Math 480b -- Homework 4

Homework 4

Due April 29, 2009

There are 5 problems.

Email solution worksheet with your *name* in the title to sagehw@gmail.com.

Problem 1 (Setup a real-world sized Diffie-Hellman key exchange): You would like to agree on a secret key using Diffie-Hellman, in order to communicate with Amazon.com securely. You and Amazon.com agree to use the prime $p = 2^{512} - 569 = 1340780...3527$, and generator g = 2. Amazon.com chooses a secret number a and tells you that

 $g^a = \\ 2082728043114064665587780447758292084140753843961131178330477750084710957889630331734974721072528037029283561132545662418008($

Choose a random number between 1 and p, and compute the secret key (= g^{ab}) that you and Amazon.com will agree on.

so you don't have to cut and paste g^a:]
g_to_a =	
208272804311406466558778044775829208414075384396113117833047775008471095788963033173497472107252803702928356113117833047775008471095788963033173497472107252803702928356113117833047775008471095788963033173497472107252803702928356113117833047775008471095788963033173497472107252803702928356113117833047775008471095788963033173497472107252803702928356113117833047775008471095788963033173497472107252803702928356113117833047775008471095788963033173497472107252803702928356113117833047775008471095788963033173497472107252803702928356113117833047775008471095788963033173497472107252803702928356113117833047775008471095788963033173497472107252803702928356113117833047775008471095788963033173497472107252803702928356113200000000000000000000000000000000000	2545(

Problem 2 (Crack a Diffie-Hellman key exchange): Jim and Pam publically agree on the prime p = 10007 and generator g = 5. They each chose secret random numbers a and b, then Jim publishes $g^a = 1096 \pmod{p}$ and Pam publishes $g^b = 3941 \pmod{p}$. Crack their code! What secret key do they agree on?

[Hints: To solve this problem, you will have to figure out what g^{ab} is. You *can't* do this by just multiplying g^a and g^b , since $g^ag^b = g^{a+b}$. Instead, you have to find a such that $g^a = 1096$ (working modulo p). You can do the latter either with a for loop, or using the log command, as illustrated below.]

illustrate c g(mod(1096,1	 "discrete lo (5,10007))	g", i.e.,	log of th	e number	1096 to t	he base	g=5.	
939								

Problem 3: You saw above that the log command can solve the discrete log problem when p = 10007 fairly quickly. E.g., given g, p, and g^a , it finds a. What happens if $g = primitive_root(\mathbf{p})$ and p has 10 digits? 15 digits? 20 digits? How big must p be until the log command breaks down (i.e., stops working)?

#example -p = next_prime(10^10)
g = primitive_root(p)

	time	<pre>log(mod(7,p),</pre>	<pre>mod(g,p))</pre>
--	------	--------------------------	----------------------

2889974065 Time: CPU 0.00 s, Wall: 0.00 s

Problem 4:

- 1. Encrypt the message "They are coming!" using the RSA cryptosystem with public key (n, e) = (2021027, 5) and the encryption interact from the worksheet in class on Monday, April 20, 2009.
- 2. Decrypt the message

[1488785, 736175, 261088, 274391, 1093291, 467950, 1810412, 1048576]

using the private key (n, d) = (2021027, 1614413).

Problem 5:

Let E be the elliptic curve mod 11 defined by $y^2 = x^3 + x + 2$. What is the sum of the points (2, 10) and (4, 2) on E?