (http://code.google.com/p/numexpr) and 
Theano (http://deeplearning.net/software/theano) are spe-
cialized tools for quickly evaluating numerical expressions.

Generally speaking, Cython can be viewed as a Swiss 
army knife: it lacks the targeted functionality of more spe-
cialized tools, but its generality and versatility let you apply 
it in almost any situation that requires going beyond pure 
Python code.

Reference
1.	 I.M. Wilbers, H.P. Langtangen, and A. Oedegaard, “Using Cython 

to Speed up Numerical Python Programs,” Proc. 7th Nat’l Conf. 

Computational Mechanics (MekIT’09), Norwegian Univ. Science 

and Technology, 2009, pp. 495–512.
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A Simple Cython Example
As an introductory example, consider naive nu-
merical integration of the Gamma function. 
A fast C implementation of the Gamma func-
tion is available (in the GNU Scientific Library, 
for example) and can easily be made available  
to Cython through some C declarations in  
Cython code:

cdef extern from "gsl/gsl_sf.h":

      double gsl_sf_gamma(double x)

      double GSL_SF_GAMMA_XMAX

where double refers to the double-precision 
floating-point type in C. As Figure 1 shows, you 
can then write a Cython function, callable from 
Python, to approximate the definite integral. 
This is pure Python code, except that C types 
(int, double) are statically declared for some 
variables using Cython-specific syntax. The cdef 
keyword is a Cython extension to the language, 
as is prepending the type in the argument list. In  
effect, Cython provides a mixture of C and  
Python programming.

The code example in Figure 1 is 30 times faster 
than the corresponding Python loop, and much 
more memory efficient (although not any faster) 
than the corresponding NumPy expression  
(see Figure 2).

As we describe later, Cython especially shines 
in more complicated examples for which loops 
are the most natural—or only viable—solution.

Writing Fast, High-Level Code
Python is a high-level programming language 
that constrains itself to a comparatively small set 
of simple yet powerful language constructs. To 
map them to efficient C code, the Cython com-
piler applies tightly tailored and optimized imple-
mentations for different use patterns. It therefore 
becomes possible to write simple code that exe-
cutes efficiently.

Given how much time most programs spend 
in loops, an important target for optimizations is  
Python’s for loop, which is really a for-each loop 
that can run over any iterable object. For example, 
the following code iterates over the lines of a file:

f = open('a_file.txt')

for line in f:

     handle(line)

f.close() 

The Python language avoids special cases where 
possible, so there’s no special syntax for a plain in-
teger for loop. However, there’s a common idiom 
for it, such as an integer loop from 0 to 999:

for i in range(1000): 

     do_something(i)

The Cython compiler recognizes this pattern 
and transforms it into an efficient for loop in C if 
the value range and the loop variable’s type allow 
it. Similarly, when iterating over a sequence, it’s 

Figure 2. The NumPy expression corresponding to the Cython expression in Figure 1. Although no faster 
than NumPy, the Cython expression is much more memory efficient.

import numpy as np
y = scipy.special.gamma(np.linspace(a, b, n, endpoint=False))
y *= ((b - a) / n) 
result = np.sum(y)

def integrate_gamma(double a, double b, int n=10000):
  if (min(a, b) <= 0 or max(a, b) >= GSL_SF_GAMMA_XMAX):
    raise ValueError('Limits out of range (0, %f)' % GSL_SF_GAMMA_XMAX)

  cdef int i
  cdef double dx = (b - a) / n, result = 0
  for i in range(n):
      result += gsl_sf_gamma(a + i * dx) * dx
  return result

Figure 1. A Cython function to approximate the definite integral. The function is callable from Python and, 
with the exception of C types, is pure Python code.
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sometimes necessary to know the current index 
within the loop body. Python has a special func-
tion for this, called enumerate(), which wraps 
the iterable in a counter:

f = open('a_file.txt')

for line_no, line in enumerate(f):

     # prepend line number to line

     print("%d: %s" % (line_no, line))

Cython knows this pattern, too, and reduces the 
wrapping of the iterable to a simple counter vari-
able so that the loop can run over the iterable itself, 
with no additional overhead. Cython’s for loop has 
optimizations for the most important built-in Py-
thon container and string types and it can even it-
erate directly over low-level types, such as C arrays 
of a known size or sliced pointers (see Figure 3).

Another example where high-level language id-
ioms lead to specialized low-level code is cascaded 
if statements. Many languages provide a special 
switch statement for testing integer(-like) values 
against a set of different cases. A common Python 
idiom uses the standard if statement:

if int_value == 1: 

     func_A()

elif int_value in (2,3,7):

     func_B()

else:

     func_C()

This reads well, without needing a special syn-
tax. However, C compilers often fold switch 
statements into more efficient code than sequen-
tial or nested if-else statements. If Cython 
knows that the type of the int_value variable 
is compatible with a C integer (such as an enum 
value), it can extract an equivalent switch state-
ment directly from the previous code.

Several of these patterns have been implemented 
in the Cython compiler, and new optimizations 

are easy to add. It therefore becomes reasonable 
for code writers to

•	 stick to the Python language’s simple and read-
able idioms;

•	 rely on the compiler to transform them into fast, 
well-specialized C language constructs; and

•	 take a closer look only at any code sections that 
prove to be performance critical in benchmarks.

Apart from its powerful control flow constructs, 
a high-level language feature that makes Python so 
productive is its support for object-oriented pro-
gramming. True to the rest of the language, Python 
classes are highly dynamic: methods and attributes 
can be added, inspected, and modified at runtime, 
and new types can be dynamically created on the 
fly. Of course, this flexibility comes with a per-
formance cost. Cython lets you statically compile 
classes into C-level struct layouts (with virtual 
function tables) such that they integrate seamlessly 
into the Python class hierarchy without any of the 
Python overhead. Although scientific data often 
fits nicely into arrays, that’s not always the case, 
and Cython’s support for compiled classes lets you 
efficiently create and manipulate more complicated 
data structures, including trees, graphs, maps, and 
other heterogeneous, hierarchal objects.

Typical Use Cases
Developers have successfully used Cython in 
many situations—from the half-million lines of 
Cython code in Sage (www.sagemath.org), to pro-
viding Python-friendly wrappers to C libraries, to 
creating small, personal projects. The following 
example use cases demonstrate Cython’s value.

Sparse Matrices
SciPy and other libraries provide the basic high-
level operations for working with sparse matrices. 
However, constructing sparse matrices often fol-
lows complicated rules for which elements are non-
zero. Such code can rarely be expressed in terms 
of NumPy expressions—the most naive method 
would need temporary arrays of the same size as 
the corresponding dense matrix, thus defeating the 
purpose! As Figure 4 shows, Cython is ideal for 
this, however, because we can easily and quickly 
populate sparse matrices element by element.

Data Transformation and Reduction
Consider computing a simple expression for a 
large number of different input values, such as

v = np.sqrt(x**2 + y**2 + z**2)

Figure 3. An example of Cython’s for loop optimizations. In addition 
to optimizing for the most important built-in Python container and 
string types, Cython can iterate directly over low-level types, such as  
C arrays of a known size or sliced pointers.

cdef char* c_string = get_pointer_to_chars(10)
cdef char charval

# check if chars at offsets 3..9 are any of
'abcABC'
for char_val in c_string[3:10]:
   print( char_val in b'abcABC' )
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where the variables are arrays for three vectors x, 
y, and z. For such expressions, you usually don’t 
need to use Cython because the NumPy opera-
tions tend to be fast enough.

The exceptions are for either very small or 
very large amounts of data. For small data sets 
that are evaluated numerous times, the Python 
overhead of the NumPy expression will domi-
nate, and making a loop in Cython removes this 
overhead. For large amounts of data, NumPy has 
two problems: it requires large amounts of tem-
porary memory, and it repeatedly moves tem-
porary results over the memory bus. In most 
scientific settings, the memory bus can eas-
ily become the main bottleneck, not the CPU.2 
In the last example, NumPy will first square x 
in a temporary buffer, then square y in another 
temporary buffer, then add them together us-
ing a third temporary buffer, and so on. As  
Figure 5 shows, in Cython, it’s possible to manu-
ally write a loop running at native speed that 
avoids these problems because it doesn’t require a  
temporary buffer. The speedup, for large arrays, 
is on the order of a factor of 10.

If you do many transformations like this, you 
should also evaluate numexpr (http://code.google. 
com/p/numexpr) and Theano (http://deeplearning. 
net/software/theano), which are dedicated to such 
tasks. Theano, for example, can reformulate the 
expression for optimal numerical stability and 
compute it on a highly parallel graphics process-
ing unit (GPU).3

Optimization and Equation Solving
For numerical optimization or equation solv-
ing, the algorithm in question must be handed a 

function (a callback) that evaluates the function. 
The algorithm then relies on making new steps 
based on previously computed function values; 
the process is thus inherently sequential.

Depending on the problem’s nature and size, 
you can use different optimization levels. For me-
dium to large problems, the standard scientific 
Python routines integrate well with Cython. You 
simply declare types within the callback func-
tion and hand the callback to the solver just as 
you would with a pure Python function. Given 
the frequency with which this function might be 
called, the act of typing the callback function’s 
variables combined with the Cython-implemented  
Python functions’ reduced call overhead can have 
a noticeable impact on performance. How much 
impact depends heavily on the problem in ques-
tion; as a rough indicator, we’ve noted a 40 times 
speedup when using this method on an ordinary 
differential equation in 12 variables.

For computationally simple problems in only a 
few variables, evaluating the function can be such 

Figure 4. Constructing sparse matrices. Unlike SciPy and other libraries, which can complicate this process, 
Cython lets users easily and quickly populate sparse matrices element by element.

import numpy as np
cimport numpy as np
...
cdef np.ndarray[np.intc_t] rows = np.zeros(nnz, dtype=np.intc)
cdef np.ndarray[np.intc_t] cols = np.zeros(nnz, dtype=np.intc)
cdef np.ndarray[double] values = np.zeros(nnz, dtype=np.double)
cdef int idx = 0

for idx in range(0, nnz):
    # Compute next non-zero matrix element
    ...
    rows[idx] = row; cols[idx] = col; values[idx] = value

# Finally, we construct a regular SciPy sparse matrix: 
return scipy.sparse.coo_matrix((values, (rows, cols)), shape=(N,N))

Figure 5. Manually writing a loop that runs at native speed. Because 
this loop doesn’t require a temporary buffer, it offers considerable 
speedup for large arrays.

cimport libc
...
cdef np.ndarray[double] x = ..., y = ...,
  z = ...
cdef np.ndarray[double] v = np.zeros_
  like(x) ...
for i in range(x.shape[0]): 
   v[i] = libc.sqrt(x[i]**2 + y[i]**2 +
     z[i]**2)
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a quick operation that the Python function call’s 
overhead for each step becomes relevant. In these 
cases, you might want to explore calling existing 
C or Fortran code directly from Cython. Some 
libraries have ready-made Cython wrappers: for 
example, Sage has Cython wrappers around the 
ordinary differential equation solvers in the GNU 
Scientific Library. In some cases, you might opt 
for implementing the algorithm directly in  
Cython to avoid any callback whatsoever—using 
Newton’s method on equations in a single vari-
able, for example.

Nonrectangular Arrays and Data Repacking
Cython is especially well suited to those situations 
in which data doesn’t fit naturally in rectangu-
lar arrays. One such example arises in cosmol-
ogy. Satellite experiments, such as the Wilkinson 
microwave anisotropy probe, have produced 
high-resolution images of the cosmic microwave 
background, a primary source of information 

about the early universe. The resulting images are 
spherical because they contain values for all direc-
tions of the sky.

The spherical harmonic transform of these 
maps, a Fourier transform on the sphere, is es-
pecially important. It has complex coefficients  
alm, where the indices run over 0 ≤ l ≤ lmax, -l, ≤ 
m ≤ l. An average of the entire map is stored in 
a0,0, followed by three elements to describe the 
dipole component, a1,-1, a1,0, a1,1, and so on. Data 
such as this can be stored in a 1D array and ele-
ments looked up at position l 2 + l + m.

It’s possible, but not trivial, to operate on such 
data using NumPy whole-array operations. The 
problem is that NumPy functions, such as finding 
the variance, are primarily geared toward rectan-
gular arrays. If the data was rectangular, we could 
estimate the variance per l, averaging over m, by 
calling np.var(data, axis=1). This doesn’t 
work for nonrectangular data. Although there 
are workarounds, such as the reduceat method 

and masked arrays, we’ve found it much more 
straightforward to write the obvious loops over l 
and m using Cython. In our case (lmax = 1,500), 
this is more than 1,000 times faster than the same 
loop written in Python. Using NumPy, we could 
loop over l and repeatedly call np.var for data 
subslices, but the Cython loops are still faster by 
a factor of 27. (Incidentally, the variance per l, or 
power spectrum, is the primary quantity of inter-
est to observational cosmologists.)

The spherical harmonic transform we men-
tioned earlier is computed using the Fortran  
Hierarchical Equal Area isoLatitude Pixelization 
Library (HEALPix, http://healpix.jpl.nasa.gov), 
which can be called readily from Cython with the 
help of Fwrap. However, HEALPix spits out the 
result as a 2D array, with roughly half of the ele-
ments unoccupied. The waste of storage aside, 2D 
arrays are often inconvenient—with 1D arrays, 
we can treat each set of coefficients as a vector and 
perform linear algebra, estimate covariance ma-
trices, and so on in the usual way. Again, it’s pos-
sible to quickly reorder the data the way we want 
it with a Cython loop. With all the existing code 
out there wanting data in slightly different orders 
and formats, for loops aren’t about to disappear.

Fwrap
Whereas C and C++ integrate closely with 
Cython, Fortran wrappers in Cython are gener-
ated with Fwrap (http://fwrap.sourceforge.net),  
a separate—and separately distributed—utility.  
The Fwrap tool automates wrapping Fortran 
source in C, Cython, and Python, which lets For-
tran code benefit from Python’s dynamism and 
flexibility. Developers can seamlessly integrate 
Fwrapped code into C, Cython, or Python proj-
ects. The utility transparently supports most of 
Fortran’s 90/95/2003 features and handles nearly 
all Fortran 77 sources. Although Fwrap doesn’t 
currently support derived types or function call-
backs, such support is planned for an upcoming 
release.

Thanks to the Fortran 2003 standard’s C in-
teroperability features—which are supported in 
recent versions of all widely used Fortran 90/95 
compilers—Fwrap generates wrappers that are 
portable across platforms and compilers. Fwrap is 
intended to be as friendly as possible, and it auto-
matically handles Fortran parsing and generation. 
It also generates a project build script that will 
portably build a Python extension module from 
the wrapper files.

Fwrap is similar in intent to other Fortran- 
Python tools, including F2PY, PyFort, and  

It’s possible to quickly reorder the data the way 

we want it with a Cython loop. With all the 

existing code out there wanting data in slightly 

different orders and formats, for loops aren’t 

about to disappear.
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Forthon. F2PY is distributed with NumPy and 
is a capable tool for wrapping Fortran 77 codes. 
Fwrap’s approach differs in that it leverages  
Cython to create Python bindings. Manual tun-
ing of the wrapper can be easily accomplished by 
simply modifying the generated Cython code, 
rather than using a restricted domain-specific lan-
guage. Another benefit is reduced overhead when 
calling Fortran code from Python.

Consider a real-world example: wrapping a sub-
routine from netlib’s Lapack Fortran 90 source. 
We’ll use the Fortran 90 subroutine interface for 
dgesdd, which is used to compute the singular 
value decomposition arrays U, S, and VT of a real 
array A, such that A = U * DIAG(S) * VT. This 
routine is typical of Fortran 90 source code; it 
has scalar and array arguments with different in-
tents and different data types. To simplify it here, 
we’ve augmented the argument declarations with  
INTENT attributes and removed extraneous work 
array arguments (see Figure 6).

When invoked on this Fortran code, Fwrap 
parses the code and makes it available to C, 
Cython, and Python. If desired, we can generate 
a deployable package for use on computers that 
don’t have Fwrap or Cython installed. To use the 
wrapped code from Python, we must first set up 
the subroutine arguments—in particular, the a 
array argument. To do this, we set the array di-
mensions and then create the array, filling it with 
random values. To simplify matters, we set all ar-
ray dimensions equal to m (see Figure 7).

The asfortranarray() function is impor-
tant; it ensures that the array a is laid out in 
column-major ordering, or Fortran ordering. 
This ensures that no copying is required when 
passing arrays to Fortran subroutines. Any sub-
routine argument that is an INTENT(OUT) array 
must be passed to the subroutine. The subroutine 
will modify the array in place; no copies are made 

for arrays of numeric types (this isn’t required for 
scalar INTENT(OUT) arguments, such as the INFO 
argument). As Figure 8 shows, we create three 
empty arrays of appropriate dimensions. The 
order='F' keyword argument serves the same 
purpose as the asfortranarray() function.

Next, we import dgesdd from it and call it 
from Python (see Figure 9). The return value is 
a tuple that contains all arguments that were de-
clared intent out, inout, or no intent spec. The 
a argument (intent inout) is in both the argu-
ment list and the return tuple, but no copy has 
been made.

Figure 6. Augmenting the Fortran 90 subroutine interface for dgesdd. To do this, we augment argument 
declarations with INTENT attributes and remove extraneous work array arguments.

SUBROUTINE DGESDD(JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, INFO)
!   . . Scalar Arguments . .
    CHARACTER, INTENT(IN) :: JOBZ
    INTEGER, INTENT(OUT) :: INFO
    INTEGER, INTENT(IN) :: LDA, LDU, LDVT, M, N
!   . . Array Arguments . .
    DOUBLE PRECISION, INTENT(INOUT) :: A(LDA, *)
    DOUBLE PRECISION, INTENT(OUT) :: S(*), U(LDU, *), VT(LDVT, *)

!   DGESDD subroutine body END SUBROUTINE DGESDD

Figure 7. Using wrapped Python code. We first set up subroutine 
arguments, setting the array dimensions and creating an array filled 
with random values. To simplify matters, we set all array dimensions 
equal to m.

>>> import numpy as np
>>> from numpy.random import rand

>>> m = 10

>>> rand_array = rand(m, m)
>>> a = np.asfortranarray(rand_array,
   dtype=np.double)

>>> s = np.empty(m, dtype=np.double,
   order='F')
>>> u = np.empty((m, m), dtype=np.double,
   order='F')
>>> vt = np.empty((m, m), dtype=np.double,
   order='F')

Figure 8. Three empty arrays. The order='F' keyword argument 
serves the same purpose as the asfortranarray() function.
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We now verify that the result is correct.  
As Figure 10 shows, to do this, we create a_
computed, which is equivalent to the matrix 
product u * s_diag * vt, and we verify that a 
and a_computed are equal to within machine 
precision. When calling the routine from within 
Cython code, the invocation is identical, and the 
arguments can be typed to reduce function call 
overhead.

Fwrap handles any kind of Fortran array decla-
ration, whether assumed-size (as in our example), 
assumed-shape, or explicit shape. Options exist 
for hiding redundant arguments (such as the array 
dimensions LDA, LDU, and LDVT) and are covered 
in Fwrap’s documentation.

Our example here covers the basics of what 
Fwrap can do. For more information, examples, 
downloads, and help using Fwrap, see http://
fwrap.sourceforge.net. You can reach other users  
and the Fwrap developers on the Fwrap users 
mailing list, http://groups.google.com/group/
fwrap-users.

Limitations
Compared to writing code in pure Python, Cyth-
on’s primary disadvantages are compilation time 
and the need for a separate build phase. Most proj-
ects using Cython are therefore written in a mix 
of Python and Cython because Cython sources 
don’t need to be recompiled when Python sources 
change. Cython can still be used to compile some 
Python modules for performance reasons. There’s 
also an experimental “pure” mode in which deco-
rators indicate static type declarations, which  

are valid Python and ignored by the interpreter 
at runtime, but are used by Cython when com-
piled. This combines the advantage of a fast edit-
run cycle with the final product’s high runtime 
performance. There’s also the question of code 
distribution. Rather than requiring Cython as a 
dependency, many projects ship the generated C 
files that compile against Python 2.3 to 3.2 with-
out any modifications as part of the distutils setup 
phase.

Compared to compiled languages such as For-
tran and C, Cython’s primary limitation is the 
limited support for shared memory parallelism. 
Python is inherently limited in its multithread-
ing capabilities because it uses a global interpreter 
lock (GIL). Cython code can declare sections as 
containing only C code (using a nogil direc-
tive), which are then able to run in parallel. How-
ever, this can quickly become tedious. Currently, 
there’s also no support for OpenMP program-
ming in Cython. On the other hand, message 
passing parallelism using multiple processes—
such as through MPI—is well supported.

Compared to C++, a major Cython weakness 
is its lack of built-in template support, which can 
help write code that works efficiently with many 
different data types. In Cython, you must either 
repeat code for each data type or use an external 
templating system (as with Fortran codes). Many 
template engines exist for Python, and most of 
them should work well for generating Cython 
code.

U sing a language that can be either 
dynamic or static requires some ex-
perience. Cython is clearly useful 
when talking to external libraries, 

but when is it best to use Cython code in place 
of normal Python code? The obvious factor to 
consider is the code’s purpose—is it a single ex-
periment, for which the Cython compilation time 
might overshadow the pure Python runtime? Or 
is it a core library function, where every ounce of 
speed matters?

>>> from fw_dgesdd import dgesdd 

>>> jobz = 'A' # specify that we want all the output vectors
>>> (a, s, u, vt, info) = dgesdd(jobz, m, n, a, m, s, u, m, vt, m)

Figure 9. Importing dgesdd. The return value is a tuple that contains all arguments that were declared 
intent out, inout, or no intent spec.

>>> s_diag = np.diag(s)
>>> a_computed = np.dot(u, np.dot(s_diag, vt))
>>> np.allclose(a, a_computed)
True

Figure 10. Verifying the result. a_computed is equivalent to the 
matrix product u * s_diag * vt, and we verify that a and a_
computed are equal to within machine precision.
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It’s possible to paint some broad strokes when 
it comes to the type of computation considered. 
Are you spending the bulk of your time doing 
low-level number crunching in your code, or is 
the heavy lifting done through calls to external li-
braries? How easy is it to express the computation 
in terms of NumPy operations? For sequential al-
gorithms such as equation solving and statistical 
simulations, it’s indeed impossible to do without 
a loop of some kind. Pure Python loops can be 
very slow, but the impact varies depending on the 
use case.

If you think Cython might help with your proj-
ect, your next stop is the Cython tutorial.4 Opti-
mization strategies and computation benchmarks  
are also available.5 As always, the online documen-
tation at http://docs.cython.org provides the most 
up-to-date information. Finally, if you’re ever 
stuck, or just wondering if Cython can solve your 
particular problem, Cython has an active and 
friendly mailing list at http://groups.google.com/
group/cython-users.�
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