Module: sage.groups.matrix_gps.special_linear
Author Log:
sage: SL(2, ZZ) Modular Group SL(2,Z) sage: G = SL(2,GF(3)); G Special Linear Group of degree 2 over Finite Field of size 3 sage: G.is_finite() True sage: G.conjugacy_class_representatives() [[1 0] [0 1], [0 2] [1 1], [0 1] [2 1], [2 0] [0 2], [0 2] [1 2], [0 1] [2 2], [0 2] [1 0]]
Module-level Functions
n, R) |
Class: SpecialLinearGroup_finite_field
Class: SpecialLinearGroup_generic
Functions: as_matrix_group,
gens
self) |
sage: G = SL(6,GF(5)) sage: G.as_matrix_group() Matrix group over Finite Field of size 5 with 2 generators: [[[2, 0, 0, 0, 0, 0], [0, 3, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]], [[4, 0, 0, 0, 0, 1], [4, 0, 0, 0, 0, 0], [0, 4, 0, 0, 0, 0], [0, 0, 4, 0, 0, 0], [0, 0, 0, 4, 0, 0], [0, 0, 0, 0, 4, 0]]]
self) |
sage: G = SL(6,GF(5)) sage: G.gens() [[2 0 0 0 0 0] [0 3 0 0 0 0] [0 0 1 0 0 0] [0 0 0 1 0 0] [0 0 0 0 1 0] [0 0 0 0 0 1], [4 0 0 0 0 1] [4 0 0 0 0 0] [0 4 0 0 0 0] [0 0 4 0 0 0] [0 0 0 4 0 0] [0 0 0 0 4 0]]
Special Functions: __repr__,
__str__,
_gap_init_,
_latex_
self) |
sage: G = SL(6,GF(5)) sage: print G SL(6, GF(5))
self) |
sage: G = SL(6,GF(5)) sage: print G SL(6, GF(5))
self) |
sage: G = SL(6,GF(5)) sage: G._latex_() 'SL$(6, GF(5))$'
See About this document... for information on suggesting changes.