4.6.3 Long Input

The Magma interface reads in even very long input (using files) in a robust manner.

sage: t = '"%s"'%10^10000   # ten thousand character string.
sage: a = magma.eval(t)            
sage: a = magma(t)

Author Log:

Module-level Functions

magma_console( )

magma_version( )

reduce_load_Magma( )

Class: Magma

class Magma
Interface to the Magma interpreter.

Type magma.[tab] for a list of all the functions available from your Magma install. Type magma.[tab]? for Magma's help about a given function. Type magma(...) to create a new Magma object, and magma.eval(...) to run a string using Magma (and get the result back as a string).

You must use nvals = 0 to call a function that doesn't return anything, otherwise you'll get an error. (nvals is the number of return values.)

sage: magma.SetDefaultRealFieldPrecision(200, nvals=0)  # optional and requires MAGMA >= v2.12

Magma( self, [maxread=None], [script_subdirectory=None], [logfile=user], [server=10000])

Functions: Attach,$  $ attach,$  $ attach_spec,$  $ AttachSpec,$  $ console,$  $ eval,$  $ function_call,$  $ get,$  $ help,$  $ objgens,$  $ set,$  $ trait_names,$  $ version

get( self, var)

Get the value of the variable var.

set( self, var, value)

Set the variable var to the given value.

Special Functions: __call__,$  $ __reduce__,$  $ _assign_symbol,$  $ _continuation_prompt,$  $ _equality_symbol,$  $ _false_symbol,$  $ _left_list_delim,$  $ _next_var_name,$  $ _object_class,$  $ _post_process_from_file,$  $ _read_in_file_command,$  $ _right_list_delim,$  $ _start,$  $ _true_symbol

__call__( self, x, [gens=None])

sage: magma(EllipticCurve('37a'))                   # optional
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: magma('EllipticCurve([GF(5)|1,2,3,4,1])')     # optional
Elliptic Curve defined by y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 1 over
GF(5)
sage: magma('PowerSeriesRing(Rationals())', 't')    # optional
Power series ring in t over Rational Field
sage: magma('PolynomialRing(RationalField(), 3)', 'x,y,z')  # optional
Polynomial ring of rank 3 over Rational Field
Lexicographical Order
Variables: x, y, z

Class: MagmaElement

class MagmaElement

Functions: evaluate,$  $ get_magma_attribute,$  $ list_attributes,$  $ methods,$  $ set_magma_attribute,$  $ trait_names

methods( self, [any=False])

Return all MAGMA intrinsics that can take self as the first argument.

INPUT:
    any -- (bool: default is False) if True, also include
           signatures with <Any> as first argument.

Special Functions: __call__

__call__( self)

sage: M = magma.RMatrixSpace(magma.IntegerRing(), 2, 2)  # optional
sage: A = M([1,2,3,4]); A        # optional
[1 2]
[3 4]
sage: type(A)                    # optional
<class 'sage.interfaces.magma.MagmaElement'>  
sage: A.Type()                   # optional
ModMatRngElt

Class: MagmaFunction

class MagmaFunction

Special Functions: __call__,$  $ _sage_doc_

Class: MagmaFunctionElement

class MagmaFunctionElement

Special Functions: __call__,$  $ __repr__,$  $ _sage_doc_

See About this document... for information on suggesting changes.