
SAGE: Current Project Status Report

William Stein

November 8, 2006, San Diego



Overall Structure of SAGE

Interfaces

Generator Names and Global Uniqueness

Arithmetic architecture and Coercion

Matrix algebra

Numerical mathematics

Graph theory

Integer Factorization

Modular Forms

The SAGE Notebook

The SAGE Foundation



This talk is an (incomplete) overview of several current SAGE
development projects, many of which started as coding sprints at
SAGE Days 2.



Review: The Overall Structure of SAGE

I Custom package management system – 42 standard
packages, and 29 optional ones. Automated upgrades.

I Interactive command-line interface – IPython.

I Graphical user interface – SAGE Notebook via web browser.

I Fast underlying arithmetic – built on mature robust C libraries
(GMP, NTL, PARI, GSL). New code in SageX1 and Python.

I Interfaces with other software using buffered psuedo-tty’s.

I Special purpose components – e.g., genus2reduction,
GMP-ECM, Sympow (L functions), Givaro (finite fields), etc.

I Mercurial revision control system – included standard; makes
it very easy for users to make changes, add docs, etc., and give
them to me.

1A variant of Pyrex



cddlib-094b.spkg mercurial-0.9.1.p2.spkg
clisp-2.40.spkg mpfr-20061015.spkg
conway_polynomials-0.1.spkg mwrank-20061107.spkg
cremona_mini-0.1.spkg networkx-0.32.spkg
doc-1.4.3.alpha2.spkg ntl-5.4.1.spkg
ecm-6.0.1.p0.spkg numeric-24.2.spkg
examples-1.4.3.alpha2.spkg pari-2.3.1.spkg
extcode-1.4.3.alpha2.spkg pexpect-2.0.spkg
freetype-2.1.10.spkg pyrexembed-0.1.1.2006-05-17.spkg
gap-4.4.8.spkg python-2.5.p2.spkg
genus2reduction-0.3.spkg readline-5.0.1.spkg
gfan-0.2.2.spkg sage-1.4.3.alpha2.spkg
givaro-3.2.1.spkg sage_scripts-1.4.3.alpha2.spkg
gmp-4.2.1.p1.spkg sagex-20061103.spkg
gnuplotpy-1.7.p1.spkg singular-3-0-2-20061014.spkg
gsl-1.8.spkg sympow-1.018.1.spkg
ipython-20061028.spkg tachyon-0.97.spkg
lcalc-2006.09.19.spkg termcap-1.3.1.spkg
libpng-1.2.8.p0.spkg twisted-2.4.0.p1.spkg
matplotlib-0.87.6.spkg zlib-1.2.3.p1.spkg
maxima-5.10.0.spkg zodb3-3.6.0.spkg



Some Components of SAGE (by category)

Basic Arithmetic GMP, NTL, MPFR, PARI
Command Line IPython
Commutative algebra Singular (libcf, libfactory)
Database ZODB, Python Pickles
Graphical Interface jsmath, SAGE Notebook
Graphics Matplotlib, Tachyon
Group theory and combinatorics GAP
Graph theory Networkx
Interactive programming language Python (mainstream !!!)
Networking Twisted
Numerical computation GSL, Numeric, etc.
Symbolic computation, calculus Maxima



Interfaces

I SAGE interfaces to: Axiom, GAP, GP/PARI, Kash,
Macaulay2, Magma, Maple, Mathematica, MATLAB,
Maxima, Octave, Singular, etc.

I In progress: REDUCE (Bill Page), 4ti2 (Stein and
Tristram Bogart), PHCpack (Stein).



Generator Names and Global Uniqueness

William Stein

I In SAGE all parent structures will (generally speaking) be
immutable. In particular, variable names of polynomial rings,
finite fields, power series rings, etc, must be specified at creation
time and can’t be changed later.

I Most ring elements are now immutable (e.g., integers,
polynomials, power series, etc.)

I There is exactly one instance of each parent object.
I This and other low-level optimization helps makes basic

arithmetic much more efficient.



Arithmetic architecture and Coercion
William Stein, D. Harvey, M. Albrecht (Bremen grad)

I OBJECT COERCION _coerce_: Suppose a _coerce_ map
R → S is defined. Then:

1. R.category() must be a subcategory of S.category().
2. The map R → S defined by coerce must define a morphism in

S.category().
3. If _coerce_ is defined in both direction, then the composition in

both directions must be the identity maps.
4. Reflexive: If R is S is True, then _coerce_ must be the identity

map.
5. Transitive: If coercion from R to S is defined and coercion from S

to T is defined, then coercion from R to T must also be defined,
and must agree with the composition of the coercion from R to S
with the one from S to T .

I ARITHMETIC __add__, __mul__, ...:: When doing a binary
operation, if the parents are not identical (in the sense of is),
determine if precisely one _coerce_ map is defined; if so,
apply it and do the arithmetic operation. If both are defined, the
parents are canonically isomorphic, so use the left one. If
neither are defined, raise a TypeError.



Matrix algebra

W. Stein, R. Bradshaw (UW grad), D. Harvey

I Matrix classes systematically structured and completely
implemented in SageX.

I Easy to create new optimized matrix classes (over specific rings).
I Much work is about organization and providing a wide range of

functionality that is built on a couple of basic algorithms.
I Robert Bradshaw and David Harvey came up with and

completely implemented optimized asymptotically fast
algorithms for matrix multiplication and echelon forms in the
general case (arbitrary size matrices). Tuning still needed.



Numerical mathematics

W. Stein, Josh Kantor (UW grad), Tom Boothby (UW undergrad)
I Numerical computation is extremely important for SAGE:

I Numerical algorithms are deeply relevant to algebraic and
geometry computation (it’s a major current research trend),

I There is a large numerical applied group at UW.
I The Python community has a large mature package of numerical

software (numpy, scipy).
I One can use numpy and scipy from SAGE easily now.
I We are creating native SAGE classes for numerical objects (e.g.,

matrices, vectors, ODE’s, double precision real and complex
numbers, etc.) built on top of GSL – the GNU Scientific Library.



Graph theory

Emily Kirkman (UW undergrad), Robert Miller (UW grad), Bobby
Moretti (UW undergrad)

I Emily, Robert, and Bobby did a massive survey of all graph
theory software they could find (both free and commercial).

I Their rough conclusions:
I The Maple and Mathematica graph theory packages are slow.
I MAGMA is incredibly fast at graph theory, and has a wide range of

computational functionality. No visualization.
I The best “all around” free package, at least for what most of our

users wanted, is NetworkX, which is a Los Alamos project that is
conveniently written in Python.

I The students are working on making Networkx integrate nicely
with the rest of SAGE, e.g., graphs attached to matrices, groups,
combinatorial structures, Hecke operators, etc.



Integer Factorization

William Hart, Robert Bradshaw (UW grad), Yi Qiang (UW undergrad)

I Bill Hart (a young Australian number theorist working in
England) just finished writing an optimized quadratic sieve for
integer factorization. He GPL’d it and is helping us include it in
SAGE. (He is now working on core arithmetic optimization for
SAGE, e.g., very fast polynomial arithmetic.)

“It takes 15s on SAGE.math [with my sieve] for a C61.
Note that PARI on SAGE.math compiled against the
latest 64 bit GMP takes 54s for the same computation.
MAGMA takes around 72s, but I forgot, it spends some
time in GMP-ECM. Around 63s is spent in MPQS,
which is not that far behind Pari I guess.”

I Robert Bradshaw and Yi Qiang: Improve integration of
GMP-ECM into SAGE; make distributed computation using
GMP-ECM from SAGE easy.



Modular Forms

Me, Ifti B. (USC), David K. (Sydney), Jordi Q. (sabbatical at UW)
I Ifti Burhanuddin, David Kohel, and I – implemented the Mestre

method of graphs; need to optimize.
I Jordi Quer is visiting me at UW this quarter – will implement

general congruence subgroups; extend modular symbols
computations.



The SAGE Notebook

Alex Clemesha (was a UCSD undergrad), Tom Boothby (UW
undergrad), Dorian Raymer (UCSD physics), Bobby Moretti (UW
undergrad)

I Automated testing (Alex C.) – he just implemented a system
that records all input to the notebook, can play it back, check that
results agree.

I Security (Tom B.) – plan to move to SSL and/or Twisted.
I More Wiki-like functionality (Tom, Alex, Dorian) – easier

editing of pages, markup between compute cells, tracking of all
versions of a worksheet.

I Special purposes apps – online quiz system for college
teachers, specialized web sites that run SAGE behind the
scenes.



SAGE Foundation: What is the purpose of SAGE?

I Be a comprehensive mainstream high quality open source free
mathematics software system.

I Unify free open source mathematics software.
I To provide everyone (students, computer scientists, professional,

...), with stimulating, educational, high quality, open source,
mathematical software for learning about and producing
research in mathematics, at no cost.



Why does the SAGE Mathematics Foundation exist?

I Be a not-for-profit tax-exempt organization under Section
501(c)(3) of the IRS tax code. Can receive donations, license
fees, payment for technical support, etc. Resulting money can
then be used to support students, visitors, purchase of
equipment, workshops, and give grants to applicants for SAGE
development.

I Provide an advisory board to help people applying for grants
(e.g., from NSF), for conferences, and deciding how to use funds
they have. (First board: David Joyner, William Stein, A grad
student (to be determined), Tom Boothby (UW undergrad).)

I Protect SAGE developer’s intellectual property rights.
Copyright will stay with authors; all coded submitted must be
under the GPL (or compatible) license.

I Trademark and protect the SAGE name.
I To improve the accessibility of mathematics for everyone with

a computer.
I To constantly improve the interactive exploratory experience

available for anyone to learn about or perform research in
mathematics using the SAGE program.



What is the Foundation going to do to achieve this
purpose?

I Run workshops.
I Create an advisory board of directors.
I Make available on the internet, at no cost to the user, the SAGE

program and extensive documentation.
I Strongly encourage SAGE developers, funding and/or training

them if fiscally possible.
I Support SAGE end users by hiring user support staff which

fixes reported bugs as soon as possible or offering
work-arounds, offers programming advice, provides requested
functionality, when possible.



What are our guiding principles?

I All software included in the SAGE core distribution must be free
and open source, and arbitrary modifications and redistribution
of every single line must be allowed.

I We should provide a model for the mathematical community
of software development with a strong emphasis on openness,
community, cooperation, and collaboration.

I We should always strive to create professional quality
software and documentation that is available to everyone. That
software must be high quality, accessible, open source, and
free for everyone to download and use at no cost.

I We strive to provide an encouraging, stable, productive,
programming environment for developing future mathematical
programming projects.


	Overall Structure of SAGE
	Interfaces
	Generator Names and Global Uniqueness
	Arithmetic architecture and Coercion
	Matrix algebra
	Numerical mathematics
	Graph theory
	Integer Factorization
	Modular Forms
	The SAGE Notebook
	The SAGE Foundation

