Module: sage.groups.matrix_gps.general_linear
sage: GL(4,Q) General Linear Group of degree 4 over Rational Field sage: GL(1,Z) General Linear Group of degree 1 over Integer Ring sage: GL(100,RR) General Linear Group of degree 100 over Real Field with 53 bits of precision sage: GL(3,GF(49)) General Linear Group of degree 3 over Finite Field in a of size 7^2
Author Log:
TODO: Write a method to coerce GL into a MatrixGroup...
Module-level Functions
n, R) |
Return the general linear group of degree
over the ring
.
sage: G = GL(6,GF(5)) sage: G.order() 11064475422000000000000000L sage: G.base_ring() Finite Field of size 5
sage: F = GF(3); MS = MatrixSpace(F,2,2) sage: gens = [MS([[0,1],[1,0]]),MS([[1,1],[0,1]])] sage: G = MatrixGroup(gens) sage: G.order() 48 sage: H = GL(2,F) sage: H.order() 48 sage: H == G False sage: H.as_matrix_group() == G False sage: H.gens() [[2 0] [0 1], [2 1] [2 0]]
Class: GeneralLinearGroup_finite_field
Class: GeneralLinearGroup_generic
Functions: as_matrix_group,
gens
self) |
sage: G = GL(6,GF(5)) sage: G.gens() [[2 0 0 0 0 0] [0 1 0 0 0 0] [0 0 1 0 0 0] [0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1], [4 0 0 0 0 1] [4 0 0 0 0 0] [0 4 0 0 0 0] [0 0 4 0 0 0] [0 0 0 4 0 0] [0 0 0 0 4 0]]
Special Functions: __repr__,
__str__,
_gap_init_,
_latex_
self) |
sage: G = GL(6,GF(5)) sage: print G GL(6, GF(5))
self) |
sage: G = GL(6,GF(5)) sage: G._gap_init_() 'GL(6, 5)'
self) |
sage: G = GL(6,GF(5)) sage: G._latex_() 'GL$(6, GF(5))$'
See About this document... for information on suggesting changes.