Module: sage.rings.power_series_ring
sage: R.<t> = PowerSeriesRing(RationalField()) sage: R.random_element(6) -t - t^2 - t^3 - t^4 + O(t^6)
sage: S = R([1, 3, 5, 7], 10); S 1 + 3*t + 5*t^2 + 7*t^3 + O(t^10)
sage: S.truncate(3) 5*t^2 + 3*t + 1
Author Log:
Module-level Functions
base_ring, [name=20], [default_prec=None]) |
x) |
Class: PowerSeriesRing_domain
self, base_ring, [name=20], [default_prec=None]) |
Class: PowerSeriesRing_generic
self, base_ring, [name=20], [default_prec=None]) |
Functions: assign_names,
base_ring,
characteristic,
gen,
is_atomic_repr,
is_field,
is_finite,
laurent_series_ring,
ngens,
random_element
self) |
If this is the power series ring R[[t]], return the Laurent series ring R((t)).
self, prec, [bound=0]) |
Return a random power series.
INPUT: prec -- an int bound -- an int (default: 0, which tries to spread choice across ring, if implemented) OUTPUT: Polynomial -- A polynomial such that the coefficient of x^i, for i up to degree, are coercisions to the base ring of random integers between -bound and bound.
Special Functions: __call__,
__cmp__,
__contains__,
__repr__,
_is_valid_homomorphism_,
_latex_,
_poly_ring
Class: PowerSeriesRing_over_field
self, base_ring, [name=20], [default_prec=None]) |
Functions: fraction_field
See About this document... for information on suggesting changes.