sage: t = '"%s"'%10^10000 # ten thousand character string. sage: a = magma.eval(t) sage: a = magma(t)
Author Log:
Module-level Functions
) |
) |
) |
Class: Magma
Type magma.[tab]
for a list of all the functions available
from your Magma install. Type magma.[tab]?
for Magma's
help about a given function. Type magma(...)
to create
a new Magma object, and magma.eval(...)
to run a string
using Magma (and get the result back as a string).
You must use nvals = 0 to call a function that doesn't return anything, otherwise you'll get an error. (nvals is the number of return values.)
sage: magma.SetDefaultRealFieldPrecision(200, nvals=0) # optional and requires MAGMA >= v2.12
self, [maxread=None], [script_subdirectory=None], [logfile=user], [server=10000]) |
Functions: Attach,
attach,
attach_spec,
AttachSpec,
console,
eval,
function_call,
get,
help,
objgens,
set,
trait_names,
version
self, var) |
Get the value of the variable var.
self, var, value) |
Set the variable var to the given value.
Special Functions: __call__,
__reduce__,
_assign_symbol,
_continuation_prompt,
_equality_symbol,
_false_symbol,
_left_list_delim,
_next_var_name,
_object_class,
_post_process_from_file,
_read_in_file_command,
_right_list_delim,
_start,
_true_symbol
self, x, [gens=None]) |
sage: magma(EllipticCurve('37a')) # optional Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field sage: magma('EllipticCurve([GF(5)|1,2,3,4,1])') # optional Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 1 over GF(5) sage: magma('PowerSeriesRing(Rationals())', 't') # optional Power series ring in t over Rational Field sage: magma('PolynomialRing(RationalField(), 3)', 'x,y,z') # optional Polynomial ring of rank 3 over Rational Field Lexicographical Order Variables: x, y, z
Class: MagmaElement
Functions: evaluate,
get_magma_attribute,
list_attributes,
methods,
set_magma_attribute,
trait_names
self, [any=False]) |
Return all MAGMA intrinsics that can take self as the first argument.
INPUT: any -- (bool: default is False) if True, also include signatures with <Any> as first argument.
Special Functions: __call__
self) |
sage: M = magma.RMatrixSpace(magma.IntegerRing(), 2, 2) # optional sage: A = M([1,2,3,4]); A # optional [1 2] [3 4] sage: type(A) # optional <class 'sage.interfaces.magma.MagmaElement'> sage: A.Type() # optional ModMatRngElt
Class: MagmaFunction
Special Functions: __call__,
_sage_doc_
Class: MagmaFunctionElement
Special Functions: __call__,
__repr__,
_sage_doc_
See About this document... for information on suggesting changes.