We find the
such that
.
sage: e = mathematica('Exp[x] - 3x == 0') sage: e.FindRoot(['x', 2]) {x -> 1.512134551657842}
Note that this agrees with what the PARI interpreter gp produces:
sage: gp('solve(x=1,2,exp(x)-3*x)') 1.512134551657842473896739678 # 32-bit 1.5121345516578424738967396780720387046 # 64-bit
Next we find the minimimum of a polynomial using the two different ways of accessing Mathematica:
sage: mathematica.eval('FindMinimum[x^3 - 6x^2 + 11x - 5, {x,3}]') '{0.6151, {x -> 2.57735}}' sage: f = mathematica('x^3 - 6x^2 + 11x - 5') sage: f.FindMinimum(['x', 3]) {0.6150998205402516, {x -> 2.5773502699629733}}
See About this document... for information on suggesting changes.