Module: sage.rings.padic_field
Module-level Functions
p) |
x) |
p) |
Class: pAdicField_generic
sage: K = pAdicField(17); K 17-adic Field
sage: loads(K.dumps()) == K True
self, p, [prec=Infinity], [series_print=True], [print_prec=20]) |
Functions: characteristic,
prec,
prime,
print_prec,
residue_characteristic,
residue_class_field,
series_print
self) |
The characteristic of the field
, which is always 0.
sage: K = Qp(7) sage: K.characteristic() 0
self) |
The prime p such that this is the field Qp.
sage: K = Qp(7) sage: K.prime() 7
self, [n=None]) |
If you call print_prec(n), then printing of elements in this
p-adic field is truncated at
. Calling print_prec() with
no arguments returns n. This command only affects printing,
and does not alter the actual values of elements of this field.
self) |
The characteristic of the residue class field Qp.
sage: K = Qp(7) sage: K.residue_characteristic() 7
self) |
The residue class field of the ring Zp of integers of Qp, i.e., the field Z/pZ.
sage: K = Qp(3) sage: K.residue_class_field() Ring of integers modulo 3
Special Functions: __call__,
__cmp__,
_repr_