Module: sage.modules.free_module_homspace
We create
and compute a basis.
sage: M = FreeModule(IntegerRing(),2) sage: E = End(M) sage: B = E.basis() sage: len(B) 4 sage: B[0] Free module morphism defined by the matrix [1 0] [0 0] Domain: Ambient free module of rank 2 over the principal ideal domain ... Codomain: Ambient free module of rank 2 over the principal ideal domain ...
We create
and compute a basis.
sage: V3 = VectorSpace(RationalField(),3) sage: V2 = VectorSpace(RationalField(),2) sage: H = Hom(V3,V2) sage: H Set of Morphisms from Vector space of dimension 3 over Rational Field to Vector space of dimension 2 over Rational Field in Category of vector spaces over Rational Field sage: B = H.basis() sage: len(B) 6 sage: B[0] Free module morphism defined by the matrix [1 0] [0 0] [0 0] Domain: Vector space of dimension 3 over Rational Field Codomain: Vector space of dimension 2 over Rational Field
Module-level Functions
x) |
Class: FreeModuleHomspace
Functions: basis
self) |
Return a basis for this space of free module homomorphisms.
Special Functions: __call__
See About this document... for information on suggesting changes.