VISIBILITY OF MORDELL-WEIL GROUPS

WILLIAM A. STEn\ﬁ

ABSTRACT.

We introduce a notion of visibility for Mordell-Weil groups, make a
conjecture about visibility, and support it with theoretical evidence
and data. These results shed new light on relations between Mordell-
Weil and Shafarevich-Tate groups.

1 INTRODUCTION

Consider an exact sequence 0 — C — B — A — 0 of abelian varieties over a
number field K. We say that the covering B — A is optimal since its kernel C'
is connected. As introduced in [LT58], there is a corresponding long exact
sequence of Galois cohomology

0— C(K) — B(K) — A(K) > H'(K,C) — H(K, B) — H'(K, A) —

The study of the Mordell-Weil group A(K) is central in arithmetic geometry.
For example, the Birch and Swinnerton-Dyer conjecture (BSD conjecture) of
[Bir71} Tat66]), which is one of the Clay Math Problems [Wil00], asserts that
the rank r of A(K) equals the ordering vanishing of L(A4, s) at s = 1, and also
gives a conjectural formula for L") (A, 1) in terms of the invariants of A.

The group Hl(K , A) is also of interest in connection with the BSD conjec-
ture, because it contains the Shafarevich-Tate group

III(A/K) = Ker (Hl K, A) @H Kv,A>

which is the most mysterious object appearing in the BSD conjecture.

IThis material is based upon work supported by the National Science Foundation under
Grant No. 0400386.
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DEFINITION 1.0.1 (VISIBILITY). The visible subgroup of H' (K, C) relative to
the embedding C — B is

Visp HY (K, C) = Ker(H' (K, C) — H'(K, B))
= Coker(B(K) — A(K)).

The visible quotient of A(K) relative to the optimal covering B — A is

Vis? (A(K)) = Coker(B(K) — A(K))
~ Visg H' (K, C).

We say an abelian variety over Q is modularif it is a quotient of the modular
Jacobian Jy(N) = Jac(X;(V)), for some N. For example, every elliptic curve
over Q is modular [BCDTO1].

This paper gives evidence toward the following conjecture that Mordell-Weil
groups should give rise to many visible Shafarevich-Tate groups.

CONJECTURE 1.0.2. Let A be an abelian variety over a number field K. For
every integer m, there is an exact sequence 0 — C — B — A — 0 such that:

1. The image of B(K) in A(K) is contained in mA(K), so A(K)/mA(K)
is a quotient of Vis®(A(K)).

2. If K =Q and A is modular, then B is modular.
3. The rank of C is zero.

4. We have Coker(B(K) — A(K)) Cc III(C/K), via the connecting homo-
morphism.

In [Ste04] we give the following computational evidence for this conjecture.

THEOREM 1.0.3. Let E be the rank 1 elliptic curve y?>+vy = x> —x of conductor
37. Then Conjecturel1.0.2 is true for all primes m = p < 25000 with p # 2, 37.

Let f =3 a,q™ be the newform associated to the elliptic curve E of The-
orem [1.0.3. Suppose p is one of the primes in the theorem. Then there is an
¢ =1 (mod p) and a surjective Dirichlet character x : (Z/¢Z)* — p, such that
L(f ® x,1) # 0. The C of the theorem is, up to isogeny, the abelian variety
associated to fX, which has dimension p — 1.

In general, we expect the construction of [Ste04] to work for any elliptic
curve and any odd prime p of good reduction. The main obstruction to proving
that it does work is proving a nonvanishing result for the special values L(fX,1).
In [Ste04], we verified this hypothesis using modular symbols for p < 25000.

A surprising observation that comes out of the construction of [Ste04] is
that #I11(A) = p-n?, where n? is an integer square. We thus obtained the first
ever examples of abelian varieties whose Shafarevich-Tate groups have order
neither a square nor twice a square.
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1.1 CONTENTS

In Section 2, we give a brief review of results about visibility of Shafarevich-
Tate groups. In Section[3, we give evidence for Conjecture [1.0.2 using results
of Kato, Lichtenbaum and Mazur. Section |4]is about bounding the dimension
of the abelian varieties in which Mordell-Weil groups are visible. We prove that
every Mordell-Weil group is 2-visible relative to an abelian surface. In Section[5,
we describe how to construct visible quotients of Mordell-Weil groups, and carry
out a computational study of relations between Mordell-Weil groups of elliptic
curves and the arithmetic of rank 0 factors of Jo(IV).

1.2 ACKNOWLEDGEMENT

The author had extremely helpful conversations with Barry Mazur and Grigor
Grigorov. Proposition [3.0.3] was proved jointly with Ken Ribet. The author
was supported by NSF grant DMS-0400386. He used Macma [BCP97] and
Python [Ros] for computing the data in Section[5.

2  REVIEW OF VISIBILITY OF GALOIS COHOMOLOGY

In this section, we briefly review visibility of elements of Hl(K ,A), as first
introduced by Mazur in [CMO00, Maz99], and later developed by Agashe and
Stein in [Aga99a,/AS05,/AS02]. We describe two basic results about visibility,
and in Section 2.2/ we discuss modularity of elements of H* (K, A).

Consider an exact sequence of abelian varieties

0—-—A—B—-C—=0

over a number field K. Elements of H(K, C) are points, so they are relatively
easy to “visualize”, but elements of H' (K A) are mysterious.

There is a geometric way to view elements of Hl(K , A). The Weil-Chatalet
group WC(A/K) of A over K is the group of isomorphism classes of principal
homogeneous spaces for A, where a principal homogeneous space is a variety X
and a simply-transitive action A x X — X. Thus X is a twist of A as a variety,
but X(K) = 0, unless X is isomorphic to A. Also, the elements of III(A)
correspond to the classes of X that have a K,-rational point for all places v.
By [LT58, Prop. 4], there is an isomorphism between H' (K, A) and WC(A/K).

In [CMO0], Mazur introduced the visible subgroup of H' as in Defini-
tion [1.0.1] in order to help unify diverse constructions of principal homoge-
neous spaces. Many papers were subsequently written about visibility, includ-
ing [Aga99b, Maz99, Kle01, AS02, MO03, DWS03, AS05, Dum01].

Remark 2.0.1. Note that Visg H' (K, A) depends on the embedding of A into B.
For example, if B = By x A. Then there could be nonzero visible elements if A
is embedded into the first factor, but there will be no nonzero visible elements
if A is embedded into the second factor.



4 WILLIAM A. STEIN?

A connection between visibility and WC(A/K) is as follows. Suppose
0—-A—-B5C—0

is an exact sequence of abelian varieties and that ¢ € H' (K, A) is visible in B.
Thus there exists z € C(K) such that §(z) = ¢, where § : C(K) — H' (K, A)
is the connecting homomorphism. Then X = 7~ !(z) C B is a translate of A
in B, so the group law on B gives X the structure of principal homogeneous
space for A, and this homogeneous space in WC(A/K) corresponds to c.

2.1 BaAsic FAcTs

Two basic facts about visibility are that the visible subgroup of H' (K, A) in B
is finite, and that each element of H' (K, A) is visible in some B.

LEMMA 2.1.1. The group Visg H' (K, A) is finite.

Proof. Let C = B/A. By the Mordell-Weil theorem C(K) is finitely generated.
The group Visg H'(K, A) is a homomorphic image of C(K) so it is finitely
generated. On the other hand, it is a subgroup of H! (K, A), so it is a torsion
group. But a finitely generated torsion abelian group is finite. O

PROPOSITION 2.1.2. Let ¢ € H' (K, A). Then there exists an abelian variety B
and an embedding A — B such that ¢ is visible in B. Moreover, B can be
chosen to be a twist of a power of A.

Proof. See [AS02, Prop. 1.3] for a cohomological proof or [JSO05, §5] for an
equivalent geometric proof. Johan de Jong also proved that everything is visible
somewhere in the special case dim(A) = 1 using Azumaya algebras, Néron
models, and étale cohomology, as explained in [CMO00, pg. 17-18], but his proof
gives no (obvious) specific information about the structure of B. O

2.2 MODULARITY

Usually one focuses on visibility of elements in III(A) C Hl(K ,A). The papers
[CMO00, |AS02, AS05] contain a number of results about visibility in various
special cases, and tables involving elliptic curves and modular abelian varieties.

For example, if A C Jy(389) is the 20-dimensional simple newform abelian
variety, then we show that

Z/5Z x Z/57 = E(Q)/5E(Q) C III(A),

where F is the elliptic curve of conductor 389. The divisibility 52 | #I1I(A) is
as predicted by the BSD conjecture. The paper [AS05] contains a few dozen
other examples like this; in most cases, explicit computational construction of
the Shafarevich-Tate group seems hopeless using any other known techniques.

The author has conjectured that if A is a modular abelian variety, then
every element of III(A) is modular, i.e., visible in a modular abelian variety.
It is a theorem that if ¢ € III(A) has order either 2 or 3 and A is an elliptic
curve, then ¢ is modular (see [JS05]).
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3 REsuLts ToOwWARD CONJECTURE [1.0.2

The main result of this section is a proof of parts 1 and 2 of Conjecture[1.0.2]
for elliptic curves over Q. We prove more generally that Mazur’s conjecture on
finite generatedness of Mordell-Weil groups over cyclotomic Z,-extensions im-
plies part 1 of Conjecture[1.0.2] Then we observe that for elliptic curves over Q,
Mazur’s conjecture is known, and prove that the abelian varieties that appear
in our visibility construction are modular, so parts 1 and 2 of Conjecture[1.0.2]
are true for elliptic curves over Q.

For a prime p, the cyclotomic Z,-extension of Q is an extension Q,~ of Q
with Galois group Z,; also Qpe is contained in the cyclotomic field Q(pp).
We let Qp» denote the unique subfield of Qe of degree p™ over Q. If K is an
arbitrary number field, the cyclotomic Z,-extension of K is Kpe = K-Qp. We
denote by K~ the unique subfield of K, of degree p" over K. The extension
Ky~ of K decomposes as a tower

oo
K=KoCKuyC--CKy C---CKpwo = UKpn.

n=0
Mazur hints at the following conjecture in [Maz78] and [RMO05] §3]:

CONJECTURE 3.0.1 (MAZUR). If A is an abelian variety over a number field K
and p s a prime, then A(Kp) is a finitely generated abelian group.

Let L/K be a finite extension of number fields and A an abelian variety
over K. In much of the rest of this paper we will use the restriction of scalars
R = Resp k(AL) of A viewed as an abelian variety over L. Thus R is an
abelian variety over K of dimension [L : K], and R represents the following
functor on the category of K-schemes:

S — EL(SL)

If L/K is Galois, then we have an isomorphism of Gal(Q/K )-modules

R(Q) = A(Q) ®z Z[Gal(L/K)],
where 7 € Gal(Q/K) acts on Y. P, ® o by

T(ZPG(X)U) :ZT(PU)®T|L'U,

where 7|7, is the image of 7 in Gal(L/K).

THEOREM 3.0.2. Congecture [3.0.1 implies part 1 of Conjecture [1.0.2. More
precisely, if A/K 1is an abelian variety, m is a positive integer, and A(Kp=) is
finitely generated for each p | m, then there is an optimal covering of the form
B = Resy,/x(AL) — A such that L is abelian over K and the image of B(K)
in A(K) is contained in mA(K).
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Proof. Fix a prime p | m. Let M = K. Because A(M) is finitely generated,
some finite set of generators must be in a single sufficiently large A(Kpn»), and
for this n we have A(M) = A(K,»). For any integer j > 0 let

Rj = Restj /K(AKpj )
Then, as explained in [Ste04], the trace map induces an exact sequence
O—>Bj—>Rji>A—>0,
with B; an abelian variety. Then for any j > n, A(K,;) = A(Kyn), so
VisP (A(K)) = A(K) /m; (R (K))
[ Tric /i (A(K))
[ Tk i (T jicpn (A(K9))
[ Tk /i (Tric j i (A(Kpn)))
K)/ Trg . /x (07" A(Kpn))
/p Tern/K(A(K;D"))
— A(K)/P’ " A(K),

where the last map is surjective since

)
)
)
)
)
)

Tern/K(A(Kp")) C A(K)

Arguing as above, for each prime p | m, we find an extension L, of K of
degree a power of p such that Try, ,x(A(Ly)) C p*» A(K), where v, = ord,(m).
Let L be the compositum of the fields L,. Then for each p | m

TrL/K(A(L)) = Ter/K(TrL/Lp(A(L))) - Ter/K(A(Lp)) C prA(K).

Thus
Trr x(A(L)) C m P A(K) = mA(K), (1)

where for the last equality we view A(K) as a finite direct sum of cyclic groups.
Let R = Resz /kx(AL). Then trace induces an optimal cover R — A, and
(1) implies that we have the required surjective map

VisP(A(K)) = A(K)/ Trp e (A(L)) = A(K) /mA(K).
O
We will next prove parts 1 and 2 of Conjecture [1.0.2 for elliptic curves
over Q by observing that Conjecture[3.0.1 is a theorem of Kato in this case.

We first prove a modularity property for restriction of scalars. Recall that a
modular abelian variety is a quotient of Jy(N).
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ProprosiTION 3.0.3. If A is a modular abelian variety over Q and K is an
abelian extension of Q, then Resk/qg(Axk) is also a modular abelian variety.

Proof. Since A is modular, A is isogenous to a product of abelian varieties Ay
attached to newforms in S3(I'y (INV)), for various N. Since the formation of re-
striction of scalars commutes with products, it suffices to prove the proposition
under the hypothesis that A = Ay for some newform f. Let R = Resg,q(Ay).
As discussed in [Mil72| pg. 178], for any prime p there is an isomorphism of
Qp-adic Tate modules

Vy(R) 2 Indg V,(Ag).

The induced representation on the right is the direct sum of twists of V,,(Ax)
by characters of Gal(K/Q). This is isomorphic to the Qp,-adic Tate module
of some abelian variety P = Hx Agx, where x runs through certain Dirichlet
characters corresponding to the abelian extension K/Q, and g runs through
certain Gal(Q/Q)-conjugates of f, and gX denotes the twist of g by x. Falting’s
theorem (see e.g., [Fal86, §5]) then gives us the desired isogeny R — P.

It is not necessary to use the full power of Falting’s theorem to prove this
proposition, since Ribet [Rib80] gave a more elementary proof of Falting’s the-
orem in the case of modular abelian varieties. However, we must work some to
apply Ribet’s theorem, since we do not know yet that R is modular.

Let R and P be as above. Over Q, the abelian variety A is isogenous to
a power of a simple abelian variety B, since if more than one non-isogenous
simple occurred in the decomposition of A/Q, then End(A4/Q) would not be a
matrix ring over a (possibly skew) field (see [Rib92, §5]). For any character x,
by the (3) = (2) assertion of [Rib80, Thm. 4.7], the abelian varieties Ay
and Ayx are isogenous over Q to powers of the same abelian variety A’, hence
to powers of the simple B. A basic property of restriction of scalars is that
Ry is isomorphic to a power of (Af)k, hence Ry is isogenous over Q to a
power of B. Thus R and P are both isogenous over Q to a power of B, so R
is isogenous to P over Q, since they have the same dimension, as their Tate
modules are isomorphic. Let L be a Galois number field over which such an
isogeny is defined. Consider the natural Gal(Q/Q)-equivariant inclusion

Hom(Rgq, Pg)®q, — HOInGal(@/Q)(VP(R)a Vp(P)). (2)

By Ribet’s proof of the Tate conjecture for modular abelian varieties [Rib80],
the inclusion

Hom(Ry, Pr)®g, < Homguy g,z (V(R), Vo(P)) (3)

is an isomorphism, since there is an isogeny Pr, — Ry and P is modular.
But then (2) must also be an isomorphism, since (2) is the result of taking
Gal(L/Q)-invariants of both sides of (3).

By construction of P, there is an isomorphism V,(R) 2 V,,(P) of Gal(Q/Q)-
modules, so by (2) there is an isomorphism in Hom(Rg, Py) ® Q,. Thus there is
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a Q,-linear combination of elements of Hom(Rg, Pp) that has nonzero determi-
nant. However, if a Q,-linear combination of matrices has nonzero determinant,
then some Q-linear combination does, since the determinant is a polynomial
function of the coefficients and Q is dense in QQ,. Thus there is an isogeny
R — P defined over Q, so R is modular. O

COROLLARY 3.0.4. Parts 1 and 2 of Conjecturel1.0.2) are true for every elliptic
curve E over Q.

Proof. Suppose p is a prime, and let Qpe be the cyclotomic Z, extension of Q.
By [BCDTO1], E is a modular elliptic curve, so Rohrlich [Roh84] implies that
all but finitely many special values L(E, x, 1) are nonzero, where y runs over all
Dirichlet characters of p-power order. Kato proved (see, e.g., [Kat04, Sch98])
that if L(E, x, 1) # 0, then the x part of E(Qpe )®Q vanishes. Combining these
results, we see that E(Qp~) is finitely generated, so we can apply Theorem(3.0.2]
to conclude that if x € F(Q) and m | order(z), then x is m-visible relative to
an optimal cover of E by a restriction of scalars B from an abelian extension.
Then Proposition [3.0.3]implies that B is modular. O

4 THE VISIBILITY DIMENSION

The visibility dimension is analogous to the visibility dimension for elements of
H'(K, A) introduced in [AS02, §2]. We prove below that elements of order 2 in
Mordell-WEeil groups of elliptic curves over QQ are 2-visible relative to an abelian
surface. Along the way, we make a general conjecture about stability of rank
and show that it implies a general bound on the visibility dimension.

DEFINITION 4.0.5 (VISIBILITY DIMENSION). Let A be an abelian variety over
a number field K and suppose m is an integer. Then A has m-visibility dimen-
sion n if there is an optimal cover B — A with n = dim(B) and the image
of B(K) in A(K) is contained in mA(K), so A(K)/mA(K) is a quotient of
Vis? (A(K)).

The following rank-stability conjecture is motivated by its usefulness for
proving a result about m-visibility.

CONJECTURE 4.0.6. Suppose A is an abelian variety over a number field K,
that L is a finite extension of K, and m > 0 is an integer. Then there is
an extension M of K of degree m such that rank(A(K)) = rank(A(M)) and
MNL=K.

The following proposition describes how Conjecture [4.0.6 can be used to
find an extension where the index of A(K) in A(M) is coprime to m.

PRrROPOSITION 4.0.7. Let A be an abelian variety over a number field K and
suppose m is a positive integer. If Conjecture[4.0.6 is true for A and m, then
there is an extension M of K of degree m such that A(M)/A(K) is of order
coprime to m.
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Proof. Choose a finite set Py, ..., P, of generators for A(K). Let

1 1
LzK(—Pl,...7—Pn>
m m

be the extension of K generated by all mth roots of each P;. Since the set of
mth roots of a point is closed under the action of Gal(K/K), the extension
L/K is Galois. Note also that the m torsion of A is defined over L, since the
differences of conjugates of a given %PZ- are exactly the elements of A[m|. Let S
be the set of primes of K that ramify in L.

By our hypothesis that Conjecture [4.0.6 is true for A and m, there is an
extension M of K of degree m such that

rank(A(K)) = rank(A(M))

and M NL = K. In particular, C = A(M)/A(K) is a finite group. Suppose,
for the sake of contradiction, that ged(m,#C) # 1, so there is some prime
divisor p | m and an element [Q] € C of exact order p. Here Q € A(M) is
such that pQQ € A(K) but Q ¢ A(K). Because P, ..., P, generate A(K) and
p@Q € A(K), there are integers ay, .. .a, such that

PQ = Z a; ;.
i=1

Then for any fixed choice of the %Pi, we have

Q- Z}a : %Pi € Alp),
since . .
p(Q_Zai'%Pi> =pQ—Y a;i-P, =0
i=1 i=1
Thus @ € A(L). But then since LN M = K, so we obtain a contradiction from
Qe A(L)NAM) = A(K).
O

With Proposition [4.0.7] in hand, we show that Conjecture [4.0.6] bounds
the visibility dimension of Mordell-Weil groups. In particular, we see that
Conjecture[4.0.6 implies that for any abelian variety A over a number field K,
and any m, there is an embedding A(K)/mA(K) — H'(K,C) coming from
a 0 map, where C is an abelian variety over K of rank 0.

THEOREM 4.0.8. Let A be an abelian variety over a number field K and suppose
m is a positive integer. If Conjecture 4.0.6] is true for A and m, then there is
an optimal covering B — A with B of dimension m such that

VisB (A(K)) = A(K)/mA(K).
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Proof. By Proposition [4.0.7] there is an extension M of K of degree m such
that the quotient A(M)/A(K) is finite of order coprime to m. Then, as in
[Ste04], the restriction of scalars B = Resys/x (Anr) is an optimal cover of A
and
Vis?(A(K)) = A(K)/ Tr(A(M)).
However, there is also an inclusion A < B from which one sees that
mA(M) C Tr(A(M)),

so Vis? (A(K)) is an m-torsion group.
We have
[Tr(A(M)) : Tr(A(K))] | [A(M) - A(K)].

We showed above that ged([A(M) : A(K)],m) =1, so since
Te(A(M))/ Tr(A(K))
is killed by m, it follows that Tr(A(M)) = Tr(A(K)). We conclude that
Vis? (A(K)) = A(K)/mA(K).
O

ProroSITION 4.0.9. If E is an elliptic curve over Q and m = 2, then Conjec-
ture|4.0.6 is true for E and m.

Proof. Let L be as in Conjecture [4.0.6, so L is an extension of Q of possibly
large degree. Let D be the discriminant of L. By [MM97, BFH90| there are
infinitely many quadratic imaginary extensions M of Q such that L(EM 1) # 0,
where EM is the quadratic twist of £ by M. By [Kol91, Kol88]| all these curves
have rank 0. Since there are only finitely many quadratic fields ramified only
at the primes that divide D, there must be some field M that is ramified at
a prime p t D. If M is contained in L, then all the primes that ramify in M
divide D, so M is not contained in L. Since M is quadratic, it follows that
MNL = Q, as required. Since the image of F(Q)+ EM(Q) in E(M) has finite
index, it follows that E(M)/E(Q) is finite. O

COROLLARY 4.0.10. If E is an elliptic curve over Q, then there is an optimal
cover B — E, with B a 2-dimension modular abelian variety, such that

Vis? (E(Q)) = E(Q)/2E(Q).

Proof. Combine Proposition|4.0.9|with Theorem|4.0.8. Also B is modular since
it is isogenous to E X E’, where E’ is a quadratic twist of E. O

Note that the B of Corollary is isomorphic to (E x EP)/®, where
EP is a rank 0 quadratic imaginary twist of E and ® = E[2] is embedded
antidiagonally in E x EP. Note that E also has analytic rank 0, since it was
constructed using the theorems of [Kol91, Kol88] and [MM97, BFH90]. Thus
our construction is compatible with the one of Proposition[5.1.1 below.
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5 SoOME DATA ABOUT VISIBILITY AND MODULARITY

This section contains a computational investigation of modularity of Mordell-
Weil groups of elliptic curves relative to abelian varieties that are quotients
of Jo(N). One reason that we restrict to Jo(IN) is so that computations are
more tractable. Also, for m > 2, the twisting constructions that we have
given in previous sections are no longer allowed since they take place in Ji(N).
Furthermore, the work of [KL89] suggests that we understand the arithmetic
of Jo(N) better than that of J;(N).

5.1 A VISIBILITY CONSTRUCTION FOR MORDELL-WEIL GROUPS

The following proposition is an analogue of [AS02, Thm. 3.1] but for visibility
of Mordell-Weil groups (compare also [CMO00, pg. 19]).

PROPOSITION 5.1.1. Let E be an elliptic curve over a number field K, and let
® = E[m] as a Gal(K/K)-module. Suppose A is an abelian variety over K
such that ® C A, as Gg-modules. Let B = (A x E)/®, where ® is embedded
anti-diagonally. Then there is an exact sequence

0 — B(K)/(A(K) 4+ E(K)) — E(K)/mE(K) — Vis?(E(K)) — 0.

Moreover, if (A/E[m])(K) is finite of order coprime to m, then the first term
of the sequence is 0, so

Vis? (E(K)) = E(K)/mE(K).

Proof. Using the definition of B and multiplication by m on E, we obtain the
following commutative diagram, whose rows and columns are exact:

0 0 0
| l

0 E[m)] E—">E—=0
Lk

0 A B E—=0
o

0 — A/E[m] — B/E —= 0
) l
0 0

Taking K-rational points we arrive at the following diagram with exact rows
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and columns:

0 —— E(K)/E(K)m] —"— E(K) — E(K)/mE(K) —0

l l l

B(K)/A(K) E(K) Vis? (E(K)) —=0

e |

B(K)/(A(K) + E(K))

IR

0

The snake lemma and the fact that the middle vertical map is an isomorphism
implies that the right vertical map is a surjection with kernel isomorphic to
B(K)/(A(K) + E(K)). Thus we obtain an exact sequence

0 — B(K)/(A(K) + E(K)) — E(K)/mE(K) — Vis®? (E(K)) — 0.

This proves the first statement of the proposition. For the second, note
that we have an exact sequence 0 — E — B — A/E[m] — 0. Taking Galois
cohomology yields an exact sequence

0~ B(K) = B(K) = (A/Elm])(K) = -

so #(B(K)/E(K)) | #(A/E[m])(K). If (A/E[m])(K) is finite of order coprime
to m, then B(K)/(A(K) + E(K)) has order dividing #(A/E[m])(K), so the
quotient B(K)/(A(K) + E(K)) is trivial, since it injects into E(K)/mE(K).

U

5.2 TABLES

The data in this section suggests the following conjecture.

CONJECTURE 5.2.1. Suppose E is an elliptic curve over Q and p is a prime
such that E[p] is irreducible. Then there exists infinitely many newforms g €
S2(T'o(N)), for various integers N, such that L(g,1) # 0 and E[p] C Ay and

Vis”(E(Q)) = E(Q)/pE(Q), where B = (A, x E)/Elp).

Let E be the elliptic curve y? +y = 2> — x. This curve has conductor 37
and Mordell-Weil group free of rank 1. According to [Cre97], E is isolated in
its isogeny class, so each Elp] is irreducible.

Table [1] gives for each N the odd primes p such that there is a mod p
congruence between fg and some newform g in S2(I'o(37N)) such that A, has
rank 0 and the isogeny class of A, contains no abelian variety with rational p
torsion. The first time a p occurs, it is in bold. We bound the torsion in the
isogeny class using the algorithm from [AS05| §3.5] with primes up to 17. Thus
by Proposition[5.1.1, the Mordell-Weil group of E is p-modular of level 37N. A
— means there are no such p. Table[2] which was derived directly from Table T,
gives for a prime p, all integers N such that F(Q) is p-modular of level 37N.
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Table 1: Visibility of Mordell-Weil for 32 +y = 2% — z
N | p's N | p's N | p's N | p's N | p's N | p's N | p's
2|5 19| 5 36| — 53| 53 70| — 87 — 104 | —
317 20 | — 37| — 54| — 71| 3,7 88 — 105 | —
4 | — 21| 7 38| 5 55| — 72| — 89 | 43 106 | 5
5| — 22 | — 39| — 56 | — 731 3,5 90 — 107 | 3,5
6 | — 23| 11 40| — 57| — 4| - 91 3 108 | —
713 24| — 411 3,17 58 | — | - 92 — 109 | 3,7
8 | — 25| — 42 | — 59| 13 76| — 93 7 110 | —
9 | — 26 | — 43 7 60 | — T — 94 111 | —
10 | — 271 3 44 | — 611 5,7 78| — 95 — 112 | —
11| 17 28 | — 45| — 62| — 79 — 96 — 113 | 3,11
12| — 29| 3 46 | — 63| 3 80| — 97 | 47 114 | —
13| — 30| — 471 3 64| — 81 3 98 — 115 | —
14| — 31| 3 48 | — 65| — 82| — 99 — 116 | —
15| — 32| — 49| — 66 | — 83| 3,11 100 | — 117 | —
16 | — 33| 7 50| 5 67| 3,5 84| — 101 | 3,11 118 | —
17| 3 34 51| — 68 | — 8 | — 102 | — 119 | 3
18| — 35| — 52| — 69| — 86 | — 103 | 43 120 | —
N | p's N | p's N | p's N p's N p's N |p's
121 | — 138 | — 155 | — 172 — 189 3 206 | —
122 | — 139 | 17 156 | — 173 | 3,5,11 190 — 207 | —
123 | — 140 | — 157 | 3,5 174 — 191 7 208 | —
124 | — 141 | - 158 | — 175 — 192 — 209 | —
125 | 5 142 | - 159 | — 176 — 193 | 5,11
126 | — 143 | - 160 | — 177 — 194 —
127 | 127 144 | - 161 | — 178 — 195 —
128 | — 145 | — 162 | — 179 3 196 —
129 | — 146 | — 163 | 7,13 180 — 197 | 3,5,13
130 | — 147 7 164 | — 181 | 3,59 198 —
131 3 148 | — 165 | — 182 — 199 | 3,11
132 149 | 5,31 166 | — 183 — 200 —
133 | — 150 | — 167 | 3,5 184 — 201 —
134 | — 151 | 17 168 | — 185 — 202 5
135 | — 152 | — 169 | — 186 — 203 3
136 | — 153 3 170 | — 187 — 204 —
137 3 154 171 | - 188 — 205 —
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Table 2: Levels Where Mordell-Weil is p-Visible for 2 +y = 2> — z
D N such that 37N is a level of p-modularity of E(Q)
7,17, 27, 29, 31, 41, 47, 63, 67, 71, 73, 81, 83, 91, 101, 107,
3 109, 113, 119, 131, 137, 153, 157, 167, 173, 179, 181, 189,
197, 199, 203
5 2, 19, 38, 50, 61, 67, 73, 106, 107, 125, 149, 157, 167, 173,
193, 197, 202
7 3,21, 33, 43, 61, 71, 93, 109, 147, 163, 191
11 23, 83, 101, 113, 173, 193, 199
13 59, 163, 197
17 | 11, 41, 139, 151
19-29 |-
31 149
37—41 | -
43 89, 103
47 97
53 53
59 181
61 —113 | -
127 127




VISIBILITY OF MORDELL-WEIL GROUPS 15

Table 3: Visibility of Mordell-Weil for 42 + y = x> + 22

N | p's N | p's N | p's N | p's N | p's N | p's N | p's
2|5 171 3,7 32| — 47 | — 62| — 77 — 92 —
31 3 18| — 33| 3 48 | — 63| — 78 — 93 -
4 | — 19| — 34| 5 49| — 64| — 79 — 94 -
5| b 20| — 35| — 50 | 5 65| — 80 - 95 —
6 21| — 36| — 51| 3 66 | — 81 3 96 —
7| — 22| 5 371 19 92 | — 67| 71 82 — 97 | 7,13
8 | — 23| 5 38| — 53 | 59 68 | — 83 | 3,23 98 -
9 | — 24 | — 39| 3 54 | — 69 | — 84 — 99 3
10| — 25| — 40 | — 95| 5 70| — 85 ) 100 —
111 3 26| — 41 | 37 56 | — 71 15,7 86 —

12 | — 27| 3 42 | — 57 | 3 72| - 87 3

13|19 28 | — 43 | — 58 | — 73| 3 88

14| — 29| 3 44 | — 59 | 3 74| - 89 | 47

15| — 30| — 45 | — 60 | — | - 90 -

16 | — 31| — 46 | — 61| 5 76| — 91 —

Ribet’s level raising theorem [Rib90| gives necessary and sufficient condi-
tions on a prime N for there to be a newform g of level 37N that is congruent
to fg modulo p. Note that the form g is new rather than just p-new since 37 is
prime and there are no modular forms of level 1 and weight 2. If, moreover, we
impose the condition L(g,1) # 0, then Ribet’s condition requires that p divides
N + 1+ eay, where € is the root number of E. Since E has odd analytic rank,
in this case ¢ = —1. For each primes p < 127 and each N < 203, were find the
levels of such g. The only cases in which we don’t already find a congruence
level already listed in Table[2 corresponding to a newform with torsion multiple
coprime to p are

p=3, N=43 and p=19, N =47,79.

In all other cases in which Ribet’s theorem produces a congruent g with
ord L(g, s) even (hence possibly 0), we actually find a g with L(g,1) # 0 and
can show that #A4,(Q)¢or is coprime to p.

For p =3 and N = 43 we find a unique newform g € S2(I'¢(1591)) that is
congruent to fg modulo 3. This form is attached to the elliptic curve % +y =
23 — Tla + 552 of conductor 1591, which has Mordell-Weil groups Z @ Z. Thus
this is an example of a congruence relating a rank 1 curve to a rank 2 curve.
For p =19 and N = 47, the ¢ has degree 43, so A, has dimension 43, we have
L(g,1) # 0, but the torsion multiple is 76 = 19 -4, which is divisible by 19. For
p =19 and N = 79, the A, has dimension 57, we have L(g,1) # 0, but the
torsion multiple is 76 again.

Tables[3-4lare the analogues of Tables T-2/but for the elliptic curve y2 +y =
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Table 4: Levels Where Mordell-Weil is p-Visible for 4% +y = 23 + 22

D N such that 43N is a level of p-modularity of E(Q)
3 |3, 11, 17, 27, 29, 33, 39, 51, 57, 59, 73, 81, 83, 87, 99
5 |2, 5,22, 23, 34, 50, 55, 61, 71, 85
717,71, 97
11 -
13 |97
17 |-
19 | 13,37
23 |83
20,31 | -
37 |41
41,43 | -
47 | 89
53 -
59 |53
61,67 | -
71|67

Table 5: Visibility of Mordell-Weil for y? +y = 23 + 22 — 2z

N |p's N | p's N | p's N | p's N | p's
115 73 13 ] 11 19| — 25| —
2| - 8 | — 14| — 20| — 26 | —
3| — 91 3 15| 3 21| — 27| 3
4| — 10| — 16 | — 22 | — 28 | —
5| 3 11| — 17| — 23| 5 29| 3
6 | — 12| — 18| — 24 | —

Table 6: Levels Where Mordell-Weil is p-Visible for y? +y = 23 + 22 — 22

N such that 389N is a level of p-modularity of E(Q)
5,7,9, 15,27, 29
1,23

13

| o Wi

—_
—_
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23 + 22 of conductor 43. This elliptic curve also has rank 1 and all mod p
representations are irreducible. The primes p and N such that Ribet’s theorem
produces a congruent g with ords—; L(g, s) even, yet we do not find one with
L(g,1) # 0 and the torsion multiple coprime to p are

p=3, N=31,61 and p=11, N =19,31,47,79.

The situation for p = 11 is interesting since in this case all the g with
ords—1 L(g, s) even fail to satisfy our hypothesis. At level 19-43 we find that g
has degree 18 and L(g, 1) # 0, but the torsion multiple is divisible by 11.

Let E be the elliptic curve y? +y = 23 + 22 — 2z of conductor 389. This
curve has Mordell-Weil group free of rank 2. Tables are the analogues of
Tables[IH2 but for E. The primes p and N such that Ribet’s theorem produces
a congruent g with ords—1 L(g, s) even, yet we do not find one with L(g,1) # 0
and the torsion multiple coprime to p are

p=3, N=17 and p=>5 N=19.

For p = 3, there is a unique g of level 6613 = 37 - 17 with ords—1 L(g, s) even
and E[3] C A,. This form has degree 5 and L(g,1) = 0, so this is another
example where the rank 0 hypothesis of Proposition[5.1.1]is not satisfied. Note
that the torsion multiple in this case is 1. For p = 5, there is a unique g of level
7391 = 37-19, with ords—; L(g, s) even and E[5] C A,. This form has degree 4
and L(g,1) # 0, but the torsion multiple is divisible by 5.
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