Exercise Set 1: Matrix and Linear Algebra

Math 480b, Spring 2009, University of Washington

Due Wednesday, April 8, 2009

- 1. Given vectors $x, y \in \mathbb{R}^n$, the cosine of the angle θ between them is $\cos(\theta) = (x \cdot y)/(\|x\| \cdot \|y\|)$, where $\|(x_1, \dots, x_n)\| = \sqrt{\sum x_i^2}$. Let $x = (1, 2, 3, \dots, 100)$ and $y = (1^2, 2^2, 3^2, \dots, 100^2)$. What is the angle θ between x and y?
- 2. Plot the given 2 planes in 3D and a black line along their intersection:
 - (a) $x_1 + x_2 + x_3 = 1$ and $2x_1 + x_2 + 2x_3 = 1$.
 - (b) $x_1 x_2 = 1$ and $x_1 + x_2 + 2x_3 = 5$.
- 3. Find the reduced row echelon form over the rational numbers $\mathbb Q$ of the following matrices:
 - (a) The 10×10 matrix whose entries are $1, 2, 3, \ldots, 97, 98, 99, 100$, where $1, \ldots, 10$ are the first row, $11, \ldots, 20$ the second row, etc.
 - (b) The 10×10 matrix whose i, j entry is $i^2 + j^2$ for $0 \le i, j \le 9$. (In Sage, matrix indexing is 0-based.)
 - (c) The 10×10 matrix whose i, j entry is $i^2 \cdot j^2$ for $0 \le i, j \le 9$.
- 4. For which values of α is the determinant of the following matrix equal to 0?

$$A = \begin{pmatrix} 1 & 2 & 0 & -\alpha \\ 1 & 0 & 0 & \alpha \\ \alpha & 0 & 1 & 2 \\ \alpha & 1 & -1 & 0 \end{pmatrix}$$

- 5. (a) Create a random 100×100 matrix A with double precision entries between 0 and 1. [Hint: use random_matrix(RDF,100,min=0,max=1).]
 - (b) Draw 2D plots of A, A^{-1} , A^2 , and A^{100} .

- (c) Can you explain any of the patterns you see in your plots?
- 6. Make a Sage interact that takes a 3×3 matrix A with entries in the rational field \mathbb{Q} , and computes and displays the following information about A:
 - \bullet a plot of A
 - \bullet the determinant of A
 - \bullet the rank and nullity of A
 - \bullet the reduced row echelon form of A
 - \bullet the characteristic and minimal polynomials of A
 - \bullet the eigenvalues and eigenvectors of A
- 7. Let V = span((1/2, 0, 0), (0, 1, 1)) and W = span((-1, 1, 0), (2/3, 1, 2)).
 - (a) Plot V and W together in 3D.
 - (b) Compute the sum V + W of V and W.
 - (c) Compute the intersection $V \cap W$.
- 8. (a) Draw a plot in 2D of the set of $(x,y) \in \mathbb{R}^2$ that satisfy

$$\left(\begin{array}{cc} x & y \end{array}\right) \left(\begin{array}{cc} 1 & 2 \\ 2 & -2 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = 6$$

(b) Draw a plot in 3D of the set of $(x, y, z) \in \mathbb{R}^3$ that satisfy

$$\left(\begin{array}{ccc} x & y & z \end{array}\right) \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = 2$$

Note that Sage (March 2009) does not have an implicit_plot3d command, so you will have to piece together plots using plot_3d or use parametric_plot3d.