
Computing Conjectural Orders of

Shafarevich-Tate Groups of Modular Abelian

Varieties

William Stein

June 3, 2009

Introduction

This paper is motivated by the following open problem.

Problem. Let A = Af be a modular abelian variety attached to a newform
f ∈ S2(Γ0(N)), and assume that L(A, 1) 6= 0 so that A has rank 0 (by [?]).
Compute

X(A)an =
L(A, 1) ·#A(Q)tor ·#A∨(Q)tor

ΩA ·
∏
cp

.

The author and others have given numerous partial results toward this prob-
lem in [] (see my Magma BSD paper), but the general problem remains open.
In particular, there is no known general algorithm to compute the rational num-
ber L(A, 1)/ΩA in all cases, no known way to compute cp in general, nor any
known way to compute #A(Q)tor or #A∨(Q)tor. However, there are algorithms
to compute a divisor and multiple of each of these quantities, hence a divisor
and multiple of X(A)an.

Here we explain algorithms for computing or bounding the quantities ap-
pearing in the above formula, and emphasize precisely what is not known. We
assume the reader has a background in algebraic number theory and elliptic
curves.

Contents

1

1 The Conjectural Order of the Shafarevich-Tate
Group

1.1 The Basic Objects

Let f ∈ S2(Γ0(N)) be a weight 2 newform on Γ0(N). Thus f =
∑∞
n=1 anq

n,
with q = e2πiz is a holomorphic function on the upper half plane such that
f(z)dz is invariant under the action of Γ0(N). Also, f is normalized so that
a1 = 1, and f is new in the sense that f is not in the sum of the natural
inclusions f(q) 7→ f(q) and f(q) 7→ f(qp)

S2(Γ0(N/p)) ↪→ S2(Γ0(N))

for all p | N prime. Finally, f is an eigenvector for all the Hecke operators Tp,
where

Tp

(∑
anq

n
)

=
∑
m∈Z

(amp + pam/p)qm

and am/p = 0 if m/p 6∈ Z, and we omit the pam/p term if p | N . From the above
formulas we see that since f is an eigenvector, we must have Tp(f) = apf , i.e.,
the eigenvalue of Tp is ap. There is also a defintion of Hecke operators Tn for
any positive integer n, and Tn(f) = anf .

Example 1.1. We make a table of all weight 2 newforms for N ≤ 30:

sage: for N in [1..30]:
... S = CuspForms(N).newforms(’a’)
... if len(S)>0: print N, S
11 [q - 2*q^2 - q^3 + 2*q^4 + q^5 + O(q^6)]
14 [q - q^2 - 2*q^3 + q^4 + O(q^6)]
15 [q - q^2 - q^3 - q^4 + q^5 + O(q^6)]
17 [q - q^2 - q^4 - 2*q^5 + O(q^6)]
19 [q - 2*q^3 - 2*q^4 + 3*q^5 + O(q^6)]
20 [q - 2*q^3 - q^5 + O(q^6)]
21 [q - q^2 + q^3 - q^4 - 2*q^5 + O(q^6)]
23 [q + a0*q^2 + (-2*a0 - 1)*q^3 + (-a0 - 1)*q^4 + 2*a0*q^5 + O(q^6)]
24 [q - q^3 - 2*q^5 + O(q^6)]
26 [q - q^2 + q^3 + q^4 - 3*q^5 + O(q^6),

q + q^2 - 3*q^3 + q^4 - q^5 + O(q^6)]
27 [q - 2*q^4 + O(q^6)]
29 [q + a0*q^2 - a0*q^3 + (-2*a0 - 1)*q^4 - q^5 + O(q^6)]
30 [q - q^2 + q^3 + q^4 - q^5 + O(q^6)]

We also compute the fields defined by a0 above:

sage: f = CuspForms(23).newforms(’a’)[0]
sage: f.hecke_eigenvalue_field()
Number Field in a0 with defining polynomial x^2 + x - 1
sage: CuspForms(29).newforms(’a’)[0].hecke_eigenvalue_field()
Number Field in a0 with defining polynomial x^2 + 2*x - 1

2

The ring T = Z[T1, T2, T3, . . .] generated by all the Hecke operators Tn is a
commutative ring that is finite as a Z-module. In fact, when N is cube-free,
there is a list of totally real (all embeddings are real) numbers fields K1, . . . ,Km

such that
T ↪→ OK1 × · · · × OKm

,

where the OKi
are the rings of integers of the Ki. When a cube divides N ,

then T usually contains nilpotents, so can’t embed in a product of fields (which
contains no nilpotents).

We associate to our newform f =
∑
anq

n an ideal If in T as follows:

If = AnnT(f) = {t ∈ T : tf = 0}.

Let Of = Z[a1, a2, a3, . . .] be the ring generated by the Fourier coefficient an
of f , and let Kf = Frac(Of) be its fraction field, which is a number field. We
have a surjective homomoprhism

T→ Of , Tn 7→ an

and an exact sequence
0→ If → T→ Of → 0.

The ring Of is an order in the ring of integers of a number field.

Example 1.2. For the forms of level 23 and 29 above, Of has discriminant 5
and 8, respectively. In both cases Of is the maximal order in a real quadratic
field. The first example where Of is not maximal occurs at level N = 69, where
the order is Z[

√
5].

sage: f = CuspForms(69).newforms(’a’)[1]
sage: f.hecke_eigenvalue_field().order([f[2]])
Order in Number Field in a1 with defining polynomial x^2 - 5

The extended upper half plane is

h∗ = h ∪Q ∪ {i∞} = h ∪ P1(Q).

We can view f(z)dz as a holomorphic differential on the modular curve

X0(N)(C) = Γ0(N)\h∗.

The modular curve X0(N) is an algebraic curve of genus g = dimS2(Γ0(N))
with a canonical model over Q. It’s Q affine points are in bijection with the
isomorphism classes of pairs (E,C) where E is an elliptic curve and C ⊂ E is a
cyclic subgroup of order N . The Hecke algebra T also acts via correspondences
defined over Q on the group Div(X0(N)) of divisors on X0(N). This induces
an action of T on the Jacobian J0(N) = Jac(X0(N)). The Jacobian J0(N)
is a projective algebraic variety of dimension g defined over Q whose K points
functorially parametrize the group Pic0(X0(N)/K) of divisor classes of degree 0

3

on X0(N) that are rational over a field K. In particular, J0(N) has an algebraic
group structure, so is an abelian variety.

We are now in a position to associate the abelian variety Af to f , following
a construction introduced first by Shimura. Let

Af = J0(N)/IfJ0(N).

This is an abelian variety because quotients of abelian varieties by abelian va-
rieties are abelian varieties, and IfJ0(N), which is the sum of the images of
J0(N) under all elements of If , is an abelian subvariety of J0(N). Since T is
commutative, IfJ0(N) is preserved by T, so T acts on Af . Moreover, If acts as
0 on Af , so Of = T/If also acts on Af . The abelian variety Af is simple over
Q, meaning it is not isogenous to a product B ×C of nonzero abelian varieties,
and Af has dimension equal to the degree of the field Kf generated by the an.

A Γ0(N)-modular abelian variety A is any abelian variety quotient of J0(N).
The abelian varieities Af are primes in the context of modular abelian varieties,
since every modular abelian variety A is isogenous to a product of the Af ’s. It
is also a recent deep theorem that if A is any simple abelian variety over Q with
endomorphism ring an order in a totally real number field of degree dim(A),
then A is isogenous to some Af .

Let f1, . . . , fd be the Galois conjugates of f =
∑
anq

n, i.e., the orbert of the
Gal(Q/Q) action on q-expansions in Q[[q]] via the action on coefficients. The
L-function L(Af , s) is equal to

L(Af , s) =
d∏
i=1

L(fi, s),

where for each i, the L-function of fi =
∑
a
(i)
n qn is

L(fi, s) =
∞∑
n=1

a
(i)
n

ns
.

Hecke proved that L(fi, s) extends to a holomorphic function on all C.
The Birch and Swinnerton-Dyer conjecture relates the order of vanishing of

L(Af , s) to the rank of the Mordell-Weil group Af (Q) of rational points on Af .

Conjecture 1.3 (Birch and Swinnerton-Dyer Rank Conjecture). We have

ords=1 L(Af , s) = rank(Af (Q)).

The Shafarevich-Tate group of Af is

X(Af) = ker

H1(Q, A)→
⊕
v≤∞

H1(Qv, A)

 .

There is also a conjecture about the leading coefficient about s = 1 of the
Taylor expansion of L(Af , s). In the special case when L(Af , 1) 6= 0, this takes
the following form.

4

Conjecture 1.4 (Birch and Swinnerton-Dyer Formula (Rank 0)). Let A = Af
and assume that L(A, 1) 6= 0. Then

#X(A) =
L(A, 1) ·#A(Q)tor ·#A∨(Q)tor

ΩA ·
∏
cp

. (1.1)

We will refer to Conjecture 1.4 as the “BSD conjecture” in the rest of this
paper.

The goal of this paper is to explain everything known about computing the
right hand side of (1.1), and hopefully inspire further progress on the follow-
ing open problem: give a (practical) algorithm to compute the right hand side
of (1.1). The motivation for this problem is emphatically not computational
complexity or computability. It is to provide further tools that will support
gathering data that can be used to improve our theoretical understanding of
modular forms and abelian varieties.

1.2 Strategy for computing X(A)an

We now outline the basic strategy for computing the right hand side of (1.1).

1.2.1 The L-ratio

Using modular symbols, we can compute the rational number cA · L(A, 1)/ΩA,
where cA is the Manin constant of A. The Manin constant cA is an integer
that we will revisit below. Modular symbols provide an explicit presentation
for the homology group H1(X0(N),Z) ≈ Z2g, along with an action of the Hecke
algebra T on this homology group. Also, Manin proved that if α, β ∈ P1(Q),
then the real homology class of the path {α, β} from α to β defines an element
of H1(X0(N),Q). Let

Φ : H1(X0(N),Q) ∼= H1(J0(N), A)→ H1(A,Q)

be the map on homology induced by the J0(N)→ A. There is also an action of
complex conjugation on H1(X0(N),Q), and we denote by H+

1 the +1 eigenspace.
Also, let

c∞ = #(A(R)/A(R)0)

where A(R)0 is the connected component containing the identity. There is a
simple algorithm to compute c∞ in terms of the matrix of complex conjugation
acting on H1(X0(N),Z). Finally, we have

Theorem 1.5 (Agashe-Stein).

c∞ · cA ·
L(A, 1)

ΩA
= [Φ(H+

1) : Φ(T{0,∞})],

where the index on the right is a lattice index, i.e., after choosing a basis for
Φ(H+

1), it is the absolute value of the determinant of any invertible matrix that
sends Φ(H+

1) isomorphically onto Φ(T{0,∞}), or 0 if Φ(T{0,∞}) = 0.

5

1.2.2 The Manin constant

Definition 1.6. The Manin constant of A is

cA = #
(
S2(Γ0(N),Z)[If]
H0(A,ΩA/Z)

)
∈ Z,

where A is the Néron model of A.

Conjecture 1.7 (Agashe-Stein). cA = 1

There are strong bounds on the possibilities for cA, e.g., if ` | cA is prime,
then `2 | 4N , where d = dim(A). There is still no known algorithm for comput-
ing cA in general.

1.2.3 Torsion

Next, we use that for any prime p - N , if χp(X) is the characteristic polynomial
of the Hecke operator Tp acting on A = Af , then

#A(Fp) = #A∨(Fp) = χp(p+ 1),

and for p - 2N we have A(Q)tor ↪→ A(Fp). Thus the greatest common divisor of
the numbers χp(p+1), for p - 2N is a multiple of both #A(Q)tor and #A∨(Q)tor.
This yields a multiple of #A(Q)tor ·#A∨(Q)tor.

To obtain a divisor of this product, we consider the subgroup C ⊂ J0(N)
generated by differences of cusps:

C = 〈(α)− (β) : α, β ∈ Q ∪ {∞}〉.

It is possible to explicitly represent and compute with C by using that

A(Q)tor ∼= H1(A,Q)/H1(A,Z).

We have C ⊂ J0(N)(Q(ζN))tor, and there is an explicit description of the action
of Gal(Q/Q) on C, so we can compute the subgroup

C ∩A∨(Q)tor ⊂ J0(N)(Q)tor

and also the subgroup
(πA(C))(Q) ⊂ A(Q)tor,

where πA : J0(N)→ A is the natural quotient morphism. We thus obtain sub-
groups of both A(Q)tor and A∨(Q)tor, hence a divisor of #A(Q)tor ·#A∨(Q)tor.

1.2.4 Tamagawa Numbers

Let A be the Néron model of A over Z. This is a smooth commutative group
scheme over Z with the property that for every smooth scheme X over Z the
natural map

Hom(X,A)→ Hom(XQ, A)

6

is an isomorphism. The Néron model A is unique, up to a unique isomorphism,
and it is a deep theorem that A exists.

Since Néron models are fairly abstract, to work with Néron models, all you
really need to know is that they exist and that they have a few functorials
properties. For example, if A → B is a morphism of abelian varieties over
Q, then there is an induced map A → B on Néron models, i.e., the association
A 7→ A is a functor from the category of abelian varieties over Q to the category
of smooth schemes over Z. Néron models over Z are always smooth (over Z),
but they are never proper (“=complete”) over Z. I imagine the Néron model A
as A together with a “good” choice of not-necessarily connected reduction “of
A” modulo every prime p, glued together to form a group scheme over Z.

For each prime p, we have an exact sequence

0→ (AFp
)0 → AFp

→ ΦA,p → 0,

where (AFp
)0 is the connected compoent of the group scheme AFp

, and ΦA,p is
a finite flat group scheme over Fp called the component group of A at p. The
Tamagawa numbers cp are then:

cp = #ΦA,p(Fp),

and our goal is to compute them.
For each prime p with p2 | N , the best we can do at present is use some

a priori bounds on cP . In particular, Lenstra and Oort [[ref]] prove that if a
prime ` | cp, then either or ` = p or ` ≤ 2d + 1. I do not know anything else
about compute cp in this case.

When p || N , I designed an algorithm involving quaternion algebras to com-
pute the exact order of order of the component group ΦA,p of the special fiber
at p of the Néron model of A. Tate showed that if E is an elliptic curve with
split multiplicative reduction at p, then there is an element q ∈ Q∗p such that

Q∗p/q
Z ∼= E(Qp).

In fact, something similar generalizes to any abelian variety A over Q that has
purely toric reduction at p, i.e., such that the identity component (AFp

)0 is
isomorphic over Fp to a product of copies of the multiplicative group Gm. Any
such A can then be viewed as a higher-dimensional analogue of a Tate curve,
i.e., A has a p-adic rigid analytic uniformization over Qp:

0→ X → T → A→ 0.

Here X is a free abelian group of rank dim(A), e.g., like qZ, and T is a torus
(twist of product of copies of the multiplicative group Gm). In the case when
A = Af is a modular abelian variety, X and T can be described into terms of
right ideal classes in an order of level N/p in the quaternion algebra ramified at
p and ∞.

7

Let XA be the free abelian group for A and XA∨ the group for A∨. Then
Grothendieck constructed a monodromy pairing

XA ×XA∨ → Z,

and one has an exact sequence

0→ XA → Hom(XA∨ ,Z)→ ΦA,p → 0.

It is an open problem to compute the above exact sequence explicitly, but using
a homogeneity trick one can at least compute enough to deduce #ΦA,p. I will
describe this homogeneity trick in more detail later [[ref]]. The main idea is that
the association A 7→ XA is functorial, so the Hecke operators act on XA and
on XJ , and there is a natural map XA∨ ↪→ XJ . We can compute XJ explicitly,
and use the Hecke operators to compute the saturated submodule XJ [If], where
If = AnnT(f). We have

XA∨ ⊂ XJ [If].

Though nobody knows how to compute XA∨ yet, we do know how to compute
XJ [If]. This uses that there is a very nice description of XJ as the group
of degree zero divisors on the supersingular points of X0(N)Fp , i.e., the pairs
(E,C), where E is a supersingular elliptic curve over Fp and C is a cyclic
subgroup of E of order N/p.

The modular degree of A is the square root mA =
√

deg(A∨ → A) of the
degree of the natural map from A∨ to A induced by viewing A as a quotient of
the Jacobian J .

Theorem 1.8. Let α : XJ → Hom(XJ [If],Z) be the map induced by the mon-
odromy pairing XJ ×XJ → Z. Then

#ΦA,p = # coker(α) · mA

#(α(XJ)/α(XJ [If]))

Remark 1.9. The image of the natural map ΦJ,p → ΦA,p is of order # coker(α).
The number mA

#(α(XJ)/α(XJ [If])) is thus an integer, which measures congruences
between the newform f and old forms in S2(Γ0(N/p)). This is because the
modular degree measures all congruences, and #(α(XJ)/α(XJ [If])) measures
congruences with forms of level divisible by p, as XJ ⊗ C is isomorphic to the
subspace of p-newforms in S2(Γ0(N)).

One can show Gal(Fp/Fp) acts as either +1 or −1 on ΦA,p(Fp). Then cp is
either #ΦA,p or #(ΦA,p[−1]), depending on the eigenvalue of the Atkin-Lehner
involution WP acting on f . It is an open problem to obtain cp exactly in general;
it seems one might have to find an algorithm to compute the group structure of
ΦA,p.

1.2.5 Open problems

In summary, solution to the following four open problems would result in an al-
gorithm to compute the conjectural order of X(A). I have ordered the problems
according to some vague sense of how hard they might be to solve.

8

1. Compute #A(Q)tor · #A∨(Q)tor exactly even when the above algorithm
fails. For this, it would be helpful to understand precisely when the above
algorithm fails.

2. Find an algorithm to compute the group structure of ΦA,p, hence be able
to compute cp.

3. Give an algorithm to compute cA (or better, prove Manin’s conjecture
that cA = 1 for all A).

4. Find an algorithm to compute cp when p2 | N .

2 Computing with Modular Symbols

2.1 Modular Symbols

Birch introduced modular symbols in the 1960s in order to study special val-
ues of L-functions when formulating the Birch and Swinnerton-Dyer conjecture.
Modular symbols have grown to become perhaps the most important basic tool
in computing with modular forms and modular abelian varieties. They are an
explicit presentation for the homology group H1(X0(N),Z, {cusps}) of X0(N)
relative to the cusps, which cares much deep arithmetic meaning. The best ref-
erences for modular symbols are Cremona’s book [[ref]], Merel’s article in SLNM
1585 [[ref]], my Ph.D. thesis [[ref]], and my book [[ref]]. Lang’s book [[ref]] is
also interesting, though it doesn’t view modular symbols as a computational
tool.

[[The following is adapted from my book on modular forms.]]
Let M2 be the free abelian group with basis the set of symbols {α, β} with

α, β ∈ P1(Q) = Q ∪ {∞}

modulo the 3-term relations

{α, β}+ {β, γ}+ {γ, α} = 0

and modulo any torsion. Since M2 is torsion-free, we use the above relation
first with α = β = γ then with γ = α to deduce that

{α, α} = 0 and {α, β} = −{β, α}.

Remark 2.1 (Warning). The symbols {α, β} satisfy the relations {α, β} =
−{β, α}, so order matters. The notation {α, β} looks like the set containing
two elements, which strongly (and incorrectly) suggests that the order does not
matter. This is the standard notation in the literature.

We “think of” this modular symbol as the homology class, relative to the
cusps, of a path from α to β in h∗.

9

Define a left action of GL2(Q) on M2 by letting g ∈ GL2(Q) act by

g{α, β} = {g(α), g(β)},

and g acts on α and β via the corresponding linear fractional transformation.
The space M2(Γ0(N)) of modular symbols for Γ0(N) is the quotient of M2 by
the submodule generated by the infinitely many elements of the form x− g(x),
for x in M2 and g in Γ0(N), and modulo any torsion. A modular symbol for
Γ0(N) is an element of this space. We frequently denote the equivalence class
of a modular symbol by giving a representative element.

Example 2.2. Some modular symbols are 0 no matter what the level N is! For
example, since γ = (1 1

0 1) ∈ Γ0(N), we have an equality of modular symbols for
Γ0(N):

{∞, 0} = {γ(∞), γ(0)} = {∞, 1},

so we have the following in the space of modular symbols for Γ0(N):

0 = {∞, 1} − {∞, 0} = {∞, 1}+ {0,∞} = {0,∞}+ {∞, 1} = {0, 1}.

Let C0(N) = Γ0(N)\P1(Q) be the set of cusps for Γ0(N), which is a finite
set. There is a natural homomorphism

ϕ : M2(Γ0(N))→ H1(X0(N), C0(N),Z) (2.1)

that sends a formal linear combination of (geodesic) paths in the upper half
plane to their image as homology classes of paths on X0(N) with endpoints in
the set of cusps. In [?] Manin proved that (2.1) is an isomorphism (this is a
fairly involved topological argument).

Example 2.3. We illustrate modular symbols in the case when N = 11. Using
Sage, which implements the algorithm that we describe below over Q, we find
that M2(Γ0(11); Q) has basis {∞, 0}, {−1/8, 0}, {−1/9, 0}. A basis for the
integral homology H1(X0(11),Z) is the subgroup generated by {−1/8, 0} and
{−1/9, 0}.

sage: set_modsym_print_mode (’modular’)
sage: M = ModularSymbols(11, 2)
sage: M.basis()
({Infinity,0}, {-1/8,0}, {-1/9,0})
sage: S = M.cuspidal_submodule()
sage: S.integral_basis() # basis over ZZ.
({-1/8,0}, {-1/9,0})
sage: set_modsym_print_mode (’manin’) # set it back

2.2 Computing with Modular Symbols

[[The following is adapted from my book on modular forms.]]

10

2.2.1 Manin’s Trick

In this section, we describe a trick of Manin that we will use to prove that spaces
of modular symbols are computable.

The group Γ0(N) has finite index in SL2(Z). Fix right coset representatives
r0, r1, . . . , rm for Γ0(N) in SL2(Z), so that

SL2(Z) = Γ0(N)r0 ∪ Γ0(N)r1 ∪ · · · ∪ Γ0(N)rm,

where the union is disjoint. For example, when N is prime, a list of coset
representatives is(

1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 0
2 1

)
,

(
1 0
3 1

)
, . . . ,

(
1 0

N − 1 1

)
,

(
0 −1
1 0

)
.

Let

P1(Z/NZ) = {(a : b) : a, b ∈ Z/NZ, gcd(a, b,N) = 1 }/ ∼ (2.2)

where (a : b) ∼ (a′ : b′) if there is u ∈ (Z/NZ)∗ such that a = ua′, b = ub′.

Proposition 2.4. There is a bijection between P1(Z/NZ) and the right cosets
of Γ0(N) in SL2(Z), which sends a coset representative

(
a b
c d

)
to the class of

(c : d) in P1(Z/NZ).

We now describe an observation of Manin (see [?, §1.5]) that is crucial to
making M2(Γ0(N)) computable. It allows us to write any modular symbol
{α, β} as a Z-linear combination of symbols of the form ri{0,∞}, where the
ri ∈ SL2(Z) are coset representatives as above. In particular, the finitely many
symbols r0{0,∞}, . . . , rm{0,∞} generate M2(Γ0(N)).

Proposition 2.5 (Manin). Let N be a positive integer and r0, . . . , rm a set of
right coset representatives for Γ0(N) in SL2(Z). Every {α, β} ∈M2(Γ0(N)) is
a Z-linear combination of r0{0,∞}, . . . , rm{0,∞}.

We give two proofs of the proposition. The first is useful for computation
(see [?, §2.1.6]); the second (see [?, §2]) is easier to understand conceptually
since it does not require any knowledge of continued fractions.

Continued Fractions Proof of Proposition 2.5. Since

{α, β} = {0, β} − {0, α},

it suffices to consider modular symbols of the form {0, b/a}, where the rational
number b/a is in lowest terms. Expand b/a as a continued fraction and consider
the successive convergents in lowest terms:

b−2

a−2
=

0
1
,

b−1

a−1
=

1
0
,

b0
a0

=
b0
1
, . . . ,

bn−1

an−1
,

bn
an

=
b

a

11

where the first two are included formally. Then

bkak−1 − bk−1ak = (−1)k−1,

so that

gk =
(
bk (−1)k−1bk−1

ak (−1)k−1ak−1

)
∈ SL2(Z).

Hence {
bk−1

ak−1
,
bk
ak

}
= gk{0,∞} = ri{0,∞},

for some i, is of the required special form. Since

{0, b/a} = {0,∞}+ {∞, b0}+
{
b0
1
,
b1
a1

}
+ · · ·+

{
bn−1

an−1
,
bn
an

}
,

this completes the proof.

Inductive Proof of Proposition 2.5. As in the first proof it suffices to prove the
proposition for any symbol {0, b/a}, where b/a is in lowest terms. We will
induct on a ∈ Z≥0. If a = 0, then the symbol is {0,∞}, which corresponds to
the identity coset, so assume that a > 0. Find a′ ∈ Z such that

ba′ ≡ 1 (mod a);

then b′ = (ba′ − 1)/a ∈ Z so the matrix

δ =
(
b b′

a a′

)
is an element of SL2(Z). Thus δ = γ · rj for some right coset representative rj
and γ ∈ Γ0(N). Then

{0, b/a} − {0, b′/a′} = {b′/a′, b/a} =
(
b b′

a a′

)
· {0,∞} = rj{0,∞},

as elements of M2(Γ0(N)). By induction, {0, b′/a′} is a linear combination of
symbols of the form rk{0,∞}, which completes the proof.

Example 2.6. Let N = 11, and consider the modular symbol {0, 4/7}. We
have

4
7

= 0 +
1

1 + 1
1+ 1

3

,

so the partial convergents are

b−2

a−2
=

0
1
,

b−1

a−1
=

1
0
,

b0
a0

=
0
1
,

b1
a1

=
1
1
,

b2
a2

=
1
2
,

b3
a3

=
4
7
.

12

Thus, noting as in Example 2.2 that {0, 1} = 0, we have

{0, 4/7} = {0,∞}+ {∞, 0}+ {0, 1}+ {1, 1/2}+ {1/2, 4/7}

=
(

1 −1
2 −1

)
{0,∞}+

(
4 1
7 2

)
{0,∞}

=
(

1 0
9 1

)
{0,∞}+

(
1 0
9 1

)
{0,∞}

= 2 ·
[(

1 0
9 1

)
{0,∞}

]
.

We compute the convergents of 4/7 in Sage as follows (note that 0 and ∞ are
excluded):

sage: convergents(4/7)
[0, 1, 1/2, 4/7]

2.3 Manin Symbols

[[The following is adapted from my book on modular forms.]]
As above, fix coset representatives r0, . . . , rm for Γ0(N) in SL2(Z). Con-

sider formal symbols [ri]′ for i = 0, . . . ,m. Let [ri] be the modular symbol
ri{0,∞} = {ri(0), ri(∞)}. We equip the symbols [r0]′, . . . , [rm]′ with a right
action of SL2(Z), which is given by [ri]′.g = [rj]′, where Γ0(N)rj = Γ0(N)rig.
We extend the notation by writing [γ]′ = [Γ0(N)γ]′ = [ri]′, where γ ∈ Γ0(N)ri.
Then the right action of Γ0(N) is simply [γ]′.g = [γg]′.

The group SL2(Z) is generated [[ref]] by the two matrices σ =
(

0 −1
1 0

)
and

τ =
(

1 −1
1 0

)
. Note that σ = S and τ = TS, so T = τσ ∈ 〈σ, τ〉.

The following theorem provides us with a finite presentation for the space
M2(Γ0(N)) of modular symbols.

Theorem 2.7 (Manin). Consider the quotient M of the free abelian group on
Manin symbols [r0]′, . . . , [rm]′ by the subgroup generated by the elements (for all
i):

[ri]′ + [ri]′σ and [ri]′ + [ri]′τ + [ri]′τ2,

and modulo any torsion. Then there is an isomorphism

Ψ : M ∼−→M2(Γ0(N))

given by [ri]′ 7→ [ri] = ri{0,∞}.

Proof. We will only prove that Ψ is surjective; the proof that Ψ is injective
requires much more work and will be omitted from this book (see [?, §1.7] for a
complete proof).

Proposition 2.5 implies that Ψ is surjective, assuming that Ψ is well defined.
We next verify that Ψ is well defined, i.e., that the listed 2-term and 3-term

13

relations hold in the image. To see that the first relation holds, note that

[ri] + [ri]σ = {ri(0), ri(∞)}+ {riσ(0), riσ(∞)}
= {ri(0), ri(∞)}+ {ri(∞), ri(0)}
= 0.

For the second relation we have

[ri] + [ri]τ + [ri]τ2 = {ri(0), ri(∞)}+ {riτ(0), riτ(∞)}+ {riτ2(0), riτ2(∞)}
= {ri(0), ri(∞)}+ {ri(∞), ri(1)}+ {ri(1), ri(0)}
= 0.

Example 2.8. By default Sage computes modular symbols spaces over Q, i.e.,
M2(Γ0(N); Q) ∼= M2(Γ0(N))⊗Q. Sage represents (weight 2) Manin symbols
as pairs (c, d). Here c, d are integers that satisfy 0 ≤ c, d < N ; they define a point
(c : d) ∈ P1(Z/NZ), hence a right coset of Γ0(N) in SL2(Z) (see Proposition 2.4).

Create M2(Γ0(N); Q) in Sage by typing ModularSymbols(N, 2). We then
use the Sage command manin generators to enumerate a list of generators
[r0], . . . , [rn] as in Theorem 2.7 for several spaces of modular symbols.

sage: M = ModularSymbols(2,2)
sage: M
Modular Symbols space of dimension 1 for Gamma_0(2)
of weight 2 with sign 0 over Rational Field
sage: M.manin_generators()
[(0,1), (1,0), (1,1)]

sage: M = ModularSymbols(3,2)
sage: M.manin_generators()
[(0,1), (1,0), (1,1), (1,2)]

sage: M = ModularSymbols(6,2)
sage: M.manin_generators()
[(0,1), (1,0), (1,1), (1,2), (1,3), (1,4), (1,5), (2,1),
(2,3), (2,5), (3,1), (3,2)]

Given x=(c,d), the command x.lift to sl2z(N) computes an element of
SL2(Z) whose lower two entries are congruent to (c, d) modulo N .

sage: M = ModularSymbols(2,2)
sage: [x.lift_to_sl2z(2) for x in M.manin_generators()]
[[1, 0, 0, 1], [0, -1, 1, 0], [0, -1, 1, 1]]
sage: M = ModularSymbols(6,2)
sage: x = M.manin_generators()[9]
sage: x

14

(2,5)
sage: x.lift_to_sl2z(6)
[1, 2, 2, 5]

The manin basis command returns a list of indices into the Manin generator
list such that the corresponding symbols form a basis for the quotient of the Q-
vector space spanned by Manin symbols modulo the 2-term and 3-term relations
of Theorem 2.7.

sage: M = ModularSymbols(2,2)
sage: M.manin_basis()
[1]
sage: [M.manin_generators()[i] for i in M.manin_basis()]
[(1,0)]
sage: M = ModularSymbols(6,2)
sage: M.manin_basis()
[1, 10, 11]
sage: [M.manin_generators()[i] for i in M.manin_basis()]
[(1,0), (3,1), (3,2)]

Thus, e.g., every element of M2(Γ0(6)) is a Q-linear combination of the
three symbols [(1, 0)], [(3, 1)], and [(3, 2)]. We can write each of these as a
modular symbol using the modular symbol rep function.

sage: M.basis()
((1,0), (3,1), (3,2))
sage: [x.modular_symbol_rep() for x in M.basis()]
[{Infinity,0}, {0,1/3}, {-1/2,-1/3}]

The manin gens to basis function returns a matrix whose rows express
each Manin symbol generator in terms of the subset of Manin symbols that
forms a basis (as returned by manin basis).

sage: M = ModularSymbols(2,2)
sage: M.manin_gens_to_basis()
[-1]
[1]
[0]

Since the basis is (1, 0), this means that in M2(Γ0(2); Q), we have [(0, 1)] =
−[(1, 0)] and [(1, 1)] = 0. (Since no denominators are involved, we have in fact
computed a presentation of M2(Γ0(2); Z).)

To convert a Manin symbol x = (c, d) to an element of a modular symbols
space M , use M(x):

sage: M = ModularSymbols(2,2)
sage: x = (1,0); M(x)
(1,0)

15

Next consider M2(Γ0(6); Q):

sage: M = ModularSymbols(6,2)
sage: M.manin_gens_to_basis()
[-1 0 0]
[1 0 0]
[0 0 0]
[0 -1 1]
[0 -1 0]
[0 -1 1]
[0 0 0]
[0 1 -1]
[0 0 -1]
[0 1 -1]
[0 1 0]
[0 0 1]

Recall that our choice of basis for M2(Γ0(6); Q) is [(1, 0)], [(3, 1)], [(3, 2)]. Thus,
e.g., the first row of this matrix says that [(0, 1)] = −[(1, 0)], and the fourth row
asserts that [(1, 2)] = −[(3, 1)] + [(3, 2)].

sage: M = ModularSymbols(6,2)
sage: M((0,1))
-(1,0)
sage: M((1,2))
-(3,1) + (3,2)

2.4 Hecke Operators

[[The following is adapted from my book on modular forms.]]

2.4.1 Hecke Operators on Modular Symbols

When p is a prime not dividing N , define

Tp({α, β}) =
(
p 0
0 1

)
{α, β}+

∑
r mod p

(
1 r
0 p

)
{α, β}.

The Hecke operators are compatible with the integration pairing 〈 , 〉, in the
sense that 〈fTp, x〉 = 〈f, Tpx〉. When p | N , the definition is the same, except
that the matrix

(
p 0
0 1

)
is not included in the sum. There is a similar definition

of Tn for n composite.

Example 2.9. For example, when N = 11, we have

T2{0, 1/5} = {0, 2/5}+ {0, 1/10}+ {1/2, 3/5}
= −2{0, 1/5}.

16

2.5 Hecke Operators on Manin Symbols

In [?], L. Merel gives a description of the action of Tp directly on Manin symbols
[ri]. For example, when p = 2 and N is odd, we have

T2([ri]) = [ri]
(

1 0
0 2

)
+ [ri]

(
2 0
0 1

)
+ [ri]

(
2 1
0 1

)
+ [ri]

(
1 0
1 2

)
. (2.3)

For any prime, let Cp be the set of matrices constructed using the following
algorithm (see [?, §2.4]):

Algorithm 2.10 (Cremona’s Heilbronn Matrices). Given an odd prime p, this
algorithm outputs a list of 2× 2 matrices of determinant p that can be used to
compute the Hecke operator Tp.

1. Output
(

1 0
0 p

)
.

2. For r =
⌈
−p

2

⌉
, . . . ,

⌊p
2

⌋
:

(a) Let x1 = p, x2 = −r, y1 = 0, y2 = 1, a = −p, b = r.

(b) Output
(
x1 x2

y1 y2

)
.

(c) As long as b 6= 0, do the following:

i. Let q be the integer closest to a/b (if a/b is a half integer, round
away from 0).

ii. Let c = a− bq, a = −b, b = c.
iii. Set x3 = qx2 − x1, x1 = x2, x2 = x3, and

y3 = qy2 − y1, y1 = y2, y2 = y3.

iv. Output
(
x1 x2

y1 y2

)
.

Proposition 2.11 (Cremona, Merel). Let Cp be as above. Then for p - N and
[x] ∈M2(Γ0(N)) a Manin symbol, we have

Tp([x]) =
∑
g∈Cp

[xg].

Proof. See Proposition 2.4.1 of [?].

There are other lists of matrices, due to Merel, that work even when p | N .
The command HeilbronnCremonaList(p), for p prime, outputs the list of

matrices from Algorithm 2.10.

sage: HeilbronnCremonaList(2)
[[1, 0, 0, 2], [2, 0, 0, 1], [2, 1, 0, 1], [1, 0, 1, 2]]
sage: HeilbronnCremonaList(3)
[[1, 0, 0, 3], [3, 1, 0, 1], [1, 0, 1, 3], [3, 0, 0, 1],

17

[3, -1, 0, 1], [-1, 0, 1, -3]]
sage: HeilbronnCremonaList(5)
[[1, 0, 0, 5], [5, 2, 0, 1], [2, 1, 1, 3], [1, 0, 3, 5],
[5, 1, 0, 1], [1, 0, 1, 5], [5, 0, 0, 1], [5, -1, 0, 1],
[-1, 0, 1, -5], [5, -2, 0, 1], [-2, 1, 1, -3],
[1, 0, -3, 5]]

sage: len(HeilbronnCremonaList(37))
128
sage: len(HeilbronnCremonaList(389))
1892
sage: len(HeilbronnCremonaList(2003))
11662

Example 2.12. We compute the matrix of T2 on M2(Γ0(2)):

sage: M = ModularSymbols(2,2)
sage: M.T(2).matrix()
[1]

Example 2.13. We compute some Hecke operators on M2(Γ0(6)):

sage: M = ModularSymbols(6, 2)
sage: M.T(2).matrix()
[2 1 -1]
[-1 0 1]
[-1 -1 2]
sage: M.T(3).matrix()
[3 2 0]
[0 1 0]
[2 2 1]
sage: M.T(3).fcp() # factored characteristic polynomial
(x - 3) * (x - 1)^2

For p ≥ 5 we have Tp = p + 1, since M2(Γ0(6)) is spanned by generalized
Eisenstein series (see Chapter ??).

Example 2.14. We compute the Hecke operators on M2(Γ0(39)):

sage: M = ModularSymbols(39, 2)
sage: T2 = M.T(2)
sage: T2.matrix()
[3 0 -1 0 0 1 1 -1 0]
[0 0 2 0 -1 1 0 1 -1]
[0 1 0 -1 1 1 0 1 -1]
[0 0 1 0 0 1 0 1 -1]
[0 -1 2 0 0 1 0 1 -1]
[0 0 1 1 0 1 1 -1 0]
[0 0 0 -1 0 1 1 2 0]

18

[0 0 0 1 0 0 2 0 1]
[0 0 -1 0 0 0 1 0 2]
sage: T2.fcp() # factored characteristic polynomial
(x - 3)^3 * (x - 1)^2 * (x^2 + 2*x - 1)^2

The Hecke operators commute, so their eigenspace structures are related.

sage: T2 = M.T(2).matrix()
sage: T5 = M.T(5).matrix()
sage: T2*T5 - T5*T2 == 0
True
sage: T5.charpoly().factor()
(x^2 - 8)^2 * (x - 6)^3 * (x - 2)^2

The decomposition of T2 is a list of the kernels of (fe)(T2), where f runs
through the irreducible factors of the characteristic polynomial of T2 and fe

exactly divides this characteristic polynomial. Using Sage, we find them:

sage: M = ModularSymbols(39, 2)
sage: M.T(2).decomposition()
[
Modular Symbols subspace of dimension 3 of Modular
Symbols space of dimension 9 for Gamma_0(39) of weight
2 with sign 0 over Rational Field,
Modular Symbols subspace of dimension 2 of Modular
Symbols space of dimension 9 for Gamma_0(39) of weight
2 with sign 0 over Rational Field,
Modular Symbols subspace of dimension 4 of Modular
Symbols space of dimension 9 for Gamma_0(39) of weight
2 with sign 0 over Rational Field
]

2.6 A Complete toy Implementation

In this section we give a complete high-level toy SAge implementation of the
above algorithm for computing modular symbols and Hecke operators on them
when the level is prime.

def reduce(v):
"""Return index into the list (0,1), (1,0), (1,1), ...

of equivalent symbol."""
if v[0]: return 1+int(v[1]/v[0])
return 0

def manin_symbols(p):
"""Return list of all Manin symbols (c,d)."""
V = GF(p)^2

19

return [V([0,1])] + [V([1,a]) for a in GF(p)]

def relation_matrix(p):
"""Returns sparse matrix of relations between Manin symbols

of level Gamma0(p)."""
syms = manin_symbols(p)
sigma = matrix(GF(p), 2, [0,-1,1,0])
tau = matrix(GF(p), 2, [1,-1,1,0]); tau2 = tau*tau
A = matrix(QQ, 2*len(syms), len(syms), sparse=True)
i = 0
for v in syms:

j = reduce(v)
A[i,j] = 1; A[i,reduce(v*sigma)] += 1; i += 1
A[i,j] = 1; A[i,reduce(v*tau)] += 1; A[i,reduce(v*tau2)] += 1;
i += 1

return A

class modular_symbols:
"""Space of toy modular symbols of prime level p."""
def __init__(self, p):

assert is_prime(p)
self.syms = manin_symbols(p)
rels = relation_matrix(p).row_module()
self.Q = rels.ambient_module() / rels # quotient vector space
self.p = p; self.dim = self.Q.dimension()

def __repr__(self):
return "Toy modular symbols of level %s and dimension %s"%(

self.p, self.dim)

def free_gens(self):
"""Return indexes of freely generating Manin symbols."""
return [self.Q.lift(self.Q.gen(i)).nonzero_positions()[0]

for i in range(self.dim)]

def T(self, q, i):
"""Return T_q(v) with q!=p prime where v is the ith

standard Manin symbol."""
v = self.syms[i]; Q = self.Q; V = Q.V()
return sum([Q(V.gen(reduce(v*h))) for h in

heilbronn_matrices(q, self.p)])

def hecke_matrix(self, q):
"""Return matrix of q-th Hecke operator."""
assert q != self.p
return matrix([self.T(q,i) for i in self.free_gens()])

20

def heilbronn_matrices(p, m):
"""Return matrices of Heilbronn matrices of determinant p modulo m."""
p = Integer(p); M = MatrixSpace(GF(m),2)
if p == 2: return [M(z) for z in ([

[1,0,0,2],[2,0,0,1],[2,1,0,1],[1,0,1,2]])]
v = [M([1,0,0,p])]
for r in [ceil(-p/2)..floor(p/2)]:

x1 = p; x2 = -r; y1=0; y2=1; a=-p; b=r
v.append(M([x1,x2,y1,y2]))
while b!=0:

q = (a/b).round(mode=’away’)
c = a-b*q; a=-b; b=c
x3 = q*x2-x1; x1=x2; x2=x3; y3=q*y2-y1; y1=y2; y2=y3
v.append(M([x1,x2,y1,y2]))

return v

2.7 Cuspidal Modular Symbols and the Boundary Map

Manin identified the subspace of M2(Γ0(N)) that is sent isomorphically onto
H1(X0(N),Z). Let B2(Γ0(N)) denote the free abelian group whose basis is the
set C0(N) of cusps for Γ0(N). The boundary map

δ : M2(Γ0(N))→ B2(Γ0(N))

sends {α, β} to {β} − {α}, where {β} denotes the basis element of B2(Γ0(N))
corresponding to β ∈ P1(Q). The kernel S2(Γ0(N)) of δ is the subspace of
cuspidal modular symbols. Thus an element of S2(Γ0(N)) can be thought of as
a linear combination of paths in h∗ whose endpoints are cusps and whose images
in X0(N) are homologous to a Z-linear combination of closed paths.

Theorem 2.15 (Manin). The map ϕ above induces a canonical isomorphism

S2(Γ0(N)) ∼= H1(X0(N),Z).

Proof. This is [?, Thm. 1.9].

For any (commutative) ring R let

M2(Γ0(N), R) = M2(Γ0(N))⊗Z R

and
S2(Γ0(N), R) = S2(Γ0(N))⊗Z R.

Proposition 2.16. We have

dimC S2(Γ0(N),C) = 2 dimC S2(Γ0(N)).

21

Proof. We have

dimC S2(Γ0(N),C) = rankZ S2(Γ0(N)) = rankZ H1(X0(N),Z) = 2g.

To compute the boundary map on [γ], note that [γ] = {γ(0), γ(∞)}, so if
γ =

(
a b
c d

)
, then

δ([γ]) = {γ(∞)} − {γ(0)} = {a/c} − {b/d}.

Computing this boundary map would appear to first require an algorithm
to compute the set C(Γ0(N)) = Γ0(N)\P1(Q) of cusps for Γ0(N). (Given
such an algorithm is not difficult.) However, there is a trick that computes the
set of cusps in the course of running the algorithm. First, give an algorithm
for deciding whether or not two elements of P1(Q) are equivalent modulo the
action of Γ0(N). Then simply construct C(Γ0(N)) in the course of computing
the boundary map, i.e., keep a list of cusps found so far, and whenever a new
cusp class is discovered, add it to the list. The following proposition, which
is proved in [?, Prop. 2.2.3], explains how to determine whether two cusps are
equivalent.

Proposition 2.17 (Cremona). Let (ci, di), i = 1, 2, be pairs of integers with
gcd(ci, di) = 1 and possibly di = 0. There is g ∈ Γ0(N) such that g(c1/d1) =
c2/d2 in P1(Q) if and only if

s1d2 ≡ s2d1 (mod gcd(d1d2, N))

where sj satisfies cjsj ≡ 1 (mod dj).

In Sage the command boundary map() computes the boundary map from
M2(Γ0(N)) to B2(Γ0(N)), and the cuspidal submodule() command com-
putes its kernel. For example, for level 2 the boundary map is given by the
matrix [1 − 1], and its kernel is the 0 space:

sage: M = ModularSymbols(2, 2)
sage: M.boundary_map()
Hecke module morphism boundary map defined by the matrix
[1 -1]
Domain: Modular Symbols space of dimension 1 for
Gamma_0(2) of weight ...
Codomain: Space of Boundary Modular Symbols for
Congruence Subgroup Gamma0(2) ...
sage: M.cuspidal_submodule()
Modular Symbols subspace of dimension 0 of Modular
Symbols space of dimension 1 for Gamma_0(2) of weight
2 with sign 0 over Rational Field

The smallest level for which the boundary map has nontrivial kernel, i.e.,
for which S2(Γ0(N)) 6= 0, is N = 11.

22

sage: M = ModularSymbols(11, 2)
sage: M.boundary_map().matrix()
[1 -1]
[0 0]
[0 0]
sage: M.cuspidal_submodule()
Modular Symbols subspace of dimension 2 of Modular
Symbols space of dimension 3 for Gamma_0(11) of weight
2 with sign 0 over Rational Field
sage: S = M.cuspidal_submodule(); S
Modular Symbols subspace of dimension 2 of Modular
Symbols space of dimension 3 for Gamma_0(11) of weight
2 with sign 0 over Rational Field
sage: S.basis()
((1,8), (1,9))

The following illustrates that the Hecke operators preserve S2(Γ0(N)):

sage: S.T(2).matrix()
[-2 0]
[0 -2]
sage: S.T(3).matrix()
[-1 0]
[0 -1]
sage: S.T(5).matrix()
[1 0]
[0 1]

A nontrivial fact is that for p prime the eigenvalue of each of these matrices
is p+ 1−#E(Fp), where E is the elliptic curve X0(11) defined by the (affine)
equation y2 + y = x3 − x2 − 10x− 20. For example, we have

sage: E = EllipticCurve([0,-1,1,-10,-20])
sage: 2 + 1 - E.Np(2)
-2
sage: 3 + 1 - E.Np(3)
-1
sage: 5 + 1 - E.Np(5)
1
sage: 7 + 1 - E.Np(7)
-2

The same numbers appear as the eigenvalues of Hecke operators:

sage: [S.T(p).matrix()[0,0] for p in [2,3,5,7]]
[-2, -1, 1, -2]

In fact, something similar happens for every elliptic curve over Q. The book [?]
(especially Chapter 8) is about this striking numerical relationship between the
number of points on elliptic curves modulo p and coefficients of modular forms.

23

2.8 Newforms: Systems of Eigenvalues

In this section we describe an algorithm for computing the system of Hecke
eigenvalues associated to a simple subspace of a space of modular symbols.
This algorithm is better than doing linear algebra directly over the number field
generated by the eigenvalues. It only involves linear algebra over the base field
and also yields a compact representation for the answer, which is better than
writing the eigenvalues in terms of a power basis for a number field. In order to
use this algorithm, it is necessary to decompose the space of cuspidal modular
symbols as a direct sum of simples.

Fix N and a Dirichlet character ε of modulus N , and let

V = M2(N, ε)+

be the +1 quotient of modular symbols, i.e, the submodule fixed by the ∗ invo-
lution given by

∗{α, β} = {−α,−β}.

Algorithm 2.18 (System of Eigenvalues). Given a T-simple subspace W ⊂ V
of modular symbols, this algorithm outputs maps ψ and e, where ψ : TK →W
is a K-linear map and e : W ∼= L is an isomorphism of W with a number field L,
such that an = e(ψ(Tn)) is the eigenvalue of the nth Hecke operator acting on
a fixed T-eigenvector in W ⊗Q. (Thus f =

∑∞
n=1 e(ψ(Tn))qn is a newform.)

1. [Compute Projection] Let ϕ : V → W ′ be any surjective linear map such
that ker(ϕ) equals the kernel of the T-invariant projection onto W . For
example, compute ϕ by finding a simple submodule of V ∗ = Hom(V,K)
that is isomorphic to W , e.g., by cutting out eigenspaces with in V ∗ with
T replaced by the transpose of T .

2. [Choose v] Choose a nonzero element v ∈ V such that π(v) 6= 0 and
computation of Tn(v) is “easy”, e.g., choose v to be a Manin symbol.

3. [Map from Hecke Ring] Let ψ be the map T→W ′, given by ψ(t) = π(tv).
Note that computation of ψ is relatively easy, because v was chosen so that
tv is relatively easy to compute. In particular, if t = Tp, we do not need
to compute the full matrix of Tp on V ; instead we just compute Tp(v).

4. [Find Generator] Find a random T ∈ T such that the iterates

ψ(T 0), ψ(T), ψ(T 2), . . . , ψ(T d−1)

are a basis for W ′, where W has dimension d.

5. [Characteristic Polynomial] Compute the characteristic polynomial f of
T |W , and let L = K[x]/(f). Because of how we chose T in step (4), the
minimal and characteristic polynomials of T |W are equal, and both are
irreducible, so L is an extension of K of degree d = dim(W).

6. [Field Structure] In this step we endow W ′ with a field structure. Let
e : W ′ → L be the unique K-linear isomorphism such that

e(ψ(T i)) ≡ xi (mod f)

24

for i = 0, 1, 2, ...,deg(f)− 1. The map e is uniquely determined since the
ψ(T i) are a basis for W ′. To compute e, we compute the change of basis
matrix from the standard basis for W ′ to the basis {ψ(T i)}. This change
of basis matrix is the inverse of the matrix whose rows are the ψ(T i) for
i = 0, ...,deg(f)− 1.

7. [Hecke Eigenvalues] Finally for each integer n ≥ 1, we have

an = e(ψ(Tn)) = e(π(Tn(v))),

where an is the eigenvalue of Tn. Output the maps ψ and e and terminate.

One reason we separate ψ and e is that when dim(W) is large, the values
ψ(Tn) take less space to store and are easier to compute, whereas each one of
the values e(ψ(n)) is huge.1 The function e typically involves large numbers if
dim(W) is large, since e is obtained from the iterates of a single vector. For
many applications, e.g., databases, it is better to store a matrix that defines e
and the images under ψ of many Tn.

Example 2.19. The space S2(Γ0(23)) of cusp forms has dimension 2 and is
spanned by two Gal(Q/Q)-conjugate newforms, one of which is

f = q + aq2 + (−2a− 1)q3 + (−a− 1)q4 + 2aq5 + · · · ,

where a = (−1 +
√

5)/2. We will use Algorithm 2.18 to compute a few of these
coefficients.

The space M2(Γ0(23))+ of modular symbols has dimension 3. It has the
following basis of Manin symbols:

[(0, 0)], [(1, 0)], [(0, 1)],

where we use square brackets to differentiate Manin symbols from vectors. The
Hecke operator

T2 =

 3 0 0
0 0 2
−1 1/2 −1


has characteristic polynomial (x−3)(x2+x−1). The kernel of T2−3 corresponds
to the span of the Eisenstein series of level 23 and weight 2, and the kernel V
of T 2

2 + T2 − 1 corresponds to S2(Γ0(23)). (We could also have computed V as
the kernel of the boundary map M2(Γ0(23))+ → B2(Γ0(23))+.) Each of the
following steps corresponds to the step of Algorithm 2.18 with the same number.

1. [Compute Projection] We compute projection onto V (this will suffice to
give us a map φ as in the algorithm). The matrix whose first two columns
are the echelon basis for V and whose last column is the echelon basis for
the Eisenstein subspace is  0 0 1

1 0 −2/11
0 1 −3/11


1John Cremona initially suggested to me the idea of separating these two maps.

25

and

B−1 =

 2/11 1 0
3/11 0 1

1 0 0

 ,

so projection onto V is given by the first two rows:

π =
(

2/11 1 0
3/11 0 1

)
.

2. [Choose v] Let v = (0, 1, 0)t. Notice that π(v) = (1, 0)t 6= 0, and v =
[(1, 0)] is a sum of only one Manin symbol.

3. [Map from Hecke Ring] This step is purely conceptual, since no actual
work needs to be done. We illustrate it by computing ψ(T1) and ψ(T2).
We have

ψ(T1) = π(v) = (1, 0)t

and
ψ(T2) = π(T2(v)) = π((0, 0, 1/2)t) = (0, 1/2)t.

4. [Find Generator] We have

ψ(T 0
2) = ψ(T1) = (1, 0)t,

which is clearly independent from ψ(T2) = (0, 1/2)t. Thus we find that
the image of the powers of T = T2 generate V .

5. [Characteristic Polynomial] The matrix of T2|V is
(

0 2
1/2 −1

)
, which has

characteristic polynomial f = x2 +x− 1. Of course, we already knew this
because we computed V as the kernel of T 2

2 + T2 − 1.

6. [Field Structure] We have

ψ(T 0
2) = π(v) = (1, 0)t and ψ(T2) = (0, 1/2).

The matrix with rows the ψ(T i2) is
(

1 0
0 1/2

)
, which has inverse e = (1 0

0 2).
The matrix e defines an isomorphism between V and the field

L = Q[x]/(f) = Q((−1 +
√

5)/2).

I.e., e((1, 0)) = 1 and e((0, 1)) = 2x, where x = (−1 +
√

5)/2.

26

7. [Hecke Eigenvalues] We have an = e(Ψ(Tn)). For example,

a1 = e(Ψ(T1)) = e((1, 0)) = 1,
a2 = e(Ψ(T2)) = e((0, 1/2)) = x,

a3 = e(Ψ(T3)) = e(π(T3(v)))=e(π((0,−1,−1)t))

= e((−1,−1)t)=−1− 2x,

a4 = e(Ψ(T4)) = e(π((0,−1,−1/2)t)) = e((−1,−1/2)t) = −1− x,
a5 = e(Ψ(T5)) = e(π((0, 0, 1)t)) = e((0, 1)t) = 2x,

a23 = e(Ψ(T23)) = e(π((0, 1, 0)t)) = e((1, 0)t) = 1,

a97 = e(Ψ(T23)) = e(π((0, 14, 3)t)) = e((14, 3)t) = 14 + 6x.

Example 2.20. It is easier to appreciate Algorithm 2.18 after seeing how big
the coefficients of the power series expansion of a newform typically are, when
the newform is defined over a large field. For example, there is a newform

f =
∞∑
n=1

anq
n ∈ S2(Γ0(389))

such that if α = a2, then

1097385680·a3(f) = −20146763x19 + 102331615x18 + 479539092x17

− 3014444212x16 − 3813583550x15 + 36114755350x14

+ 6349339639x13 − 227515736964x12 + 71555185319x11

+ 816654992625x10 − 446376673498x9 − 1698789732650x8

+ 1063778499268x7 + 1996558922610x6 − 1167579836501x5

− 1238356001958x4 + 523532113822x3 + 352838824320x2

− 58584308844x− 25674258672.

In contrast, if we take v = {0,∞} = (0, 1) ∈M2(Γ0(389))+, then

T3(v) = −4(1, 0) + 2(1, 291)− 2(1, 294)− 2(1, 310) + 2(1, 313) + 2(1, 383).

Storing T3(v), T5(v), . . . as vectors is more compact than storing a3(f), a5(f),
. . . directly as polynomials in a2!

3 Explicit Modular Abelian Varieties

3.1 Explicit Defining Data for Modular Abelian Varieties

We represent modular abelian varieties over Q explicitly as follows. Let J be an
arbitrary finite product of modular Jacobians J0(N) for various N . (More gen-
erally, one would consider JH(N) = Jac(XH(N)) for subgroups H ⊂ (Z/NZ)∗.)

27

We will refer to J as an ambient modular abelian variety. Fix a modular abelian
variety A and a finite degree homomorphism ϕ : A → J . Then there is an
isogeny from the image B of A in J back to A whose kernel we denote by G, so
A is isomorphic to B/G and B ⊂ J :

J

0 // G // B
?�

OO

// A //ii

f
__@@@@@@@

0

In other words we can represent any modular abelian variety by giving

G ⊂ B ⊂ J,

all defined over Q. It remains to explain how we explicitly specify B and G.
We specify B as follows. The inclusion B ↪→ J induces an inclusion of

rational homology H1(B,Q) ↪→ H1(J,Q) and B is determined by the image
V of H1(B,Q) in the Q-vector space H1(J,Q). We explicitly compute a basis
for H1(J,Z) and H1(J,Q) = H1(J,Z) ⊗ Q using modular symbols, and specify
B by giving a basis in reduced echelon form for a subspace V ⊂ H1(J,Q). Of
course, not every subspace corresponds to a modular abelian variety, but we can
determine whether or not a given V corresponds to a valid abelian subvariety
(see ??).

We specify G as follows. Suppose V defines an abelian subvariety B of J as
above. By the Abel-Jacobi theorem, we have

J(C) ∼= H1(J,R)/H1(J,Z),

and letting Λ = H1(J,Z) ∩ V we have B(C) ∼= (V ⊗ R)/Λ. In particular,

B(C)tor ∼= V/Λ,

and we specify G ⊂ B(C)tor by giving the lattice L with Λ ⊂ L ⊂ V such that
L/Λ ∼= G.

For brevity, henceforth we use the term modular abelian variety to mean
a modular (or equivalently GL2-type) abelian variety A that has been given
explicitly by a triple (V,L, J) where V ⊂ H1(J,Q), the lattice L ⊂ V contains
Λ = V ∩ H1(J,Z), and J is specified by a finite ordered list of congruence
subgroups Γ0(N). (More generaly, one might include Γ1(N) and ΓH(N).) We
use the notation (V, J) as a shorthand for L = Λ.

3.2 Endomorphism Rings and Hom Spaces

3.2.1 Computing End and Hom

The following saturation algorithm will be important when computing End(A)
and Hom(A,B).

28

Algorithm 3.1 (Saturate). Given a subgroup L of Zn, this algorithm computes
the saturation (QL)∩Zn of L in Zn. Let M be a matrix whose rows are a Z-basis
for L.

1. [Hermite Normal Form] Find the Hermite Normal Form H of M t.

2. [Inverse] Compute S = (Ht)−1M using the “last big row” trick. Then
output S whose rows are a basis for the saturation of L.

Proof. It suffices to prove that (Ht)−1M has rows that span the saturation of
the row span of M . [...]

Note that one could instead replace H by an LLL reduced basis for the
rowspace of M t, but this is usually much slower because the p-adic/modular
algorithm [[stein-pernet]] for computing Hermite normal form is fast.

If A is an abelian variety of dimension 2 then after chosing a basis for Λ =
H1(A,Z), we have

End(Λ) ∼= Mat2d×2d(Z) ≈ Z(2d)2 .

Proposition 3.2. Let A be a simple abelian variety over a number field K, let
Λ = H1(A,Z) and embed End(A/K) in End(Λ) by the action of endomorphisms
on homology. Then

End(A/K) = (End(A/K)⊗Q) ∩ End(Λ),

where the intersection takes place in End(Λ)⊗Q.

We will use the following lemma in the proof of Proposition 3.2.

Lemma 3.3. Let K be a number field. If an element x ∈ C is fixed by every
element of Aut(C/K), then x ∈ K.

Proof. If x ∈ K, this is standard Galois theory. If x 6∈ K, then x is transcen-
dental. Since x + 1 is also transcendental, the fields K(x) and K(x + 1) are
isomorphic via a map σ sending x to x+1. Every automorphism of a subfield of
C extends to C, so σ extends to an automorphism of C that does not fix x.

Proof of Proposition 3.2. An element of End(A/C) is just a complex linear map
on Tan(AC) that preserves Λ. The inclusion of End(A/K) in the right hand side
is obvious, so suppose ϕ ∈ (End(A/K)⊗Q)∩End(Λ). Then there is a positive
integer n such that nϕ ∈ End(A/K). Thus nϕ ∈ End(A/K) ⊗ Q induces
a complex-linear endomorphism of Tan(AC), so ϕ = (1/n)nϕ also induces a
complex-linear endomorphism of Tan(AC); also, by hypothesis ϕ preserves Λ.
Thus ϕ ∈ End(A/C).

There is a nonzero integer n such that nϕ is defined over K, so for any
σ ∈ Gal(C/K), we have σ([n]ϕ)− [n]ϕ = 0. But

σ([n]ϕ) = σ([n])σ(ϕ) = [n]σ(ϕ),

29

so
[n](σ(ϕ)− ϕ) = 0,

which implies σ(ϕ) = ϕ, since the kernel of [n] is finite and the image of σ(ϕ)−ϕ
is either infinite or 0. By Lemma 3.3, ϕ ∈ End(A/K).

Algorithm 3.4 (Endomorphism Algebra as Field). Given a simple modular
abelian variety A over Q, this algorithm computes a number field F and an
isomorphism End(A)⊗Q→ F .

1. [Find Af] Find an isogeny ϕ : A → Af , where Af is a newform abelian
variety.

2. [Choose random endomorphism] Randomly pick an endomorphism ϕ of
Af and compute its minimal polynomial g.

3. [Does endomorphism generate?] If deg g = dim(Af), then let F be the
number field generated by a root α of g. Otherwise, go to step 1.

4. [Define an isomorphism] Let Ψ be the unique field homomorphism End(Af)⊗
Q→ F that sends ϕ to α. Compose this with the isomorphism End(A)⊗
Q→ End(Af)⊗Q induced by ϕ to obtain the desired isomorphism.

Proof. By [?] because A is simple, modular, and defined over Q, we know that
End(A)⊗Q is a number field of degree equal to dim(A). (If we instead consider
End(A/Q), then End(A/Q)⊗Q could be a non-commutative division algebra.
Again we emphasize that by definition End(A) contains only the endomorphisms
of A that are defined over Q.)

By the primitive element theorem, there exists a ϕ such that if f is the
minimal polynomial of ϕ, then deg(f) = dim(A). Then since deg(f) = dim(A)
it follows that the map Ψ is an isomorphism (a nonzero homomorphism between
number fields of the same dimension is an isomorphism).

Algorithm 3.5 (Compute End(A)). Given a simple modular abelian variety
A, this algorithm computes End(A).

1. [Find Modular Form] Since A is simple we can use Algorithm ?? to find a
newform f such that A is isogenous to the abelian variety Af . It suffices
to compute End(A) ⊗ Q = End(Af) ⊗ Q, since by Proposition 3.2 this
yields End(A). Thus it suffices to compute End(Af).

2. [Initialize] Let d = dim(Af), let n = 1, and let V be the zero subspace of
End(Af)⊗Q.

3. [Compute Hecke operator] Using Algorithm ??, compute the restriction
of the Hecke operator Tn to Af , as an element of End(Af)⊗Q.

4. [Increase V] Replace V by V + Q · Tn.

5. [Finished?] If dim(V) < d, increase n and go to Step 3.

30

6. [Saturate] Compute End(Af/Q) = V ∩ End(ΛAf
) using Algorithm ??.

Proof. We need to show that the algorithm terminates, i.e., that the Hecke
algebra generates End(Af/Q) ⊗ Q. But by [?, Thm. 1] the image of T ⊗ Q in
End(Af/Q)⊗Q is a subfield of degree dimAf . But Af is simple by [?, Cor. 4.2],
so [?, Thm. 2.1] implies that End(Af/Q)⊗Q also has dimension dim(Af). Thus
the Hecke algebra generates End(Af/Q)⊗Q. By Proposition 3.2 once we have
End(Af/Q)⊗Q we apply Algorithm ?? to get End(Af/Q).

Algorithm 3.6 (Compute Hom(A,B)). Given modular abelian varieties A and
B, we compute Hom(A,B) as follows.

1. [Factorizations] By Proposition 3.2 it suffices to explain how to compute
Hom(A,B)⊗Q. For this, we compute using Algorithm ?? factorizations∏
i∈I C

ei
i and

∏
i∈I C

fi

i of A and B up to isogeny (with isogenies) respec-
tively, where I is some index set, the C ′is are non-isogenous simple abelian
varieties, and ei, fi ≥ 0. For the rest of this algorithm we replace A, B,
by these products.

2. [Simple case] When A ∼ Ce and B ∼ Df , where C,D are simple abelian
varieties we compute Hom(A,B) in the following way. If C and D are not
isogenous Hom(A,B) = 0. If C and D are isogenous,

Hom(A,B)⊗Q = Hom(Ce, Df)⊗Q = Mate×f (End(C)⊗Q).

3. [General case] We compute each Hom(Cei
i , C

fj

j)⊗Q as in Step 2 and obtain

Hom(
∏
Cei
i ,
∏
C
fj

j) ⊗ Q as a matrix with blocks Hom(Cei
i , C

fj

j) ⊗ Q for
each pair (i, j).

Proof. Suppose first that A ∼ Ce, B ∼ Df with C,D simple abelian varieties.
When C and D are not isogenous there is no morphism A→ B, so Hom(A,B) =
0. When C and D are isogenous, a morphism Ce → Df over Q is given by an
e× f matrix with entries from End(A)⊗Q, where the (i, j)th entry represents
the morphism between the ith component of A and jth component of B. We
get End(A) ⊗ Q using Algorithm ??. Once we have Hom(A,B) ⊗ Q, to get
Hom(A,B) we only need to apply Proposition 3.2.

In general, when A =
∏
i∈I C

ei
i and B =

∏
i∈I C

fi

i we get Hom(Cei
i , C

fj

j) as
before and combining these blocks we obtain Hom(A,B).

3.3 Isogenies and Isomorphisms Between Modular Abelian
Varieties

3.3.1 Isogenies From A to B

Algorithm 3.7 (Test if Isogenous). Given two modular abelian varieties A
and B, this algorithm decides whether or not A and B are isogenous, and if so
returns an isogeny between them.

31

1. [A, B both simple] When A and B are both simple they are isogenenous
to abelian varieties Af and Ag attached to newforms; we can find explicit
isogenies using Algorithm ??. Then A is isogenous to B if and only if
Af = Ag, i.e., f and g are Galois conjugate.

2. [Pair off factors] When A and B are not simple we pair off factors, i.e.
for any C in a factorization of A we check if there is an isogenous D in a
factorization of B. If such D exists and the multiplicities of C in A and D
in B are the same we remove D and continue with another C. Otherwise,
A and B cannot be isogenous.

Proof. When A and B are simple, by [?, §5] A ' Af and B ' Ag are isogenous
if and only if the corresponding newforms f and g are Galois conjugate, since
f and g determine L(Af , s) ad L(Ag, s).

If A ∼
∏
i∈I A

ei
i and B ∼

∏
i∈I B

ei
i , indexed so that Ai ∼ Bi for all i ∈ I,

then we get that the products
∏
i∈I A

ei
i and

∏
i∈I B

ei
i are isogenous, so A and

B are also isogenous.
Conversely, suppose that A ∼ B and ϕ : A → B is some isogeny. Let

A ∼
∏
i∈I A

ei
i and B ∼

∏
j∈J B

fj

j be factorizations of A and B into products of
powers of non-isogenous simple abelian varieties. Fix an index i ∈ I. Combining
the maps from Ai to A, from A to B, and the projection to Bj for each j we
obtain morphisms φij : Ai → Bj for all j ∈ J . Since the image of an abelian
variety is an abelian variety and all Bj ’s are simple it follows that ϕij(Ai) is
either zero or all of Bj , which means that Ai and Bj are isogenous. It is not
possible that all ϕij(Ai) are zero since that would imply that ϕ is the zero map,
so we find a Bj isogenous to Ai. Removing Ai and Bj from the factorizations
and repeating this argument yields that A and B are isogenous if and only if
there is a bijection σ : I → J such that Ai is isogenous to Bσ(i) for all i, and
ei = fσ(i).

3.3.2 Isomorphisms from A to B

In this section we describe an algorithm to decide whether two simple modular
abelian varieties are isomorphic, and if so to give an isomorphism. We do not yet
know an algorithm to decide whether two nonsimple modular abelian varieties
are isomorphic (just need a way to enumerate elements in lattice of small norm
– might be straightforward if don’t care about speed!).

Algorithm 3.8 (Norm Equation). Given an order O in a number field K and
an element a ∈ Q, this algorithm finds all solutions in O to the norm equation
Norm(x) = a, up to units of O.

Replace the following by a reference to Henri Cohen’s book, etc. [[Claus
Fieker suggests the following algorithm (we should expand on that)

1. [Class Group] Find the class group of K.

2. [Ideals of bounded norm] Use linear programming [[huh??]] to find all
ideals of norm up to some bound.

32

3. [Solve] Deduce all solutions to the norm equation up to units.

]]

Algorithm 3.9 (Test if Isomorphic). Given simple modular abelian varieties A
and B, this algorithm either proves that A and B are not isomorphic, or returns
an isomorphism between them (or all isomorphisms, up to units).

1. [Equal?] If A = B, return “yes” and the identity map.

2. [Isogenous?] Determine whetherA andB are isogenous using Algorithm ??.
If A and B are not isogenous then return “no”, and if A and B are isoge-
nous, let f : B → A be an isogeny.

3. [Degree of isogeny] Compute d = deg(f). If d is not a square, return “no”.

4. [Endomorphism algebra] Compute the number field K = End(A)⊗Q, and
an embedding of End(A) into K using Algorithm ??.

5. [Hom space] Compute Hom(A,B) using Algorithm ??.

6. [Image of Hom space] Compute the image Hf of Hom(A,B) in End(A)
got by composing with f .

7. [Endomorphism ring] Compute the order O in K equal to End(A) using
Algorithm ??.

8. [Solve norm equation] Find solutions (up to units of O) of the norm equa-
tions Norm(x) = ±

√
d in O. If there are no solutions, return “no”.

9. [Lift to Hf?] For each solution (up to units), check whether it lies in Hf .

10. [Isomorphic?] If a solution x lies in Hf , then return “yes” and x ◦ f−1.
(Note that at this point we could also output x ◦ f−1 and continue on to
return representatives for all isomorphisms up to units.)

11. [Not isomorphic?] If none of the solutions lies in Hf , return “no”.

Proof. Let f : B → A be an isogeny and denote its degree by d. Define

Hf = {f ◦ g : g ∈ Hom(A,B)} ⊂ End(A).

Since degree is multiplicative, A and B are isomorphic if and only if the subset
Hf of End(A) contains an element of degree d. Embed End(A) into the number
field K = End(A)⊗Q and let O be the order in K that is the image of End(A).
By [?, Prop 12.12], for x ∈ K we have Norm(x)2 = deg(x). Thus, finding an
element of degree d in Hf is equivalent to finding x ∈ O with Norm(x) = ±

√
d,

such that x ∈ Hf , where we view Hf as a subset of K using the above inclusions.
Using Algorithm ??, we find all x such that Norm(x) = ±

√
d, up to units of

O. There are may be infinitely many units, e.g., if K is a real quadratic field,
so there are often infinitely many solutions to the norm equation and we cannot

33

directly check whether at least one of these infinitely many are in Hf . However,
because there are only finitely many solutions up to units, it will suffice to show
that Hf is stable under units and to check whether each representative solution
is in Hf . Thus to finish the proof of correctness of the algorithm, we verify that
x ∈ Hf if and only if xu ∈ Hf , where u is any unit of O. If x = f ◦ g for
some g ∈ Hom(A,B), then xu = f ◦ (g ◦ u) is in Hf since g ◦ u ∈ Hom(A,B).
Conversely, if xu ∈ Hf , then by what we have just shown x = xuu−1 ∈ Hf .

Discuss how non-simple case works. Still just need to solve a norm equation
but solving it is more complicated (?).

3.3.3 The Minimal Isogeny

A small extension of Algorithm ?? gives us the minimal degree of any isogeny
between two isogenous modular abelian varieties. [[delete below and just say
that we run through all square multiples of d instead of just d in the algorithm
above. the below is riddled with errors anyways.]]

Algorithm 3.10 (Minimal Isogeny). Given simple modular abelian varieties
A and B, this algorithm checks if A and B are isogenous and if so returns the
minimal degree of an isogeny A→ B together with an isogeny of that degree.

1. [Equal?] If A = B, return 1 and the identity map.

2. [Isogenous?] Determine whetherA andB are isogenous using Algorithm ??.
If A and B are not isogenous then return “not isogenous”, and if A and
B are isogenous, let f : B → A be some isogeny.

3. [Degree of some isogeny] Compute deg(f) using Algorithm ??. Write
deg(f) as ab2, where a is squarefree.

4. [Endomorphism algebra] Compute the number field K = End(A)⊗Q, and
an embedding of End(A) into K using Algorithm ??.

5. [Hom space] Compute Hom(A,B) using Algorithm ??.

6. [Image of Hom space] Compute the image Hf of Hom(A,B) in End(A)
got by composing with f ...

7. [Endomorphism ring] Compute the order O in K generated by End(A)
Algorithm ??.

8. [Initialize] Let i = 0.

9. [Solve norm equation] Increase i by one and find the solutions (up to
units of O) of the norm equations Norm(x) = ±abi in O. If there are no
solutions, repeat this step.

10. [Lift to Hf?] For each solution (up to units), check whether it lies in Hf .

34

11. [Isogenous of degree ai2?] If a solution x lies in Hf , then return ai2 and
x ◦ f−1.

12. [Should try isogeny of higher degree] If none of the solutions lies in Hf ,
return to Step 9.

Proof. Let f : A → B be an isogeny and denote its degree by d = ab2, where
a is squarefree. Define Hf = {φ ◦ f : φ ∈ Hom(B,A)} ⊂ End(A). Since degree
is multiplicative, B and A are isogenous via an isogeny of degree d′ if and only
if Hf contains an element of degree dd′. Embed End(A) into K = End(A)⊗Q
and let O be the order in K generated by End(A). By Proposition 12.12. in
Milne’s ”Abelian Varieties” for x ∈ K we have Norm2(x) = deg(x). Thus,
finding an element of degree dd′ in Hf is equivalent to finding x ∈ O with
Norm(x) = ±

√
dd′, such that x actually comes from Hf . Hence, the possible

values for d′ are ai2 for i ∈ N . We can find all x such that Norm(x) = ±
√
dd′

up to units of O. The proof that this suffices is the same as the end of the proof
of Algorithm 3.9.

4 Quaternion Algebras

4.1 Basic Facts about Quaternion Algebras over Number
Fields

These notes are just a short overview of some basic facts about quaternion alge-
bras over Q and over other number fields, which end by stating the classification
of quaternion algebras over a number field.

4.1.1 Hamilton’s quaternions

I suspect everyone reading these notes has heard of the Hamiltonian quaternions,
usually denoted H. This is just the set

H = {a+ bi+ cj + dk | a, b, c, d ∈ Q},

with addition defined as usual, and multiplication defined by the rules

i2 = −1, j2 = −1, and ij = k = −ji.

(Maybe it’s more common to choose R instead of Q, but since we’re going to be
thinking about number fields, we’ll stick with Q.) The first reason most people
run into this ring is because it’s an example of a division ring or skew field, i.e. a
non-commutative field. Indeed, given a non-zero quaternion x = a+bi+cj+dk,
we have that for

x−1 =
a− bi− cj − dk√
a2 + b2 + c2 + d2

,

in fact xx−1 = x−1x = 1.
The Hamiltonian quaternions pop up all over the place in math, but also in

physics. If I knew any physics, maybe I’d know why?

35

4.1.2 Quaternion Algebras

Now as you probably guessed, I’m not going to spend the whole hour just talking
about H. In fact, there are lots of things similar to H that are just as interesting
– and they all come from the same construction as above, but replacing −1 by
other choices.

Also, I’m going to talk about quaternion algebras over number fields other
than Q. However, there’s really no loss in just talking about the situation over
Q, if that’s more comfortable.

Let F be a field. A quaternion algebra (over F) is a 4-dimensional
central simple algebra over F . That is, it is a 4-dimensional vector space over F
which is also a ring, with center isomorphic to F , and which has no nontrivial
two-sided ideals.

This means that B consists of elements of the form α = x + yi + zj + wij,
with the multiplication rules as above. We define the conjugate of α, α, to be
the quaternion x− yi− zj − wij. We also define the reduced trace

tr(x) = α+ α = 2x

and the reduced norm

nm(x) = αα = x2 − ay2 − bz2 + abw2.

We won’t do much with these right now, but they’re important in the study of
quaternion algebras. For instance, α is invertible if and only if it has reduced
norm not equal to 0, and the elements of reduced trace 0 form a useful subspace
of B. (They’re the elements of B which are not in K, but whose square is in
K. They’re like the purely imaginary elements in C.)

So clearly H above is going to be an example; here’s another easy one:
M2(F), the ring of 2 × 2 matrices over F , is always a quaternion algebra over
F . Now, this matrix example just feels like cheating – we somehow want to
think of that as a “degenerate” example of a quaternion algebra. Let’s come up
with some terminology to do just that.

Let F be a field, and B a quaternion algebra over F . Let K be any extension
of F (or, in fact, any field which is an F -algebra). We say that B splits over
K if B ⊗F K ∼= M2(F). Otherwise, we say that B is ramified over K. If
K = F , we simply say B is split or ramified.

So now you probably want some more exciting examples of quaternion alge-
bras than just these two, which I’ve hinted at above. Let a, b ∈ F×. Then we
can define a quaternion algebra B as the 4-dimensional algebra over F on basis
{1, i, j, ij} with

i2 = a, j2 = b, ij = −ji.

You can check that this does indeed give us a quaternion algebra (i.e. that
it’s central and simple over F). We’ll denote this quaternion algebra by the
somewhat heavy notation

B = quatalg(a, b, F),

36

which will make at least a bit more sense shortly.

Several natural questions should pop into your head, such as:

• Does every quaternion algebra look like this? (Yes, unless F has charac-
teristic 2 – but then it’s your fault for working over a field of characteristic
2.)

• Can I easily tell when two of these are isomorphic? (Yes.)

• Are these easily parametrized over Q, or any number field? (No . . . just
kidding. Yes.)

In fact, it turns out that over any number field F , we can associate to B a
discriminant which completely determines B up to isomorphism.

Let F be a number field, and let MF denote the set of places of F . Recall
that this consists of an embedding for each equivalence class of norms on F ; by
Ostrowski’s Theorem, we get one for each prime in the ring of integers of F ,
one for each real embedding of F , and one for each complex conjugate pair of
embeddings of F . Given a place v ∈MF , let Fv denote the completion of F at
v, and let Bv ∼= B ⊗F Fv.

If your algebraic number theory is a little rusty, that’s okay – just take F = Q
below. You really don’t lose any of the content.

It turns out that B will be completely determined (up to isomorphism) by
the Bv for all v. This means that we should start by asking what the possibilities
for quaternion algebras over R, C, and over the finite extensions of Qp, i.e. over
local fields. Needless to say, there’s a simple classification:

Theorem 4.1. Over any local field, there is only one ramified quaternion alge-
bra up to isomorphism.

This also applies over any infinite places. We say that B is definite if it is
ramified at every infinite place of F , and indefinite otherwise. (Some authors
only define this notion in the case where F is totally real.) So now we want to
start putting this together to try to determine B:

Definition 4.2. Let B be the quaternion algebra quatalg(a, b, F), and v a place
of F . We define the Hilbert symbol (a, b)v to be 1 if B is split over Fv, and
−1 if B is ramified over Fv.

Now I’m just going to state a string of theorems about the Hilbert symbol;
these are easily proven by hand, or you can look in Serre’s A Course in Arith-
metic [[?]]. (In fact, if you haven’t already, you should read that book from
cover to cover.) We then have the following theorems:

Theorem 4.3. We have that (a, b)v is 1 exactly when the quadratic form z2 −
ax2 − by2 has a nontrivial solution over Fv (i.e., a solution where x, y, and z
are not all zero).

37

Theorem 4.4. If a is a square in Fv, then (a, b)v = 1. (Simply take z to be
the square root of a, x = 1, y = 0. Of course, the same applies to b, mutatis
mutandis.)

Theorem 4.5. If a and b are both squares in F×v , then (a, b)v = 1.

Now, we know that any given a, b in F are going to be units in Fv for almost
every v. Then the previous theorem says that B is going to be split at almost
every place! We have even more, in fact:

Theorem 4.6. (Hilbert) We have that∏
v∈MF

(a, b)v = 1.

So let’s summarize what the previous theorems just said. Given a quaternion
algebra B over F , we know that B is ramified at a finite, even number of places
of F , and is split elsewhere. So we define the discriminant of B, disc(B), to
be the product of the places where B is ramified. (One can think of this as a
(squarefree) ideal of F , along with a collection of some of the infinite places of
F .) Now, of course, we want to know: does this determine B? Yes!

Theorem 4.7. Let S be a finite, even cardinality set of places in MF . Then
there exists a unique quaternion algebra over F which is ramified exactly at S
up to isomorphism.

4.1.3 Bibliography

There are several good sources to learn about quaternion algebras and related
topics. For quaternion algebras themselves, it’s hard to beat Vigneras’s [[?]].
Another book along the same lines which seems nice (though I haven’t read
much), and has the advantage of at least claiming a computational bent, is [[?]].
For information about Shimura curves, it’s hard to beat Shimura himself in [[?]]
(“Read the masters!”). One can also easily find the original papers by Shimura.

38

4.2 Quaternion Algebras and Supersingular Elliptic Curves

The main reference for this section is [[Kohel, Hecke module structure on quater-
nions]].

4.2.1 Eichler Orders and Supersingular Curves

Let p be a prime number. Recall that up to isomorphism there is a unique
quaternion algebra H that is ramified precisely at p and∞. An order R in H is
a subring containing a Q-basis for H that is finitely generated as a Z-module.

Unlike the situation with orders of number fields, maximal orders in quater-
nion algebras are not unique. Indeed, the conjugate of any maximal order is
also maximal.

An Eichler order R in H is the intersection of two distinct maximal orders
in H. The level of R is the index of R in any maximal order that contains R.

A supersingular elliptic curve E over Fp is a curve such that E(Fp)[p] = 0.
Let M be in integer coprime to p. An enhanced elliptic curve E = (E,C) is a
pair consisting of an elliptic curve E over Fp and a cyclic subgroup C ⊂ E(Fp)
of order M . If E = (E,C) and E′ = (E′, C ′) are enhanced curves, then a
morphism E → E′ is a homomorphism E → E′ that sends C into C ′. We say
E is supersingular if E is supersingular.

Theorem 4.8. The enhanced curve E is supersingular if and only if the endo-
morphism ring End(E) is an Eichler order of level M in the quaternion algebra
ramified at p and ∞.

See [[Silverman AEC I, §V.3]] for most of the proof. The basic idea is that
if End(E) isn’t a quaternion order, then it is an order in a number field, and
using properties of the Frobenius endomorphism, one concludes that E isn’t
supersingular, and conversely.

4.2.2 The Supersingular Module

Let S = X0(Mp)ssFp
denote the set of isomorphism classes of enhanced supersin-

gular elliptic curves E. Let X = Div(X0(Mp)ssFp
) be the free abelian group on

the elements of S.
The property of being supersingular is preserved under isogeny, which allows

us to define an action of Hecke operators on X. For n 6|Mp, the Hecke operators
Tn act on X by

Tn([E]) =
∑
ϕ

[F],

where the sum is over the cyclic isogenies ϕ : E→ F of degree n. There is also
an inner product on X given by extending the following inner product linearly:

〈[E], [F]〉 =
1
2

#Isom(E,F),

39

and we have
〈[E], Tn([F])〉 = 〈Tn([E]), [F]〉.

When M = 1, it is straightforward to directly compute with X, using what
is called the Mestre Method of Graphs. We represent E in X by its supersingular
j-invariants j(E) ∈ Fp2 . Because the Hecke operators are algebraic correspon-
dence, there is an explicit polynomial Φn(Z,W) ∈ Q[Z,W] that we can use
to compute the action of Hecke operators Tn. In particular, if E ∈ X has j-
invarniant j, then Tn([j]) =

∑
j′ [j
′], where the sum is over the roots j′ ∈ Fp2 of

Φn(j,W). For example, the modular polynomial Φ2 is

Φ2(Z,W) = −W 2Z2 +W 3 + 1488W 2Z + 1488WZ2 − 162000W 2 + Z3 +

40773375WZ − 162000Z2 + 8748000000W + 8748000000Z − 157464000000000

When M > 1, it is much more difficult to directly compute with the module X
on supersingular enhanced curves. In fact, I know of no direct implementation,
except when X0(M) has genus 0, when there is also an easy way to compute
X. Fortunately, quaternion algebras come to the rescue and provide an indirect
way to compute with X in general.

4.2.3 An Equivalence of Categories

Let Ell be the category of enhanced supersingular elliptic curves over Fp, fix an
object E in Ell, and set R = End(E). Recall Theorem 4.8, which asserts that
R is an Eichler order the quaternion algebra ramified at p and ∞. Let ModR
be the cateogry of locally free rank 1 right R-modules.

Theorem 4.9. The map F 7→ Hom(E,F) induces a functorial equivalence of
categories Ell→ ModR.

Thus the theorem implies that there is a natural bijection between the ele-
ments of S and the nonzero right ideal classes ClR in R. Moreover, the action
of Hecke operators on S carries over to an action of Hecke operators on the free
abelian group on the elements of ClR.

4.2.4 Example

Example 4.10. We compute a supersingular j-invariant in characteristic 23,
then find the isogenous j-invariants.

sage: k.<a> = GF(23^2)

sage: j = supersingular_j(k); j

3

sage: R.<Z> = k[]; S.<W> = R[]

sage: phi = sage.modular.ssmod.ssmod.Phi_polys(2,W,Z)

sage: phi(j,Z)

Z^3 + 5*Z^2 + 15*Z + 21

sage: phi(j,Z).roots()

[(3, 1), (19, 2)]

40

sage: X = SupersingularModule(23)

sage: X.supersingular_points()

([3, 19, 0], {19: 1, 0: 2, 3: 0})

sage: t2 = X.hecke_matrix(2); t2

[1 2 0]

[1 1 1]

[0 3 0]

sage: t2.fcp()

(x - 3) * (x^2 + x - 1)

sage: G = DiGraph(t2); show(G)

sage: X = SupersingularModule(389)

sage: X.supersingular_points()

([220, 46*a + 308, 343*a + 379, 85*a + 350, 24*a + 317, 365*a + 168, 304*a + 33,

241*a + 74, 315*a + 162, 154, 17, 148*a + 150, 74*a + 200, 196*a + 187, 71*a + 182,

92*a + 276, 290*a + 184, 36, 358, 193*a + 202, 318*a + 114, 99*a + 361, 297*a + 29,

250*a + 201, 318, 7, 121, 71*a + 207, 327, 139*a + 367, 318*a + 139, 0, 16],

{0: 31, 318*a + 114: 20, 74*a + 200: 12, 7: 25, 71*a + 207: 27, 16: 32, 17: 10,

315*a + 162: 8, 154: 9, 365*a + 168: 5, 318*a + 139: 30, 36: 17, 343*a + 379: 2,

148*a + 150: 11, 139*a + 367: 29, 193*a + 202: 19, 24*a + 317: 4, 85*a + 350: 3,

318: 24, 196*a + 187: 13, 99*a + 361: 21, 327: 28, 290*a + 184: 16,

71*a + 182: 14, 220: 0, 241*a + 74: 7, 358: 18, 297*a + 29: 22, 92*a + 276: 15,

304*a + 33: 6, 46*a + 308: 1, 250*a + 201: 23, 121: 26})

sage: t2 = X.hecke_matrix(2); t2

33 x 33 sparse matrix over Integer Ring

sage: G = DiGraph(t2); G.plot(figsize=8)

41

sage: B = BrandtModule(23); B

Brandt module of dimension 3 of level 23 of weight 2 over Rational Field

sage: B.order_of_level_N()

Order of Quaternion Algebra (-1, -23) with base ring Rational Field with basis (1/2 + 1/2*j, 1/2*i + 1/2*k, j, k)

sage: B.right_ideals()

(Fractional ideal (2 + 2*j, 2*i + 2*k, 4*j, 4*k),

Fractional ideal (2 + 2*j, 2*i + 6*k, 8*j, 8*k),

Fractional ideal (2 + 10*j + 8*k, 2*i + 8*j + 6*k, 16*j, 16*k))

sage: t2 = B.hecke_matrix(2); t2

[1 2 0]

[1 1 1]

[0 3 0]

sage: DiGraph(t2).plot()

sage: B = BrandtModule(23,11); B

Brandt module of dimension 22 of level 23*11 of weight 2 over Rational Field

sage: B.hecke_operator(2).charpoly().factor()

42

(x - 3) * (x^2 + x - 1)^2 * (x^3 - 3*x^2 + 3) * (x^3 + x^2 - 4*x + 1) *

(x^5 + 4*x^4 - 14*x^2 - 13*x - 1) *

(x^6 - 3*x^5 - 4*x^4 + 16*x^3 - 3*x^2 - 10*x + 1)

sage: B = BrandtModule(389); B

Brandt module of dimension 33 of level 389 of weight 2 over Rational Field

sage: for I in B.right_ideals(): print I

Fractional ideal (2 + 2*j + 2*k, i + 2*j + k, 4*j, 4*k)

Fractional ideal (2 + 6*j + 2*k, i + 2*j + k, 8*j, 8*k)

Fractional ideal (2 + 6*j + 6*k, i + 6*j + k, 8*j, 8*k)

Fractional ideal (2 + 14*j + 2*k, i + 2*j + 9*k, 16*j, 16*k)

Fractional ideal (2 + 14*j + 2*k, i + 2*j + 25*k, 32*j, 32*k)

Fractional ideal (2 + 14*j + 2*k, i + 2*j + 57*k, 64*j, 64*k)

Fractional ideal (2 + 14*j + 6*k, i + 6*j + k, 16*j, 16*k)

Fractional ideal (2 + 14*j + 10*k, i + 10*j + k, 16*j, 16*k)

Fractional ideal (2 + 14*j + 14*k, i + 14*j + 9*k, 16*j, 16*k)

Fractional ideal (2 + 14*j + 14*k, i + 14*j + 9*k, 32*j, 32*k)

Fractional ideal (2 + 14*j + 18*k, i + 18*j + 9*k, 32*j, 32*k)

Fractional ideal (2 + 14*j + 30*k, i + 30*j + 25*k, 32*j, 32*k)

Fractional ideal (2 + 14*j + 30*k, i + 30*j + 25*k, 64*j, 64*k)

Fractional ideal (2 + 14*j + 34*k, i + 34*j + 25*k, 64*j, 64*k)

Fractional ideal (2 + 14*j + 62*k, i + 62*j + 57*k, 64*j, 64*k)

Fractional ideal (2 + 14*j + 62*k, i + 62*j + 121*k, 128*j, 128*k)

Fractional ideal (2 + 14*j + 66*k, i + 66*j + 121*k, 128*j, 128*k)

Fractional ideal (2 + 14*j + 126*k, i + 126*j + 57*k, 128*j, 128*k)

Fractional ideal (2 + 30*j + 6*k, i + 6*j + 17*k, 32*j, 32*k)

Fractional ideal (2 + 30*j + 6*k, i + 6*j + 17*k, 64*j, 64*k)

Fractional ideal (2 + 30*j + 22*k, i + 22*j + k, 32*j, 32*k)

Fractional ideal (2 + 46*j + 14*k, i + 14*j + 9*k, 64*j, 64*k)

Fractional ideal (2 + 46*j + 18*k, i + 18*j + 41*k, 64*j, 64*k)

Fractional ideal (2 + 46*j + 46*k, i + 46*j + 41*k, 64*j, 64*k)

Fractional ideal (2 + 46*j + 46*k, i + 46*j + 41*k, 128*j, 128*k)

43

Fractional ideal (2 + 46*j + 50*k, i + 50*j + 9*k, 64*j, 64*k)

Fractional ideal (2 + 46*j + 110*k, i + 110*j + 105*k, 128*j, 128*k)

Fractional ideal (2 + 62*j + 22*k, i + 22*j + 33*k, 64*j, 64*k)

Fractional ideal (2 + 62*j + 22*k, i + 22*j + 97*k, 128*j, 128*k)

Fractional ideal (2 + 94*j + 70*k, i + 70*j + 17*k, 128*j, 128*k)

Fractional ideal (2 + 110*j + 78*k, i + 78*j + 73*k, 128*j, 128*k)

Fractional ideal (2 + 110*j + 206*k, i + 206*j + 201*k, 256*j, 256*k)

Fractional ideal (2 + 174*j + 46*k, i + 46*j + 41*k, 256*j, 256*k)

sage: t2 = B.hecke_matrix(2); t2

33 x 33 dense matrix over Rational Field

sage: DiGraph(t2).plot()

sage: G1 = DiGraph(SupersingularModule(389).hecke_matrix(2))

sage: G2 = DiGraph(BrandtModule(389).hecke_matrix(2))

sage: G1.is_isomorphic(G2)

True

44

4.3 Computing Brandt Modules

The Brandt module B(pM) of level pM for p a prime and M an integer not
divisible by p is the free abelian group on the right ideal classes in an Eichler
order of level M in the quaternion algebra ramified at p and ∞. This Brandt
module is a module over the Hecke algebra, and is isomorphic to the group X =
Div(X0(Mp)ssFp

) of divisors on isomorphism classes of enhanced supersingular

elliptic curves E = (E,C) over Fp, with C cyclic of order M .
The references I know of for how to compute B(pM) are [?], the Magma

source code, the Sage source code, and numerous papers on John Voight’s web-
site http://www.cems.uvm.edu/~voight/. The article [?] by David Kohel also
has some useful theoretical background, but doesn’t go into any real detail
about how to actually compute B(pM). Gonzalo Tornaŕıa is also an excellent
resource http://www.cmat.edu.uy/~tornaria/. For generalizations of Brandt
modules to quaternion algebra over totally real number fields (with applications
to computing Hilbert modular forms), see Lasina Dembele’s publications page
http://www.uni-due.de/~hx0043/papers/paper.html.

The rest of this section is an overview of the algorithms implemented in
Sage. At the time of this writing, the Sage implementation of computation of
Brandt modules over Q was significantly more efficient overall than the Magma’s
implementation.

4.3.1 Arithmetic

Let Q be the quaternion algebra with i2 = a and j2 = b, where a, b ∈ Q. We
call a, b the invariants of Q.

In Sage, we represent an element θ ∈ Q by giving a 4-tuple of integers
x, y, z, w and a demoninator d, all of MPIR C data type mpz_t, such that

θ =
1
d

(x+ yi+ zj + wk)

We use the following formula for multiplication, which John Voight just sat
down and scribbled on a piece of paper after thinking hard for a while at Sage
Days 13.

Given two quaternion algebra elements

θ =
1
d1

(x1 + y1i+ z1j + w1k)

and
ν =

1
d2

(x2 + y2i+ z2j + w2k)

we compute their product as

θν =
1
d3

(x3 + y3i+ z3j + w3k)

45

where d3 = d1d2 and

x3 = t1 + at2 + b(t3 − at4)
y3 = s1(x2 + y2)− t1 − t2 + b(s2(z2 − w2)− t3 + t4)
z3 = t5 − at6 + t7 + at8

w3 = (x2 − y2)s2 − t5 + t6 + s1(z2 + w2)− t7 − t8

and where

t1 = x1x2

t2 = y1y2

t3 = z1z2

t4 = w1w2

t5 = x2z1

t6 = y2w1

t7 = x1z2

t8 = y1w2

s1 = x1 + y1

s2 = z1 + w1

Ignoring denominators, this takes more integer addition operations but fewer
integer multiplication operations (17) than the ”straightforward” multiplication
method (which takes 24 multiplies). There might be a way to optimize this
formula further. The paper The Complexity of the Quaternion Product, 1975,
Thomas Howell, proves that for a = b = −1, the product can be done in 8
multiplies and no less than 7. For us, in this special case, our formula reduces
to 12 multiplies. Note that the prievously cited paper only addresses multiplying
quaternions with a = b = −1. It would be interesting to see if there is a better
algorithm in the general case (to do this, do a literature search and/or read the
above paper and generalize the techniques).

To get a sense of speed, multiplying the following two quaternions with a =
−7, B = −11 takes 1.3 microseconds on sage.math (a 2.6Ghz Xeon Dunnington).

sage: Q.<i,j,k> = QuaternionAlgebra(-7,-11)
sage: a = 9394 + 3939*i + 1293*j - 1933*k
sage: b = 39392 - 4928*i - 19394*j + 3912*k
sage: timeit(’a*b’)
625 loops, best of 3: 1.3 microseconds per loop

Using Karatsuba twice, Tom Boothby, Robert Bradshaw, and Craig Citro
figured out how to multiply quaternions using only 16 multiplies, as follows. To
multiply two quaternions r and s, we write r = α + βj and s = γ + δj where
α, β, γ, δ ∈ K[i]. Multiplication of elements of K[i] can written as (a + bi)(c +

46

di) = ac + (ac + bd)i + bdp where the middle term can be computed using one
fewer multiplication via Karatsuba’s trick ad + bc = (a + b)(c + d) − ac − bd.
Now compute

(α+ βj)(γ + δj) = αγ + αδj + βjγ + βjδj = αγ + (αδ + βγ̄)j + βδ̄q.

The middle term can be obtained in a similar manner as above:

αδ + βγ̄ = (α+ β̄)(γ + δ)− αγ − βδ̄ − (β̄γ − βγ̄).

The difference β̄γ−βγ̄ has “real part” zero (as conjugation yields its negative),
so it can be computed with only two field multiplies.

In summary, writing S = αγ, T = βδ̄, U = (α+ β̄)(γ+δ), and R = β̄γ−βγ̄
we have

(α+ βj)(γ + δj) = S + Tq + (U − S − T −R)j.

Computing S, T, U takes three K[i] multiplications, or 12 field multiplications,
and the computation of R takes 2 more. The multiplication Tq takes 2 field
multiplications, yielding a total of 16 multiplications in the basefield. A similar
analysis shows that this formula uses a total of 27 field additions and subtrac-
tions, as well as a single doubling (to computing R).

4.3.2 Computing the Quaternion Algebra

Let A be the rational quaternion algebra ramified at p and ∞. Then we can
take A to be Q < i, j, k > where i2 = a, j2 = b and ij = −ji = k, and a, b are
determined as follows:

(a, b) =


(−1,−1) if p = 2
(−1,−p) if p ≡ 3 (mod 4)
(−2,−p) if p ≡ 5 (mod 8)
(−p,−q) if p ≡ 1 (mod 8),

where in the last case q ≥ 3 is the smallest prime with q ≡ 3 (mod 4) and(
p
q

)
= −1. See [?, Prop. 5.1] for references about how to prove this using

Hilbert symbols.

Example 4.11. We compute quaternion algebras of each of the above types.

sage: BrandtModule(2).quaternion_algebra()
Quaternion Algebra (-1, -1) with base ring Rational Field
sage: BrandtModule(3).quaternion_algebra()
Quaternion Algebra (-1, -3) with base ring Rational Field
sage: BrandtModule(5).quaternion_algebra()
Quaternion Algebra (-2, -5) with base ring Rational Field
sage: BrandtModule(17).quaternion_algebra()
Quaternion Algebra (-17, -3) with base ring Rational Field

47

4.3.3 Computing a Maximal Order

Let A with i2 = a, j2 = b be the rational quaterion algebra ramified at p and
∞ from Section ??. A maximal order R for A has basis

(b1, b2, b3, b4) =


(1 + i+ j + k)/2, i, j, k if p = 2,
(1 + j)/2, (i+ k)/2, j, k if p ≡ 3 (mod 4),
(1 + j + k)/2, (i+ 2j + k)/4, j, k if p ≡ 5 (mod 8),
(1 + j)/2, (i+ k)/2, (j + zk)/b, k if p ≡ 1 (mod 8),

where in the last case z is any integer such that b | (z2p+ 1).
To prove that the above are maximal orders, one tediously checks that the

lattice they span has discriminant p and is a subring that contains 1. The
discriminant of R is just the discriminant of the reduced trace pairing on a
basis for R. The conjugate of x + iy + zj + wk is x − iy − zj − wk. The
reduced trace is Tr(x + iy + zj + wk) = 2x, and the reduced trace pairing is
〈c, d〉 = Tr(cd).

Example 4.12. We compute a maximal order in each of the above cases:

sage: BrandtModule(2).maximal_order().basis()
(1/2 + 1/2*i + 1/2*j + 1/2*k, i, j, k)
sage: BrandtModule(3).maximal_order().basis()
(1/2 + 1/2*j, 1/2*i + 1/2*k, j, k)
sage: BrandtModule(5).maximal_order().basis()
(1/2 + 1/2*j + 1/2*k, 1/4*i + 1/2*j + 1/4*k, j, k)
sage: BrandtModule(17).maximal_order().basis()
(1/2 + 1/2*j, 1/2*i + 1/2*k, -1/3*j - 1/3*k, k)

We use the above algorithm to compute a maximal order for p = 7.

sage: p = 7
sage: Q.<i,j,k> = QuaternionAlgebra(-1,-p); Q
Quaternion Algebra (-1, -7) with base ring Rational Field
sage: Q.discriminant()
7
sage: R = Q.quaternion_order([(1+j)/2, (i+k)/2, j, k]); R
Order of Quaternion Algebra (-1, -7) with base ring
Rational Field with basis (1/2 + 1/2*j, 1/2*i + 1/2*k, j, k)

sage: R.discriminant()
7
sage: Q.quaternion_order([1,i,j,k]).discriminant()
28

4.3.4 Computing an Order of Level p2r+1M

Let A be the quaternion algebra ramified at p,∞ with i2 = a, j2 = b.

48

Let M be an integer coprime to p and let r ≥ 0 be an integer. The following
definition from Pizer’s paper [?] is more general than the definition of Eichler
order of level M given above; note also that p is included in the “level” below.

Definition 4.13 (Level of Order). An order R has level N = p2r+1M if for all
primes q 6= p there is an element z ∈ A⊗ Zq such that

zRz−1 =
(

Zq Zq
NZq Zq

)
,

and there is z ∈ A⊗ Zp such that

zRz−1 =
{(

α prβ
pr+1βσ ασ

)
: α, β ∈ Zp2

}
,

where Zp2 is the ring of integers in the unique unramified quadratic extension
of Qp and σ is its nontrivial automorphism.

To compute an order of level pM , we proceed a prime at a time. First, let
R be the maximal order in A constructed in Section ?? above. If I is a left
R-ideal, the right order S associated to I is the set of elements x ∈ R such that
Ix ⊂ I. Thus S is a subring of R and I is a right S-ideal (note that I ⊂ S
because if x ∈ I then Ix ⊂ I, since I ⊂ R and I is a left ideal).

Let q be a prime divisor of M , and let t = ordq(M). Find an element y ∈ R
such that

f = X2 − Tr(y)X + Norm(y) ∈ Fq[X]

has distinct roots in Fq, where Tr is the reduced trace and Norm is the reduced
norm. We can find x either by trying random elements, or systematically run-
ning through linear combinations of the basis for R with coefficients between 0
and q − 1. Once we find such an element y, let and let a ∈ Fq be one of the
roots of f above. Let I be the left R-ideal generated by qt and (x− a)t. Let S
be the right order in R associated to I. Then S ⊗Z` = R⊗Z` for primes ` 6= q
and S ⊗ Zq ⊂ R⊗ Zq. [[finish giving an argument that this works! – no known
one in literature, but should be obvious]] Finally, we replace R by S.

To compute an order of level p2r+1M we proceed as above to obtain an order
of level pM . [[I haven’t worked out the details yet, but one could always just
iterate through all sublattices of index p? and for each check of ...]]

Example 4.14. We compute an order of level N = pM in several cases. Note
that Sage does not currently (June 2009) have an algorithm in case r > 0.

sage: BrandtModule(2,7).order_of_level_N().basis()
(1/2 + 1/2*i + 1/2*j + 1/2*k, i + 5*k, j + 3*k, 7*k)
sage: BrandtModule(3,7).order_of_level_N().basis()
(1/2 + 1/2*j, 1/2*i + 3/2*k, j, 7*k)
sage: BrandtModule(5,7).order_of_level_N().basis()
(1/2 + 1/2*j + 9/2*k, 1/4*i + 1/2*j + 17/4*k, j + 2*k, 7*k)
sage: BrandtModule(17,7).order_of_level_N().basis()
(1/2 + 1/6*j + 11/3*k, 1/2*i + 13/2*k, 1/3*j + 1/3*k, 7*k)

49

4.3.5 Equivalence of Right Ideal

Let R be an order of level N = p2r+1M in the quaternion algebra A ramified at
p and∞. If I and J are nonzero right R-ideals, then we say that I is equivalent
to J , written I ∼ J if there is a ∈ A such that I = aJ . The Brandt module
B(p2r+1,M) is the free abelian group on the set of right ideal classes of R.

Let I be a right ideal of R with fixed choice of basis b1, b2, b3, b4. The Gram
matrix G of I is the matrix whose i, j entry is 2 Tr(bibj), where Tr is the reduced
trace. Let G′ be obtained from G by rescaling so that all entries are integers
and the gcd of all entries is 1. The normalized θ-series associated to a right
ideal I of R is a formal power series θI ∈ Z[[q]]. It is the θ series associated to
the quadratic form with Gram matrix G′, where the θ series of a quadratic form
has the property that the coefficient of qn is the number of vectors of length n
in the abstract lattice with that inner product matrix.

Given two right R-ideals I and J , we determine whether or not they are
equivalent as follows. First, we compute the normalized θ series θI and θJ
associated to I, J to some precision. If they are not equal, then definitely
I 6∼ J . If they are equal, then I might or might not be equivalent to J (theta are
inequivalent ideals with equal θ series). In that case, we compute the product
IJ , then use [?, Prop. 1.18] that I ∼ J if and only if there is α ∈ IJ with
Norm(α) = Norm(I) Norm(J). We can decide the latter by computing the
coefficient of q in the normalized theta series associated to IJ .

4.3.6 The Action of Hecke Operators

As above, R is an order of level N = p2r+1M in the quaternion algebra A rami-
fied at p and ∞. For right ideals I, J of R, say a nonzero group homomorphism
ϕ : I → J is cyclic of degree n if

J/ϕ(I) ∼= Z/nZ× Z/nZ.

For any integer n with gcd(n, pM) = 1, we have

Tn([I]) =
∑
ϕ

[J],

where the sum is over the cyclic R-module homomorphisms ϕ : I → J (up to
isomorphisms in J). We can embed I, J into A as fractional right R-ideals such
that the homomorphism ϕ is an inclusion

I ↪→ J ↪→ n−1I,

and we can instead compute the Hecke operator Tn by summing over cyclic
supermodules I ↪→ J .

Efficiently enumerating the cyclic supermodules J containing I is tricky (it
took me a number of hours to come up with a fast algorithm). We assume that
n is prime. The basic idea is to reduce everything to linear algebra modulo n,
work in the module I/nI, which is also a 4-dimensional Fn-vector space. We
explicitly compute the action of generators of R on I/nI in terms of matrices
mod n, and use this structure to explicitly write down all cyclic submodules.

50

4.3.7 Computing all Right Ideal Classes

To enumerate all right ideal classes, we proceed as follows. First we let I be the
unit ideal. Let ` be the smallest prime that doesn’t divide p2r+1M . Using the
algorithm of Section ??, compute the ideals J appearing in the sum T`([I]) =∑
ϕ[J]. For each ideal, we check whether it is equivalent to any ideal seen so

far, using the algorithm of Section ??. If not, we add it to our list of right ideal
class representatives. We continue applying T` to new right ideal representatives
until we don’t see any new ones. At this point, we must have enumerated all
right ideal classes, since a theorem of Serre implies that the graph associated
to the Hecke operator T` is connected [[the proof uses that the Hecke graph
is regular and using an Eisenstein series one sees something relevant about an
eigenvalue of that matrix]].

Example 4.15. We explicitly compute the two distinct right ideal classes in
an order of level 14 in the quaternion algebra ramified at 2 and ∞ using the
algorithm described above.

sage: B = BrandtModule(2,7)
sage: R = B.order_of_level_N()
sage: I = R.unit_ideal()
sage: M = B.cyclic_supermodules(I,3); M
[Fractional ideal (1/2 + 1/2*i + 3/2*j + 7/2*k, i + 2*j + 11*k, 3*j + 9*k, 21*k),
Fractional ideal (1/2 + 1/2*i + 1/2*j + 15/2*k, i + 2*j + 4*k, 3*j + 9*k, 21*k),
Fractional ideal (1/2 + 1/2*i + 3/2*j + 35/2*k, i + j + k, 3*j + 9*k, 21*k),
Fractional ideal (1/2 + 1/2*i + 5/2*j + 27/2*k, i + j + 8*k, 3*j + 9*k, 21*k)]

The elements of M are the ideals J with I ⊂ J cyclic of order 3. One of them
is equivalent to the unit ideal and the others aren’t:

sage: [A.is_equivalent(I) for A in M]
[False, False, True, False]

Computing theta series suggests that all the ideals not equivalent to the unit
ideal are equivalent to each other.

sage: for A in M: print A.theta_series(8)
1 + 6*q^2 + 18*q^3 + 18*q^5 + 6*q^6 + 42*q^7 + O(q^8)
1 + 6*q^2 + 18*q^3 + 18*q^5 + 6*q^6 + 42*q^7 + O(q^8)
1 + 6*q + 6*q^3 + 6*q^4 + 18*q^5 + 18*q^6 + 48*q^7 + O(q^8)
1 + 6*q^2 + 18*q^3 + 18*q^5 + 6*q^6 + 42*q^7 + O(q^8)

And indeed they are.

sage: [A.is_equivalent(M[0]) for A in M]
[True, True, False, True]

We also apply T3 to the non-unit ideal class, and find that this gives us nothing
new.

sage: [S.is_equivalent(M[0]) or S.is_equivalent(I) for S in B.cyclic_supermodules(M[0],3)]
[True, True, True, True]

51

References

[AB04] Montserrat Alsina and Pilar Bayer, Quaternion orders, quadratic
forms, and Shimura curves, CRM Monograph Series, vol. 22, Amer-
ican Mathematical Society, Providence, RI, 2004. MR MR2038122
(2005k:11226)

[Cre97] J. E. Cremona, Algorithms for modular elliptic curves, second ed.,
Cambridge University Press, Cambridge, 1997,
http://www.maths.nott.ac.uk/personal/jec/book/.

[DS05] Fred Diamond and Jerry Shurman, A first course in modular forms,
Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York,
2005.

[Fal86] G. Faltings, Finiteness theorems for abelian varieties over number
fields, Arithmetic geometry (Storrs, Conn., 1984), Springer, New
York, 1986, Translated from the German original [Invent. Math. 73
(1983), no. 3, 349–366; ibid. 75 (1984), no. 2, 381; MR 85g:11026ab]
by Edward Shipz, pp. 9–27. MR 861 971

[Koh] D. R. Kohel, Hecke module structure of quaternions, In K. Miyake,
ed., Class Field Theory – Its Centenary and Prospect, The Advanced
Studies in Pure Mathematics Series, Math Soc. Japan.

[Man72] J. I. Manin, Parabolic points and zeta functions of modular curves,
Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19–66. MR 47 #3396

[Mer94] L. Merel, Universal Fourier expansions of modular forms, On Artin’s
conjecture for odd 2-dimensional representations, Springer, 1994,
pp. 59–94.

[Mil86] J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn.,
1984), Springer, New York, 1986, pp. 103–150.

[MTT86] B. Mazur, J. Tate, and J. Teitelbaum, On p-adic analogues of the
conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986),
no. 1, 1–48. MR MR830037 (87e:11076)

[Piz80] A. Pizer, An algorithm for computing modular forms on Γ0(N), J.
Algebra 64 (1980), no. 2, 340–390.

[Rib80] K. A. Ribet, Twists of modular forms and endomorphisms of abelian
varieties, Math. Ann. 253 (1980), no. 1, 43–62. MR 82e:10043

[Rib92] , Abelian varieties over Q and modular forms, Algebra and
topology 1992 (Taejŏn), Korea Adv. Inst. Sci. Tech., Taejŏn, 1992,
pp. 53–79. MR 94g:11042

[Ser73] J-P. Serre, A Course in Arithmetic, Springer-Verlag, New York, 1973,
Translated from the French, Graduate Texts in Mathematics, No. 7.

52

[Shi73] G. Shimura, On the factors of the jacobian variety of a modular func-
tion field, J. Math. Soc. Japan 25 (1973), no. 3, 523–544.

[Shi94] , Introduction to the arithmetic theory of automorphic func-
tions, Princeton University Press, Princeton, NJ, 1994, Reprint of
the 1971 original, Kan Memorial Lectures, 1.

[Vig80] Marie-France Vignéras, Arithmétique des algèbres de quaternions,
Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980. MR
MR580949 (82i:12016)

53

