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Modular Abelian Varieties

Abel
Abelian variety: A complete group variety

Examples:

1. Elliptic curves, e.g., y2 = x3 + ax+ b

2. Jacobians of curves

3. Quotients of Jacobians of curves
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Connection with Cryptography

Modular abelian varieties over finite fields provide a large source

of groups that can be used for cryptography (e.g., Elliptic Curve

Cryptography). I will focus on modular abelian varieties over

infinite fields today, but the results are relevant for understanding

the reductions of those varieties modulo primes.
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The Modular Curve X1(N)

HeckeLet h∗ = {z ∈ C : =(z) > 0} ∪P1(Q).

1. X1(N)C = Γ1(N)\h∗ (compact Riemann surface)

2. X1(N) has natural structure of algebraic curve over Q

3. X1(N)(C) = {(E,P ) : ord(P ) = N}/ ∼ (moduli space)

N ≤ 10 11 13 37 169 512 2003
genus(X1(N)) 0 1 2 40 1070 7809 166167
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Modular Forms

Hecke1. Cuspidal modular forms (of weight 2):

S2(N) = H0
(
X1(N),Ω1

X1(N)

)

2. f ∈ S2(N) has Fourier expansion in terms of q(z) = e2πiz

f =
∞∑
n=1

anq
n

3. Hecke algebra (commutative ring):

T = Z[T1, T2, . . .] ↪→ End(S2(N))
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The Modular Jacobian J1(N)

Jacobi1. Jacobian of X1(N):

J1(N) = Jac(X1(N))

2. J1(N) is an abelian variety over Q of dimension g(X1(N)).

3. The elements of J1(N) parameterize divisor classes on X1(N)

of degree 0.
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Modular Abelian Varieties

Shimura
A modular abelian variety A over a number

field K is any abelian variety A (over K) such

that there is a homomorphism

A→ J1(N)

with finite kernel.
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Examples and Conjectures

Suppose dimA = 1.

• Theorem (Wiles, Breuil, Conrad, Diamond, Taylor).

If K = Q then A is modular.

• Theorem (Shimura). If A has CM then A is modular.

• Definition: A over Q is a Q-curve if for each Galois con-

jugate Aσ of A there is an isogeny A → Aσ (an isogeny is a

map with finite kernel).

Conjecture (Ribet, Serre). Over Q the non-CM modular

elliptic curves are exactly the Q-curves.
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GL2-type

Ken Ribet
Defn. A simple abelian variety A/Q is of

GL2-type if

End0(A/Q) = End(A/Q)⊗Q

is a number field of degree dim(A).

Shimura associated GL2-type modular abelian varieties to T-

eigenforms:

f = q +
∑
n≥2

anq
n ∈ S2(N)

If = Ker(T→ Q(a1, a2, a3, . . .)), Tn 7→ an
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Abelian variety Af over Q of dim = [Q(a1, a2, . . .) : Q]:

Af := J1(N)/IfJ1(N)

Theorem (Ribet). Shimura’s Af is Q-isogeny simple since

End0(Af/Q) = Q(a2, a3, . . .).

Also there is an isogeny J1(N) ∼
∏
f Af , where the product is

over Galois-conjugacy classes of f .

Conjecture. (Ribet)
The simple modular abelian varieties A over Q are exactly the

simple abelian varieties over Q of GL2-type.

Ribet proved that his conjecture follows from Serre’s unproven

conjectures on modularity of odd mod p Galois representations.



2. Computing With Abelian Varieties

Goal: Develop a systematic theory for computing

with modular abelian varieties.

Basic Problems: Presentation, isogeny testing, isomorphism

testing, endomorphism ring, enumeration.

Arithmetic Problems: Special values of L-functions, com-

puting Shafarevich-Tate groups, Tamagawa numbers, enumer-

ating elements of isogeny class.
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Presentation

Modular abelian varieties can be specified in many ways:

- Equations

- Built from newform abelian varieties Af
- Arise theoretically (e.g., Jacobians of Shimura curves).

For all our questions today we will view a modular abelian vari-

ety as being defined in the following way. Any modular abelian

variety B can be obtained by quotienting an abelian subvariety

A ⊂ J1(N) by a finite subgroup G. Thus we represent B by giving

a pair (A,G), where G ⊂ A ⊂ J1(N).
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Specifing A

An inclusion ϕ : A ↪→ J1(N) induces an inclusion on homology

H1(A,Q) ↪→ H1(J1(N),Q),

and A is completely determined by the image of H1(A,Q) in the
vector space H1(J1(N),Q).

We give A by giving a subspace V = VQ ⊂ H1(J1(N),Q).

Specifing G

By the Abel-Jacobi theory there is a canonical isomorphism

J1(N)(C) ∼= H1(J1(N),R)/H1(J1(N),Z).

Likewise A(C) ∼= VR/VZ, where VZ = V
⋂

H1(J1(N),Z), so

A(C)tor
∼= VQ/VZ.

We give G by giving finitely many elements of VQ/VZ.
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Recognition Problem

Problem: When does a subspace V ⊂ H1(J1(N),Q) corre-
spond to an abelian subvariety A of J1(N) over K?

Solution: Given an isogeny decomposition of J1(N) over K
as a direct sum of simple abelian varieties, I have an algorithm
to solve this problem. (It is straightforward to compute such a
decomposition when K = Q.)

Problem: Given a group G defined by a finite list of elements
of VQ/VZ, find the smallest number field over which G is defined.
This is important because if G is defined over K, then B = A/G
is defined over K.

Solution??: I have not solved this problem, which is likely
very difficult.
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Modular Symbols

Manin

Modular symbols provide a presentation of

H1(X1(N),Z)

on which one can give formulas for Hecke and other operators.

They have been intensively studied by Birch, Manin, Shokurov,

Mazur, Merel, Cremona, and others.

> M := CuspidalSubspace(ModularSymbols(Gamma1(11)));

> Basis(M);

[

-1/5*{-1/2, 0} + -2/5*{-1/4, 0} + 3/5*{-1/7, 0} + -1/5*{7/15,1/2},

-2/5*{-1/2, 0} + 1/5*{-1/4, 0} + 1/5*{-1/7, 0} + -2/5*{7/15,1/2}

]
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Enumeration Problem Over Q

Problem: Give an algorithm to systematically enumerate every

modular abelian variety over Q.

The isogeny classes of simple modular abelian varieties over Q

are in bijection with newforms, which are eigenvectors for Hecke

operators in the space S2(Γ1(N)) of modular forms. Using the

Atkin-Lehner-Li theory of newforms, modular symbols, and linear

algebra, we can thus enumerate the isogeny classes over Q.

I do not know how to find all abelian varieties in an isogeny

class, except when A has dimension 1, where it is solved. Maybe

at least find several by intersecting A ⊂ J1(N) with other abelian

varieties over Q, quotienting out by intersection, and proving

quotient is not isomorphic to A.
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Example

> Factorization(J1(17));

[*

<Modular abelian variety 17A of dimension 1, level 17

and conductor 17 over Q, [

Homomorphism from 17A to J1(17) given on integral

homology by:

[-3 1 2 -2 0 -2 2 -1 2 4]

[-2 -2 0 0 0 0 0 2 4 0]

]>,

<Modular abelian variety 17A[2] of dimension 4, level 17

and conductor 17^4 over Q, [

Homomorphism from 17A[2] to J1(17) (not printing

8x10 matrix)

]>

*]
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Enumeration Problem Over Q

Problem: Give an algorithm to systematically enumerate every

modular abelian variety over Q.

There is a huge amount of work by Shimura, Ribet, González,

Lario, and others, but still nobody has given an algorithm to

enumerate all isogeny classes of modular abelian varieties over

Q explicitly. By explicit, I mean in the sense of giving defining

data, i.e., a pair (V, G ⊂ VQ/VZ).

Obstructions:
- Difficulty of constructing End(Af/Q) explicitly (I have an algo-

rithm, but it is way too slow to be useful)

- Difficulty of decomposing Af/Q as a product of simples, even

given End(Af/Q). Need a good “Meataxe” over Q.

17



Computing Endomorphism Rings

Problem: Given a modular abelian variety A over K, compute
End(A) explicitly, i.e., give matrices in End(V ) that generate
End(A) as an abelian group.

Solution: When A ⊂ J1(N) is simple, End(A) ⊗ Q is a skew
field, which can be computed. For example, if K = Q, then
A = Af is attached to a newform and End(A) ⊗Q is generated
by the image of the Hecke algebra. We can then find End(A) in
End(A) ⊗ Q as the Z-submodule of elements that preserve the
lattice VZ.

We can also explicitly compute Hom(A,B) for any modular abelian
varieties A and B, by writing A and B as simples, computing
endomorphism algebras, and finding the Z-module of homomor-
phisms that induce a map that fixes integral homology.
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Example

> A := J0(33); A;
Modular abelian variety J0(33) of dimension 3 and level 3*11 over Q
> End(A);
Group of homomorphisms from J0(33) to J0(33)
> Basis(End(A));
[

Homomorphism from J0(33) to J0(33) (not printing 6x6 matrix),
Homomorphism from J0(33) to J0(33) (not printing 6x6 matrix),
Homomorphism from J0(33) to J0(33) (not printing 6x6 matrix),
Homomorphism from J0(33) to J0(33) (not printing 6x6 matrix),
Homomorphism from J0(33) to J0(33) (not printing 6x6 matrix)

]
> Matrix(Basis(End(A))[2]);
[ 0 1 0 0 0 -1]
[ 0 1 0 0 0 0]
[ 0 1 0 0 -1 0]
[ 0 1 -1 1 -1 0]
[ 0 1 -1 0 0 0]
[-1 1 0 0 0 0]
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Isogeny Testing

Problem: Given modular abelian varieties A and B, determine

whether or not A is isogenous to B.

Determine whether A is isogenous to B is easy, since we may

assume A and B are attached to newforms
∑
anqn and

∑
bnqn,

and then A is isogenous to B if and only if the newforms are

Galois conjugate.

20



Isomorphism Testing

Problem: Suppose A is isogenous to B. Decide whether A is
isomorphic to B.

I do not know how to do this in general. Assume we have
computed End(A), End(B), and Hom(A,B) explicitly. Given a
basis for Hom(A,B), how do we know if some linear combination
of that basis has determinant 1? It’s not clear (to me).

If A and B are both simple and have commutative endomorphism
ring, then I found an algorithm to decide whether A is isomorphic
to B. This algorithm can be extended to abelian varieties that are
products of such A, assuming the factors occur with multiplicity 1
(up to isogeny). However, I do not know in general how to decide
whether A ⊕ A is isomorphic to B ⊕ B, though I have a vague
strategy that I think might work.
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Algorithm for Testing Isomorphism

Suppose A and B are explicitly defined modular abelian varieties

over Q that are both isogenous to an abelian variety Af . The

following algorithm determine whether A is isomorphic to B.

Let H = Hom(A,B). Both A and B are given explicitly by pairs

(V,G1) and (V,G2), so we can compute an isogeny f : B → A.

Let Hf = {φ ◦ f : φ ∈ H} ⊂ End(B). Note that A is isomorphic

to B if and only if Hf contains an element of degree deg(f).

Also note that Hf has finite index in End(B).

By hypothesis K = End(B) ⊗ Q is the field generated by the

Fourier coefficients of f . The norm of an element of K is the

positive square root of the degree of the corresponding homo-

morphism (see Milne in Cornell-Silverman, pg 126, Prop. 12.12).
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Thus if deg(f) is not a perfect square, then there can be no ele-

ment of B of degree deg(f), so A is not isomorphic to B. Thus

suppose deg(f) = d2.

Typically there will be infinitely many element in OK of norm d,

but there are only finitely many up to units. There is an algo-

rithm, which involves computing the class group of OK, which

enumerates representive elements of OK of norm d, up to units

(e.g., the NormEquation command in MAGMA). Thus suppose we

have computed representative elements z1, . . . , zn of the elements

of OK with norm d. Then A is isomorphic to B if and only if

there is a unit u and a zi such that u−1zi ∈ Hf ⊂ K. Equivalently,

such that zi ∈ uHf . There are only finitely many possibilities for

uHf , since Hf has finite index in OK and [OK : uHf ] = [OK : Hf ],

since OK = uOK. We can thus list all subgroups uHf (since we

can compute generaturs for O∗K) and hence determine whether

Hf contains an element of norm d, as required.



Thank you for

inviting me!
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