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We describe explicit parametrizations of the rational points of X*(N), the
algebraic curve obtained as quotient of the modular curve X0(N) by the group
B(N) generated by the Atkin�Lehner involutions, whenever N is square-free and the
curve is rational or elliptic. By taking into account the moduli interpretation of
X*(N), along with a standard ``boundedness'' conjecture, we obtain all the
Q� -isogeny classes of Q-curves except for a finite set. � 1998 Academic Press

1. INTRODUCTION

Let C be an elliptic curve defined over Q� . The curve C is said to be a
Q-curve if it is isogenous to all its Galois conjugates C_, with
_ # Gal(Q� �Q). The interest in Q-curves has recently been increasing with
the aim of generalizing the Shimura�Taniyama�Weil conjecture for elliptic
curves defined over number fields. See footnote 24 in [10] and also [13].

As Elkies first noticed, every Q-curve without complex multiplication is
isogenous over Q� to a Q-curve attached to a rational point of the algebraic
curve X*(N)=X0(N)�B(N), where B(N) is the automorphism group
generated by the Atkin�Lehner involutions and N is square-free [5]. Every
non-cusp rational point in X*(N) lifts to X0(N) giving Q-curves defined
over abelian extensions of Q of type (2, ..., 2).

The only primes p for which the modular curve X0( p) has genus zero are
p=2, 3, 5, 7, and 13. For these values of p, the function

F(z)=\ '(z)
'( pz)+

24�( p&1, 12)
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is a Hauptmodul on X0( p) with div(F )=(0)&(i�), and the functions j(z),
j( pz) are in Z(F ). Given a quadratic field K, to certain values of F(z) in K
correspond values j(z), j( pz) which are conjugate and provide Q-curves
defined over K, the isogeny being of degree p. Instead, we parametrize the
elementary symmetric functions J1(z)= j(z)+ j( pz) and J2(z)= j(z) j( pz)
by means of a rational Hauptmodul on X*( p).

Our aim is to generalize the above procedure to parametrize the
Q-curves arising from the rational points of X*(N) whenever this curve has
genus zero or one. We first determine the complete list of such values of N.
In the rational cases, we show how to construct a Hauptmodul on X*(N)
and, once the Hauptmodul is normalized and has integral q-expansion, we
obtain families of Q-curves over quadratic, biquadratic and triquadratic
extensions. In the elliptic cases, we find explicit modular parametrizations
of a reduced Ne� ron model of X*(N) and give a method to retrieve the
Q-curves parametrized by its Mordell-Weil group. In this situation we obtain
families of Q-curves defined over quadratic, biquadratic, triquadratic and
tetraquadratic extensions.

It is worth noting that there is a natural boundedness conjecture for this
moduli problem. Namely, if N is large enough, then X*(N) should not con-
tain rational points other than cusps or CM points [5]. Taking all this
into account, along with the celebrated theorem of Faltings concerning the
finiteness of rational points on algebraic curves, it can be concluded that
the parametric families of Q-curves described in the present paper should
exhaust all the Q� -isogeny classes of Q-curves except for a finite (though
non-empty, see [5]) set.

2. PARAMETRIC FAMILIES OF Q-CURVES

Let N>1 be an integer. The number of cusps of X0(N) is �d | N .((d, N�d)),
where . denotes the Euler function. A system of representatives of the
cusps is given by the fractions a�d, where d is a positive divisor of N and
a # (Z�fd Z)*, with fd=(d, N�d ), (a, d )=1. In this way, 0#1, i�#1�N.

Given a divisor 1<N1 | N such that (N1 , N�N1)=1, the Atkin�Lehner
involution wN1

acts as a permutation on the set of cusps. Moreover, a cusp
with denominator d is sent to a cusp with denominator N1 d�(N1 , d )2. With
no risk of confusion, we still denote by wN1

the permutation on the set of
positive divisors of N induced by the corresponding involution: wN1

(d )=
N1 d�(N1 , d )2.

Now, assume that N is square-free and let N= p1 } } } pn its prime decom-
position. Let B(N) denote the group generated by the Atkin�Lehner
involutions of X0(N). As it is shown in [8], the automorphism group of

14 GONZA� LEZ AND LARIO



X0(N) is B(N) whenever the genus of X0(N) is at least 2, except for the case
N=37. We have

B(N)=(wp1
) � } } } �(wpn

) =[wN1
: N1 | N],

where w1=id. Since N is square-free, X0(N) has 2n cusps and the set
[1�d : d | N] is a system of representatives of them. For 0<d, N1 | N, we
have wN1

(1�d)=1�wN1
(d). One can easily check that B(N) acts transitively

on the set of cusps.
Let X*(N)=X0(N)�B(N) and let ?: X0(N) � X*(N) denote the natural

projection. The functions (differentials) on X*(N) are the functions (dif-
ferentials) on X0(N) invariant under the action of B(N). For each positive
divisor d | N, we consider the functions jd (z)= j(dz). A straightforward
computation shows that jd | w= jw(d ) for all w # B(N), so that the elemen-
tary symmetric functions

J1=:
d

jd , J2= :
d1<d2

jd1
jd2

, ..., J2n=`
d

jd

are functions on X*(N) with an unique pole at ?(i�). More precisely, the
function Ji has a pole at ?(i�) of order � i

j=1 N�dj , where 1=d1< } } } <d2n

=N are the positive divisors of N.
A non-cusp rational point in X*(N) lifts to a Galois stable set of points

in X0(N) which is an orbit under the action of B(N). The j-invariants of the
corresponding elliptic curves are jd where d runs the positive divisors of N,
and the polynomial J*(x)=>d | N (x& jd) has coefficients in Q. Note that
if J*(x) is Q-irreducible, then there is an isomorphism B(N)&Gal(K�Q)
where K=Q( j1). Observe also that if J*(x) has repeated roots, then the
Q-curves attached to these roots are CM elliptic curves.

The Rational Case

Whenever X*(N) has genus zero, given a non-cusp point P of X0(N),
there is a unique function F on X0(N) invariant under B(N) such that

div(F )= :
w # B(N)

(w(P))&(w(i�))

with a normalized Fourier q-expansion: F(q)=1�q+ } } } . The function F is
then a Hauptmodul on X*(N) with a simple pole at ?(i�), and changing
the base point P modifies F in an additive constant. In Section 4, we pre-
sent a method to construct this Hauptmodul on X*(N).
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In this case, the functions Ji can be expressed as polynomials in F of
degree � i

j=1 N�d j . In fact, we will show that J*(x) has coefficients in Z[F],
due to the fact that we can always find a normalized Hauptmodul F with
integral q-expansion.

The Elliptic Case

Whenever the curve X*(N) has genus one, it can be viewed as an elliptic
curve over Q by considering the rational point ?(i�) # X*(N)(Q) as the
origin. In section 6, we determine the Q-isomorphism class of X*(N) and
make the modular parametrization ?: X0(N) � X*(N) explicit. In other
words, we find modular functions U and V on X0(N) satisfying a minimal
Weierstrass equation of X*(N). Then, the Riemann�Roch theorem allows
us to express the symmetric functions Ji as polynomials of the functions U
and V. Indeed, for m�2 the C-vector space of modular functions of X*(N)
with a unique pole at ?(i�) of order �m has dimension m, and a basis is
given by [U i, U jV] with 0�i�[m�2], 0� j�[(m&3)�2]. It turns out
that Ji (U, V) # Z[U, V] and, since the Mordell�Weil group of X*(N)
has rank one in all the cases, we do parametrize Q-curves for such values
of N.

We conclude with the process of extracting the Q-curves parametrized by
X*(N)(Q) under our genus assumptions.

3. THE GENUS OF X*(N)

As before, let N= p1 } } } pn be square-free. In this section we give a formula
for the genus g* of X*(N), and determine all the cases for which g* is
either zero or one.

Let g be the genus of X0(N). The Hurwitz formula applied to the
morphism ?: X0(N) � X*(N) yields 2g&2=deg(?)(2g*&2)+� (e(P)&1),
where e(P) denotes the ramification index of ? at the point P # X0(N).
A point P of X0(N) is ramified if and only if it is fixed by some non-trivial
Atkin�Lehner involution wd # B(N). In this case, P is not a cusp and corre-
sponds to an elliptic curve with complex multiplication by Q(- &d). Since
N is square-free, it turns out that wd is the only Atkin�Lehner involution
that fixes P. Thus, for all cases e(P)�2.

For a positive divisor d of N, let &d (N) be the number of fixed points in
X0(N) by wd . We refer to [7] and [1, Table 7] for an explicit formula to
compute this number. It can be concluded that

2g&2=2n(2g*&2)+ :
1<d | N

&d (N).
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Remark 3.1. Let B be any subgroup of B(N). The genus gB of X0(N)�B
can be computed from the equation

2g&2=|B| (2gB&2)+ :
wd # B"[id]

&d (N),

where |B| denotes the order of the subgroup B.

Remark 3.2. If P # X0(N) is a ramified point of ?: X0(N) � X*(N), then
the polynomial J*(x) attached to ?(P) has repeated roots although the
converse is not true in general. E.g., in the case N=2 we find that J*(x) has
repeated roots for the following three values of j : 1728, 8000, and &3375. The
elliptic curves corresponding to j-invariants 1728, 8000 provide the two
ramification points of ?. The point ( j1 , j2)=(&3375, &3375) is a singularity
of the affine curve defined by the modular equation 82(x, y)=0.

As we are interested in the cases g*=0 and 1, the following two lemmas
added to the formula above allow us to determine the finite list of values
N for which X*(N) is rational or elliptic.

Lemma 3.3. Let N be an integer, and p be a prime with (N, p)=1. The
genus of X*(Np) is at least as large as the genus of X*(N).

Proof. Let us assume that the genus g* of X*(N) is >0, if not there is
nothing to prove. Let [ fi]1�i� g* be a basis of S2(10(N))B(N). The cusp
forms f i | Bp= fi ( pz) are in S2(10(Np)). Since f i | wp= p( fi | Bp) and
( fi | Bp)|wd=( fi | wd)|Bp for all (d, p)=1 and 1�i� g*, it follows that
hi= fi+ p( fi | Bp) are non-zero cusp forms fixed by B(Np). As S2(10(N)) &
Bp(S2(10(N)))=[0], we conclude that [hi]1�i� g* are linearly independent
and, hence, the assertion holds. K

Lemma 3.4. Let us assume that N is an odd integer and let n be the num-
ber of prime divisors of N. Let �(N)=N >p | N (1+1�p).

(i) If X*(N) has genus zero, then �(N)�2n�48.

(ii) If X*(N) has genus one, then �(N)�2n�96.

Proof. We outline the proof of (i). Since N is odd, the curve X0(N) has
good reduction at 2. The argument in [12] shows that X0(N)(F4) has at
least 2n+�(N)�12 points. Now, let B$ be a subgroup of B(N) of index 2
and consider the quotient X$=X0(N)�B$. The curve X$ also has good
reduction at 2 and it is a hyperelliptic curve; therefore, X$(F4) has at most
10=2(4+1) points. Since the reduction of the map ?$: X0(N) � X$ is e� tale
over F4 and has degree 2n&1, we get 2n+�(N)�12�10.2n&1. The argument
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for (ii) is similar, but one simply uses instead the fact that X*(N)(F4) has
at most 9 points and the morphism X0(N) � X*(N) has degree 2n. K

Combining the two lemmas above we obtain the following results:

Proposition 3.1. There are exactly 43 square-free values of N>1 such
that X*(N) has genus zero. Namely,

N
p 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71
p .q 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 62, 69, 87, 94, 95, 119
p .q .r 30, 42, 66, 70, 78, 105, 110.

Proposition 3.2. There are exactly 38 square-free values of N such that
X*(N) has genus one. Namely,

N
p 37, 43, 53, 61, 79, 83, 89, 101, 131
p .q 57, 58, 65, 74, 77, 82, 86, 91, 111, 114, 118, 123, 142, 143, 145, 155, 159
p .q .r 102, 114, 130, 138, 174, 182, 190, 195, 222, 231, 238
p .q .r . s 210.

Proof. The procedure for determining all the values follows by induction
on the number of prime factors of N. We limit ourselves to Proposition 3.1,
and the proof of Proposition 3.2 is similar. Start with the case N= p prime.
If the genus of X*( p) is zero, then X0( p) must be a hyperelliptic curve and
Ogg has determined the 15 possible values [12]. If N= p .q and X*(N) has
genus zero, then the first step, along with Lemmas 1 and 2, forces N to be
in an explicit finite set. After computing g* for these candidates, we collect
a further 21 new values. Next, we deal similarly with the case N= p .q .r
and get 7 more values. The process ends since the finite set of candidates
with four prime factors having g*=0 is the empty set. K

Remark 3.5. The primes involved in the first row of Proposition 3.1 are
exactly those dividing the order of the Monster group [2, 5, 16].

4. THE RATIONAL CASE

Let G(z)=>d | N '(dz)rd where '(z) is the Dedekind function and rd # Z.
As is well-known [9, 11], G(z) is a function on X0(N) if and only if the
following three statements hold:
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(i) �d | N rd=0,

(ii) >d | N d rd is a square in Q*,

(iii) AN } r#0 (mod 24).

Here AN=(ad $
d )d, d $ | N is the matrix defined by ad $

d =N(d, d $)2�(dd $(d $, N�d $)),
and r is the array (rd)d | N .

A function G(z) satisfying these conditions has its zeros and poles at the
cusps of X0(N), and the order at a cusp with denominator d is the d th
component of AN } r�24. Let GN denote the multiplicative group of func-
tions on X0(N) generated by this procedure. We call GN the Newman group
of level N. As shown in [6], the group Q�GN is stable under the
Atkin�Lehner action, and every function G(z) on X0(N) with neither zeros
nor poles in the upper half plane and with the same order at all the cusps
represented by the same denominator satisfies G(z)n # C�GN for some
positive integer n.

We shall need an auxiliary function on X0(N) lying in the Newman
group that will help us to construct the Hauptmodul F on X*(N) whenever
it exists. The next proposition generalizes Theorem 4 in [12].

Proposition 4.1. Let N= p1 } } } pn be square-free and B$ be a subgroup
of B(N) of index 2. Let

GB$(z)=\>w # B(N)"B$ '(w(N) z)
>w # B $ '(w(N) z) +

rB $

.

Here rB$=24�(N&1, 12) if N is prime, or 24�(>n
i=1 ( pi+$i), 24) otherwise,

with $i=1 if wpi
# B$ and $i=&1 if wpi

� B$. Then,

(i) GB$ is a function on X0(N) with

div GB$=mB$ \ :
w # B(N)"B$

(1�w(N))& :
w # B$

(1�w(N))+ ,

where mB$=rB$ �24 >n
i=1 ( pi+$i).

(ii) For all integers m>1, G1�m
B$ is not a function on X0(N).

Proof. Since B$ has index 2 in B(N), there is a prime p | N such that
wp � B$; without loss of generality we can assume p= pn and, therefore,
B(N)=B$�(wpn

). In particular, B(N)"B$=wpn
B$.

Let us consider the array r� =(r� d)d | N with r� d=&1 if d=w(N) for some
w # B$ and r� d=1 otherwise. Let n� =AN } r� . On the one hand, the Newman
matrix satisfies ad $

d =aw(d $)
w(d ) for all w # B(N) and r� d=r� w(d ) for all w # B$,
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hence n� d=n� w(d ) for all w # B$. On the other hand, since �d r� d=0 and for
every divisor d one has �d $ | N ad $

d =�(N), we obtain �d n� d=0. Therefore,

n� d={ n� N

&n� N

if d=w(N) for some w # B$,
otherwise.

We also have n� N=�w # B(N)"B$ w(N)&�w # B$ w(N)=�w # B$ w(N�pn)&w(N).
Let us show that n� N=&>n

i=1 ( pi+$i) by induction on the number n of
prime divisors of N. The case n=1 being obvious, we assume n>1. Let
D$=[d : d | N, wd # B$]. If B$=(wp1

, ..., wpn&1
) , then D$=[d : d | N�pn]

and

n� N= :
d # D$

N�dpn& :
d # D$

N�d= :
d # D$

d& :
d # D$

dpn=(1& pn) `
n&1

i=1

( pi+1).

If B${(wp1
, ..., wpn&1

) , then we consider B"=[wd # B$ : (d, pn)=1] which
is a subgroup of index 2 in B$ and also in B(N�pn). In this case, we have

n� N= :
w # B"

w(N�pn)+ :
w # B$"B"

w(N�pn)& :
w # B"

w(N)& :
w # B$"B"

w(N)

=(1& pn) :
w # B"

w(N�pn)+( pn&1) :
w # B(N�pn)"B"

w(N�pn).

With the induction hypothesis on N�pn , we conclude that

n� N=(1& pn) `
n&1

i=1

( pi+$i).

Finally, observe that the product >w # B$ w(N�pn)&1 w(N) is equal to p2n&1

n

if B$=(wp1
, ..., wpn&1

) or, otherwise, to 1. Thus, >w # B$ w(N�pn) w(N)&1 is
a square in Q if and only if N is not a prime. Now, the first claim follows
from considering the properties of the functions in the Newman group GN .
The second claim follows as in [12, Lemma on p. 458]. K

We also need the following result:

Proposition 4.2. Let N and B$ be as in the previous proposition. The
logarithmic differential of GB$ , |=(dGB$�dz)�GB$ , is invariant under B$ and
satisfies | | w=&| for all w # B(N)"B$.

Proof. Since divGB$ is invariant under B$, we see that GB$ is an eigen-
vector of every w # B$; so GB$ | w=\GB$ . Therefore, G2

B$ is a function on
X0(N)�B$ and its logarithmic differential is a differential on X0(N)�B$. Let
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w # B(N)"B$. Since div GB$ | w=&div GB$ , there is a constant a # Q* such
that GB$ | w=a�GB$ . Finally,

\G$B$(z)
GB$(z)+ | w=

G$B$(w(z))
GB$(w(z))

w$(z)=&a
G$B$(z)�GB$(z)2

a�GB$(z)
=&

G$B$(z)
GB$(z)

. K

From now on, we assume that X*(N) has genus zero. Fix a subgroup B$
of B(N) of index 2. Let X$=X0(N)�B$ and G(z)=GB$(z). Let us consider
the projection ?$: X0(N) � X$ and let g$ denote the genus of X$. The vector
space of regular differentials on X0(N) invariant under B$ has dimension g$.
If g$>0, then for each w # B(N)"B$ these differentials are eigenvectors of w
with eigenvalue &1 since X$�(w) has genus zero. Next, we describe how
to find a Hauptmodul on X*(N) with a simple pole at ?(i�) according to
the values of g$.

(1) Case g$=0. If N is prime, then N=2, 3, 5, 7 or 13. Otherwise,
due to Proposition 4.1 (i), we have that >n

i=1 ( pi+$i) | 24; so, the only
values are N # [2 } 3, 2 } 5, 2 } 7, 2 } 11, 2 } 13, 2 } 23, 3 } 5, 3 } 7, 3 } 11, 3 } 13,
5 } 7, 5 } 7, 2 } 3 } 5, 2 } 3 } 7, 2 } 3 } 11, 2 } 3 } 13]. In these cases, the function
F=G+G | w (any w � B$) is invariant under B(N) and has a simple pole at
?(i�). It turns out that F has integral q-expansion, since G | w=a�G where
a # Z. More precisely, we find a= prB$2n&1

n if B$ is of the form (wp
1
, ..., wpn&1

) ,
or a=\1 otherwise.

(2) Case g$=1. Let | be a non-zero regular differential on X0(N)
invariant under B$. Let us consider the function F=(qdG�dq)�(G|).
Proposition 4.2 tells us that F is invariant under B(N), and it is easily seen
that it has a simple pole at each cusp of X0(N). Since | can be chosen to
be normalized and with integral q-expansion, it is easy to see that F(q)=
&mB$�q+a0+mB$ � anqn with ai # Z. Thus, the normalized Hauptmodul
&(F(q)&a0)�mB$ has integral q-expansion.

(3) Case g$>1. Let |1 , ..., |g$ be a basis of the regular differentials
on X0(N) invariant under B$. Take w # B(N)"B$. Since w is the hyperelliptic
involution of X$ and ?$(i�) is not fixed by w, it follows that ?$(i�) is not
a Weierstrass point of X$. Therefore, the differentials |i can be chosen so
that |i #qi (mod q g$+1) The function F=|g$&1 �|g$ is then a Hauptmodul
on X*(N) with a simple pole at ?(i�). In every case one checks that |g$

and |g$&1 can be chosen with integral q-expansion, so that F is normalized
and has integral q-expansion as well.

In the Appendix below we provide the genus g$ attached to each possible
subgroup B$ for the 43 values of N such that X*(N) has genus zero.

Remark 4.1. The polyquadratic extensions of X*(N) containing the
conjugates of j implicitly give the equations for X0(N) as a polyquadratic
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cover of X*(N). For other (non-implicit) equations of X0(N) we refer to
[14].

5. RATIONAL EXAMPLES

Here we present some examples of parametric families of Q-curves
obtained accordingly to the previous results. They come from the curves
X*(6), X*(11), X*(23), and X*(30).

v Case X*(6). By taking B$=(w2), we obtain G(z)=('(z) '(2z)�
'(3z) '(6z))4. Let t=G(z)+81�G(z). The symmetric functions Ji are:

J1=1730592+472644t&19412t2&8415t3&234t4+24t5+t6,

J2=986038273296+250882570080t+24676194456t2+1173557080t3

+27120609t4+108792t5&15624t6&102t7+37t8+t9,

J3=(18+t)3 (&132914433600&41568310944t&547226496t2

+326343744t3+17402940t4+173310t5+1054t6&9t7+t8),

J4=(18+t)3 (32328+2700t+246t2+t3)3.

The polynomial P(x)=(x& j1)(x& j2)(x& j3)(x& j6) defines a biqua-
dratic extension of Q(t). By computing the roots ( j1+ j2)( j3+ j6),
( j1+ j3)( j2+ j6), and ( j1+ j6)( j2+ j3) of a cubic resolvent of P(x), it is
shown that the splitting field of P(x) is the compositum of the quadratic
fields:

Q(- (t+18)(t&18)), and Q(- (t+14)(t+18)).

For instance, by taking t=0 we obtain a Q-curve with j-invariant:

j=432648&243810i+163674 - 7&92232i - 7.

The field K=Q( j) satisfies Gal(K�Q)&B(6), by identifying w6 : i [ &i,
and w2 : - 7 [ &- 7.

v Case X*(11). Let B$=[id], G(z)=('(z)�'(11z))12, and |=
'(z)2 '(11z)2. In this case, we take F(z)=(qdG�dq)�(G|). Let us consider
t=&(F(z)+22)�5 so that t is a normalized Hauptmodul with integral
q-expansion. We obtain
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J1=8720000+19849600t+8252640t2&1867712t3&1675784t4

&184184t5+57442t6+11440t7&506t8&187t9+t11,

J2=(38800+21920t+4056t2+248t3+t4)3.

The polynomial P(x)=(x& j1)(x& j11)=x2&J1 x+J2 has discriminant
J2

1&4J2=(6+t)(t3&2t2&76t&212) mod Z[t]2.

v Case X*(23). The only subgroup of B(23) with index 2 is B$=[id].
The curve X*(23) has genus 0, and X$=X0(23) has genus g$=2. Performing
our algorithm, we get a Hauptmodul t=1�q+4q+7q2+13q3+19q4+ } } }
on X*(23) and also the symmetric functions Ji :

J1=33162750+160117560t+181569843t2&352943487t3

&1221122187t4&1353267468t5&414060444t6+539366445t7

+630176770t8+197662552t9&82673546t10&83684166t11

&15573852t12+8030680t13+4070172t14+64354t15&329912t16

&52992t17+11799t18+3381t19&161t20&92t21+t23,

J2=(65025+209304t+289980t2+222984t3+102214t4

+27752t5+4092t6+248t7+t8)3,

J 2
1&4J2=t2(t&3)2 (t&1)2 (t+1)2 (t+2)2 (t+3)2 (&9&4t+t2)2

_(&17&2t+t2)2 (&25&17t&2t2+t3)(&19&13t&t2+t3)2

_(&9&9t&t2+t3)2 (7+11t+6t2+t3)(&17&16t+4t3+t4)2.

v Case X*(30). Let B$=(w3 , w5) and

G(z)=
'(z) '(3z) '(5z) '(15z)

'(2z) '(6z) '(10z) '(30z)
.

A normalized Hauptmodul is t=G(z)+4�G(z)+1, and the symmetric
functions Ji are huge polynomials in the variable t. We simply write down
the generic triquadratic extension obtained which is the compositum of the
quadratic fields

Q(- t(t+4)), Q(- (t&1)(t+3)) and Q(- (t&5)(t+3)).

In the particular case t=2, the quadratic fields are: Q(i), Q(- 3) and
Q(- 5). We obtain a triquadratic Q-curve which j-invariant is a root of an
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explicit irreducible polynomial of degree 8. After performing some resolvent
computations we get a root

j1=\3
4

+
3i
4 + (&1520448042&9908421603i

+(&877849349&5720577044i) - 3

+(679965303+4431181206i) - 5

+(392585740+2558319455i) - 15).

The following figure describes the graph which vertices are the eight conjugate
j-invariants and the edges are the corresponding isogenies. The degree of
each isogeny ( jd , jd $) is dd $�(d, d $)2. We note that the involutions w2 , w6 ,
and w30 act as the Galois automorphims - 3 [ &- 3, - 5 [ &- 5, and
i [ &i, respectively.

6. THE ELLIPTIC CASE

In this section we assume that X*(N) has genus one. As alluded before,
E=(X*(N), ?(i�)) is an elliptic curve over Q. Our purpose is to deter-
mine E up to Q-isomorphism and to describe explicitly the morphism
?: X0(N) � X*(N). In other words, we are looking for a modular
parametrization of E.

The first step is to detect the Q-isogeny class of E. Let f # S2(10(N)) be
the only normalized cusp form invariant under B(N). There is a unique
newform h # S2(10(N$)) with N$ | N which is invariant under B(N$). This h
satisfies f =�d | N�N$ dh | Bd . The conductor of E is N$, and h determines E
up to Q-isogeny. In fact, we find h= f except for the values
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N 74 111 222 86 159 174 130 195 231 182

N$ 37 43 53 58 65 77 91

In the next proposition we determine the Q-isomorphism class of E.

Proposition 6.1. The Q-isomorphism class of E is the strong Weil curve
in its Q-isogeny class.

Proof. Except for N # [58, 65, 82, 102, 138, 238], there is nothing to
prove since the Q-isogeny class of E contains only one Q-isomorphism
class. In the remaining six cases, the conductor of E is N. Let ?~ : X0(N) � E�
be the parametrization of the strong Weil curve in the isogeny class of E.
Hence, a Q-morphism *: E� � E exists such that ?=* b ?~ . By using that
C(X0(N))�C(E) is an abelian extension with Galois group isomorphic
to B(N), one checks that none of the proper subgroups of B(N) give
an elliptic quotient of X0(N) (it is sufficient to check this for the sub-
groups of B(N) of index 2). It follows that * has degree one, so it is an
isomorphism. K

Proposition 6.2. Let R(x, y)= y2+a1yx+a3y&(x3+a2x2+a4x+a6)
such that R(x, y)=0 is a reduced Ne� ron model of E=(X*(N), ?(i�)) over Q.
Let U and V be functions on X0(N) invariant under B(N) with R(U, V)=0. Let
f # S2(10(N)) be as above, and denote |=dU�(2V+a1U+a3) the invariant
differential on E. Then, ?*(|)=\f (q) dq�q.

Proof. If f is a newform, then the result follows from the fact that the
Manin constant is \1 for the strong Weil parametrizations under con-
sideration. For the other cases, let N$ dividing N be the conductor of E,
and let h be as before; so that we have f =�d | N�N$ h | wd . Let
pr: X0(N) � X0(N$), ?$: X0(N$) � X*(N$) be the natural projections. Con-
sider the composition

J0(N) w�
W J0(N) w�

pr
* J0(N$) w�

?$
* X*(N),

where W=�d | N�N$ wd , and J0(N), J0(N$) denote the jacobians of X0(N),
X0(N$). Since this morphism is invariant under B(N), it factors through ?

*
.

The fact that the elliptic curve E is non-CM ensures the existence of an
integer m such that

?$
*

b pr
*

b W=[m] ?
*

.
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Therefore, (?$
*

b pr
*

b W)* (|)=\ f (q) dq�q and (?
*

)* (|)=\ f (q) dq�(mq).
The arguments used by Edixhoven in Proposition 2 of [4] apply to this
case, showing that \1�m # Z. K

As a result, there are functions U and V on X0(N) satisfying R(U, V)=0
and

U=1�q2+ :
n� &1

b(n) qn, V=&\q dU�dq
f

+a1U+a3+<2.

The first coefficients b(n) can be computed recursively from the above
relations. At the same time, we determine the first coefficients of the
q-expansion V=1�q3+�n� &2 c(n) qn. In all cases, it turns out that the
Fourier coefficients b(n) and c(n) are in Z. Finally, the Riemann�Roch
theorem allows us to express the elementary symmetric functions Ji as
polynomials in U and V: Ji (z)=Ji (U, V), with Ji (u, v) # Z[u, v].

In the Appendix we provide Cremona's code for the 38 values of N such
that X*(N) has genus one. By looking at the functional equation, one
realizes that X*(N) must have odd analytic rank, due to the fact that
h | wN$=h. In fact, in all cases the rank turns out to be one.

7. ELLIPTIC EXAMPLES

Here we present some examples from the curves X*(37), X*(74), and
X*(82).

v Cases X*(37) and X*(74). We have the (non-commutative)
diagram

X0(74) w�� X0(37)

X*(74) w�
& X*(37),

and Q-isomorphisms X*(37)&X*(74)&E, where E: v2+v=u3&u is the
elliptic curve 37A1 in Cremona's code. Let h denote the newform attached
to E. As for X*(37), we find the modular parametrization ?37 : X0(37) �
X*(37)&E given by

U=1�q2+2�q+5+9q+18q2+29q3+51q4+82q5+131q6+ } } }

V=1�q3+3�q2+9�q+20+46q+92q2+180q3+329q4+593q5+ } } }
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satisfying 2V=&(qdU�dq)� f &1, where f =h is the only newform of level
37 invariant under B(37). On the other hand, as for X*(74), we find the
modular parametrization ?74 : X0(74) � X*(74)&E given by

U=1�q2+2+q+4q2+3q3+7q4+6q5+13q6+13q7+22q8+ } } }

V=1�q3+3�q+1+7q+6q2+17q3+16q4+35q5+38q6+ } } }

satisfying 2V=&(qdU�dq)�f &1, where f =h+2h | B2 is the only nor-
malized cusp form of level 74 invariant under B(74).

At this point, it is easy to write down the polynomials

J(37)* (x)=(x& j(z))(x& j(37z))

=x2&J1(u, v) x+J2(u, v),

J(74)* (x)=(x& j(z))(x& j(2z))(x& j(37z))(x& j(74z))

=x4&J� 1(u, v) x3+J� 2(u, v) x2&J� 3(u, v) x+J� 4(u, v),

although we omit the explicit symmetric functions lying in Z[u, v] due to
reasons of space. Instead, we prefer to remark on some facts related to the
discriminants of J(37)* and J(74)*. Define $37 : E(Q) � Q by $37(P)=
discr(J(37)* (P)(x)). That is, we first substitute u and v in J(37)* (x) by the
coordinates of P=(u, v) and then evaluate the discriminant of the resulting
polynomial. The product $37(P) $37(&P) is an even function on the elliptic
curve E and thus it can be written as a polynomial in the variable u of
P=(u, v). We find $37(P) $37(&P)=u4(u+1)4 (u&1)4 (u&2)4 (u&6)2

(u2&30u+77) Q(u)2, where Q(u) # Z[u] does not have rational roots.
The elliptic curve E has no torsion points other than the origin, and

the rational point P=(0, 0) is a generator of its Mordell-Weil group. The
only integral points not on the identity component are \P and \3P=
\(&1, &1). After computing the points

2P=(1, 0) 4P=(2, &3)

6P=(6, 14) 8P=(21�25, &69�125)

12P=(1357�841, 28888�24389)

we deduce that \P, \2P, \3P, \4P and \6P are the only integer
points on E (see Exercise IX.9.13 in [15]). We note that they are zeros of
$37( V ) $37(& V ). All of them are zeros of $37 (and hence provide CM points),
except for &6P which gives rise to an isogeny of degree 37 between rational
elliptic curves with j-invariants &7.113 and &7.1373 .20833. Analogously,
define $74 by using the polynomial J(74)* (x). Now, the ten integer points
of E are zeros of $74 , so they parametrize CM elliptic curves defined either
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over Q or over a quadratic field. We observe that the discriminant $111

does not vanish at 4P and &6P.

v Case X*(82). In this example the parametrization ? : X0(82) �
X*(82) is given by

U=1�q2+1�q+2+2q+4q2+3q3+6q4+7q5+11q6+11q7+ } } }

V=1�q3+2�q2+4�q+6+9q+12q2+19q3+24q4+38q5+ } } } ,

and a Weierstrass model of X*(82) is v2&uv&v=u3&2u. The
Mordell�Weil group is (Q)+(P) , where Q=(1, 1) is of order 2 and
P=(0, 0) of infinite order. Again the integral points \P, \2P, Q,
\(P+Q), \(2P+Q) and \(4P+Q) are zeros of the norm discriminant
$82( V ) $82(& V ).

In these cases the integer points coincide with the rational zeros of the
norm discriminant $N( V ) $N(& V ), although not all of them need provide
CM points.

APPENDIX

Rational Case

Next, we provide three tables according to the number of prime factors
of N>1 (square-free) such that X*(N) has genus 0. The genus of X0(N) is
denoted by g. The other columns are labeled with generators of the
different subgroups B$ of index 2 in B(N) and contain the genus g$ of
X$=X0(N)�B$.

N=p g w1

2 0 0
3 0 0
5 0 0
7 0 0

11 1 1
13 0 0
17 1 1
19 1 1
23 2 2
29 2 2
31 2 2
41 3 3
47 4 4
59 5 5
71 6 6
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N=p .q g wp wq wpq

6=2.3 0 0 0 0
10=2.5 0 0 0 0
14=2.7 1 1 0 0
15=3.5 1 1 0 0
21=3.7 1 0 1 0
22=2.11 2 1 0 1
26=2.23 2 1 1 0
33=3.11 3 2 0 1
34=2.17 3 1 1 1
35=5.7 3 1 2 0
38=2.19 4 2 1 1
39=3.13 3 1 2 0
46=2.23 5 3 0 2
51=3.17 5 3 1 1
55=5.11 5 3 1 1
62=2.31 7 4 1 2
69=3.23 7 4 1 2
87=3.29 9 5 2 2
94=2.47 11 6 1 4
95=5.19 9 5 3 1

119=7.17 11 6 4 1

N=p .q .r g wp , wq wp , wr wq , wr wp , wqr wq , wpr wr , wpq wpq , wpr

30=2.3.5 3 1 1 0 0 1 0 0
42=2.3.7 5 1 1 1 1 0 1 0
66=2.3.11 9 2 1 1 1 2 0 2
70=2.5.7 9 2 2 1 1 1 2 0
78=2.3.13 11 3 2 1 1 1 2 0

105=3.5.7 13 3 3 1 1 1 3 1
110=2.5.11 15 4 3 1 1 3 1 2

Elliptic Case

The columns of the following tables contain: the values of N (square-
free) such that X*(N) has genus 1; the genus of X0(N) denoted by g; and
the third column displays the elliptic curves X*(N) according to the ter-
minology of [3]. In the last column, T stands for the order of the torsion
subgroup of the Mordell�Weil group.
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N=p g X*(N ) T

37 2 37A1 1
43 3 43A1 1
53 4 53A1 1
61 4 61A1 1
79 6 79A1 1
83 7 83A1 1
89 7 89A1 1

101 8 101A1 1
131 11 131A1 1

N=p .q g X*(N) T

58=2.29 6 58A1 1
74=2.37 8 37A1 1
82=2.41 9 82A1 2
86=2.43 10 43A1 1

118=2.59 14 118A1 1
142=2.71 17 142B1 1
57=3.19 5 57A1 1

111=3.37 11 37A1 1
123=3.41 13 123B1 1
141=3.47 15 141D1 1
159=3.53 17 53A1 1
65=5.13 5 65A1 2

145=5.29 13 145A1 2
155=5.31 15 155C1 1
77=7.11 7 77A1 1
91=7.13 7 91A1 1

143=11.13 13 143A1 1

N=p .q .r g X*(N) T

102=2.3.17 15 102A1 2
114=2.3.19 17 57A1 1
138=2.3.23 21 138A1 2
174=2.3.29 27 58A1 1
222=2.3.37 35 37A1 1
130=2.5.13 17 65A1 2
190=2.5.19 27 190B1 1
182=2.7.13 25 91A1 1
238=2.7.17 33 238B1 2
195=3.5.13 25 65A1 2
231=3.7.11 29 77A1 1
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N=p .q .r .s g X*(N) T

210=2.3.5.7 41 210A1 2
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