23.10 Set of homomorphisms between two schemes

Module: sage.schemes.generic.homset

Module-level Functions

SchemeHomset( R, S, [cat=True], [check=None])

enum_affine_finite_field( X)

enum_affine_rational_field( X, B)

enum_projective_finite_field( X)

enum_projective_rational_field( X, B)

is_SchemeHomset( H)

Class: SchemeHomset_affine_coordinates

class SchemeHomset_affine_coordinates
Set of points on X defined over the base ring of X, and given by explicit tuples.

Functions: points

Special Functions: __call__

Class: SchemeHomset_coordinates

class SchemeHomset_coordinates
Set of points on X defined over the base ring of X, and given by explicit tuples.
SchemeHomset_coordinates( self, X, S)

Functions: value_ring

value_ring( self)

Returns S for a homset X(T) where T = Spec(S).

Special Functions: _repr_

Class: SchemeHomset_generic

class SchemeHomset_generic
SchemeHomset_generic( self, X, Y, [cat=True], [check=None])

Functions: natural_map

Special Functions: __call__,$  $ _repr_

__call__( self, x, [check=True])

sage: f = ZZ.hom(QQ); f
Coercion morphism:
  From: Integer Ring
  To:   Rational Field

sage: H = Hom(Spec(QQ,ZZ), Spec(ZZ)); H
Set of points of Spectrum of Integer Ring defined over Rational Field

sage: phi = H(f); phi
Affine Scheme morphism:
  From: Spectrum of Rational Field
  To:   Spectrum of Integer Ring
  Defn: Coercion morphism:
          From: Integer Ring
          To:   Rational Field

Class: SchemeHomset_projective_coordinates_field

class SchemeHomset_projective_coordinates_field
Set of points on X defined over the base ring of X, and given by explicit tuples.

Functions: points

Special Functions: __call__

Class: SchemeHomset_projective_coordinates_ring

class SchemeHomset_projective_coordinates_ring
Set of points on X defined over the base ring of X, and given by explicit tuples.

Functions: points

Special Functions: __call__

Class: SchemeHomset_spec

class SchemeHomset_spec
See About this document... for information on suggesting changes.