17.3 Quaternion orders

Module: sage.algebras.quaternion_order

Author: David Kohel, 2005-09

Module-level Functions

QuaternionDefiningOrder( H, R)

Returns a hypothetical underlying order of H spanned by the basis over R.

No checking is done to ensure that the ring R is an integral domain whose field of fractions is the base field of H. Nor is it checked that the basis of H in fact generates an R-module which is closed under multiplication.

QuaternionOrderWithBasis( R, B)

Class: QuaternionOrder_generic

class QuaternionOrder_generic
An order in a quaternion algebra.
QuaternionOrder_generic( self, H, R, gens, [basis=None])

An order in a quaternion algebra.

Functions: discriminant,$  $ gram_matrix,$  $ inner_product_matrix,$  $ random_element

Special Functions: __call__,$  $ __repr__

See About this document... for information on suggesting changes.