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1 Introduction

Fix a prime p. Consider a classical newform

F =
∑

n≥1

anq
n ∈ Sk

(

Γ1(Np
t),Qp

)

where k and N are positive integers and p - N is a prime (by a newform we mean
a Hecke eigenform that lies in the new subspace and is normalized so that a1 = 1).
The slope of F is ordp(ap), where ordp(p) = 1. By [Shi94, Prop. 3.64], the twist

Fχ =
∑

χ(n)anq
n

of F by any Dirichlet character χ of conductor dividing p is an eigenform on
Γ1(Np

max {t+1,2}). This twist has infinite slope.
In Section 2, we prove that if F has finite slope then it is possible to approximate

Fχ arbitrarily closely by (classical) finite slope eigenforms. Assuming refinements of
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standard conjectures, the best estimate we obtain for the smallest weight of an ap-
proximating eigenforms is exponential in the approximating modulus pA. Section 4
contains computations that suggest that the best estimates should have weight that
is linear in pA.

One motivation for the question of approximation of infinite slope eigenforms
by finite slope eigenforms is the desire to understand the versal deformation space
of a residual modular representation [Maz89] (the deformation space of an irre-
ducible representation is universal [Maz89] as is the deformation space of a residual
pseudo-representation [CM98]). In [GM98] (see also [Maz97], and [Böc01] for a
generalization), it was shown that the Zariski closure of the locus of finite slope
modular deformations of an absolutely irreducible “totally unobstructed” residual
modular representation is Zariski dense in the associated representation space but
very little is known about the topological closure of this locus. For example, it is
not known if it contains any nonempty open sets. Our result implies that it contains
tamely ramified twists of modular deformations. We also show in Section 3.1 that
a result of Hatada implies that in at least one (albeit not irreducible) case it does
not contain all modular deformations.

Our investigation began with with our answer in Section 2 to a question of
Jochnowitz. The idea of studying the p-adic variation of modular forms began with
Serre [Ser73] and was since developed by Katz [Kat75] and Hida [Hid86] (see also
[Gou88] for a sketch of the theory). It follows, in particular, from their work, that
one can approximate all forms on X0(p

n) with forms on the j-line X0(1), but not
necessarily with eigenforms.

We prove the above result about twists in Section 2, then state some questions
about approximation by finite slope forms in Section 2.1. We explain how to rein-
terpret Hatada’s result in Section 3.1, then present the results of our computations
in Section 4.

Based on the results and computations discussed in this article, Mazur has sug-
gested that it may be the case that an infinite slope eigenform can be approximated
by finite slope eigenforms only if the corresponding representation is what he calls
tamely semistable (i.e., semistable, in the sense of [CF00], after a tame extension).

Acknowledgments. The authors thank Naomi Jochnowitz for provoking this
line of thought and for interesting conversations, Barry Mazur for helpful comments
and questions, Frank Calegari for conversations, Löıc Merel for his comments on an
early draft of this paper, and the referee for a brilliant report.

2 Approximating Teichmüller Twists of Finite Slope

Eigenforms

This section is the theoretical heart of the paper. We prove that the infinite slope
eigenforms obtained as twists of finite slope eigenforms by powers of the Teichmüller
character can always be approximated by finite slope eigenforms. We first show that
certain overconvergent eigenforms of sufficiently close weight are congruent and have
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the same slope. Then we use the θ operator on overconvergent forms to deduce the
main result (Theorem 2.1) below.

Let p be a prime. All eigenforms in this section will be cusp forms with coeffi-
cients in Qp normalized so that a1 = 1. Suppose F =

∑

n≥1 anq
n is an eigenform

and χ : (Z/MZ)∗ → C∗p is a Dirichlet character with modulus M , which we extend
to Z/MZ by setting χ(n) = 0 if (n,M) 6= 1. Then the twist of F by χ is the
eigenform

Fχ =
∑

n≥1

χ(n)anq
n.

Let ω : (Z/pZ)∗ → Z∗p be the Teichmüller character (so ω(n) ≡ n (mod p)). The
following theorem concerns finite slope approximations of twists of F by powers of ω.
For example, it concerns the twist

Fω0

=
∑

(n,p)=1

an(F )q
n

of F by the trivial character mod p, which we call the “p-deprivation” of F and
which has infinite slope.

Theorem 2.1. Suppose F is a classical eigenform on X1(Np
t), t ≥ 1, over Qp

of weight k, character ψ, and finite slope at p. Let A ∈ Z>0 and r, s ∈ Z≥0 with
r, s < p− 1. Then there exists a classical finite slope eigenform G on X1(Np

t) with
G(q) ≡ Fωr

(q) (mod pA) such that G has weight congruent to k + 2r − s modulo
p− 1 and character ψ · ωs.

(The slope of G will be at least A, since the pth Fourier coefficient of F ωr

is 0.)
Let q = 4 if p = 2 and p otherwise. Let τ : Z∗p → C∗p be the character of finite

order such that a ≡ τ(a) (mod q). We only need to assume that F =
∑

n≥1 anq
n is

an overconvergent eigenform of tame level N of finite slope with arithmetic weight-
character κ : a→ χ(a)〈〈a〉〉k, where χ is a character of finite order whose conductor
divides Npt, k is a possibly negative integer, and 〈〈a〉〉 = a/τ(a). (For example, if
F is a classical eigenform of weight k and character ψ, then χ = ψωk.) Recall that
the collection of continuous characters on Z∗p is a metric space, with

d(ρ, ψ) = max{|ρ(a)− ψ(a)| : a ∈ Z∗p},

where | | is the absolute value on Cp normalized so that |p| = 1/p. We need,

Proposition 2.2. Suppose L ∈ Z≥0 and H is an overconvergent eigenform of tame
level N , finite slope and weight-character κ. Then if γ is a weight-character suffi-
ciently close to κ there exists an overconvergent eigenform R of weight-character γ
with the same slope as H such that

H(q) ≡ R(q) (mod pL).
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Proof. We will use the notation of the “R-families” section (in §B5) of [Col97b]. In
particular, B is an affinoid disk in weight space containing κ and X is an affinoid
finite over B such that A(X) is generated by the images of the “Hecke operators”
T (n). Moreover, if x ∈ X and ηx : A(X)→ Cp is the corresponding homomorphism,
then

Fx(q) =
∑

n≥1

ηx(T (n))q
n

is the q-expansion of an overconvergent finite slope eigenform and finally there is a
point y ∈ X such that Fy(q) = H(q). Note that X is a subdomain of the eigencurve
of tame level N (although the eigencurves of level N > 1 are not yet defined in the
literature).

The ring A0(X) is finite over A0(B) by Corollary 6.4.1/5 of [BGR84]. Let
f1, . . . , fn be generators. Let f0 be a uniformizing parameter on B so that A(B) =
Cp〈f0〉, where Cp〈f0〉 is the ring of power series in f0 whose coefficients tend to 0
with their degree. Let ZL(y) be the following Weiersträss subdomain of X:

{x ∈ X : |fi(x)− fi(y)| ≤ p−L, 0 ≤ i ≤ n}.

Since the functions x→ ηx(T (n)) lie in A0(X), it follows that if x ∈ ZL(y), then

Fx(q) ≡ H(q) (mod pL).

Finally, since ZL(y) is a subdomain of X and X is finite over B, the map from ZL(y)
to B is quasi-finite. It follows from Proposition A5.5 of [Col97b] that its image in B
is a subdomain. Since κ is the image of y, its image contains a disk around y.

Proof of Theorem 2.1. Let α be the slope of F . It follows from Proposition 2.2 that
if m ∈ Z is sufficiently small p-adically there exists an overconvergent eigenform K
of tame level N , weight-character χ · 〈〈 〉〉k−m and slope α such that K(q) ≡ F (q)
(mod pA). Suppose m ≥ k. Then, by Proposition 4.3 of [Col96] (see also [Col97a])
if F1 = θm−k+1K, then F1 is an overconvergent eigenform of weight-character

κ1 := ω2(m−k+1) · χ · 〈〈 〉〉k1 ,

where k1 = m − k + 2, and F1 has finite slope α1 = α + m − k + 1. Applying
this same process to F1, for ` ∈ Z sufficiently small p-adically such that ` ≥ k1, we
obtain an overconvergent finite slope eigenform F2 of weight-character κ2, where
κ2 = ω2` · χ · 〈〈 〉〉k2 and where k2 = ` − k1 + 2 = k + ` −m, such that if F2(q) =
∑

n≥1 bnq
n, then

bn ≡ n`−k1+1nm−k+1an

≡ n`an (mod pA).

The latter is congruent to ωr(n)an (mod pA) if ` ≡ r (mod ϕ(pA)) and `+ v(ap) ≥
A. It follows from [Col96, §8], [Col97a], and [Col97b] that if c is an integer suf-
ficiently small p-adically, such that c + k2 > v(bp) + 1 (note that v(bp) is the
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slope of F2 so is finite) there exists a classical eigenform G on X1(Np
t) of weight

k2 + c = k + ` − m + c, slope v(bp) and character ωm+r−c · ψ such that G(q) ≡
F2(q) ≡ Fωr

(q) (mod pA). We can choose c so that m+ r− c ≡ s (mod p− 1) and
then k2 + c ≡ k + 2r − s mod (p− 1).

The following corollary addresses a question of Jochnowitz, which motivated
this entire investigation:

Corollary 2.3. Suppose R is a classical eigenform of weight k on X1(N), let A ∈
Z>0, and let r ∈ Z≥0 with r < p − 1. Then there exists a classical eigenform S
on X1(N) of weight congruent to k + 2r modulo p − 1 such that S(q) ≡ Rωr

(q)
(mod pA).

Proof. Suppose the F in Theorem 2.1 is one of the old eigenforms associated to R
on X1(Np) and s = 0. Let G be a classical eigenform of weight c+ k2 as mentioned
in the proof of the theorem, but suppose c+k2 > 2v(bp)+1. Then G is old of weight
congruent to k mod (p−1) and G is congruent to an eigenform S of the same weight
on X1(N) modulo pv(bp). Since bp ≡ 0 (mod pA), we obtain the corollary.

Remark 2.4. Assuming a natural refinement of the Gouvêa-Mazur conjectures, the
best estimate we obtain for the weight of H in the above proof is exponential in pA.
Computational evidence suggests that the best estimates should have weights that
are linear in pA (see Section 4).

Remark 2.5. Jochnowitz and Mazur have independently observed that the above
argument can be used to prove the following result: Suppose F is an overconvergent
eigenform of arithmetic weight-character κ, which is a limit of overconvergent eigen-
forms of finite slope. If ι : Z∗p → Z∗p is the identity character, then the twist F ι/κ(q)
of F by ι/κ, which is the q-expansion of a convergent eigenform of weight-character
ι2/κ, is the limit of overconvergent eigenforms of finite slope.

Remark 2.6. One can also approach the p-deprivation (the twist by the 0th power
of Teichmüller) of a finite slope eigenform F by using the evil twins of eigenforms
approaching F .

2.1 Questions

Some natural questions arise:

1. Is every p-adic convergent eigenform which is the limit of finite slope overcon-
vergent eigenforms an overconvergent eigenform? (We can show the twist of
an overconvergent eigenform by a Dirichlet character is overconvergent.)

2. Which infinite slope eigenforms are limits of finite slope eigenforms?

3. If F (q) is the q-expansion of an overconvergent eigenform of weight-character κ,
is F ι/κ(q) the q-expansion of an overconvergent eigenform of weight-character
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ι2/κ (recall that ι is the identity character Z∗p
∼
−→ Z∗p)? Another closely re-

lated question is as follows: Suppose ρ is the representation of the absolute
Galois group of Q attached to an overconvergent eigenform and let χ denote
the cyclotomic character. Then is the representation ρ⊗χ · det(ρ)−1 attached
to an overconvergent eigenform?

3 An Infinite Slope Eigenform that is Not Approximable

In Section 3.1, we prove an extension to higher level of a theorem of Hatada about
the possibilities for systems of Hecke eigenvalues modulo 8. We use this result
to deduce that the normalized weight 2 cusp form on X0(32) is not 2-adically
approximable by normalized eigenforms of tame level 1 and finite slope. In Sec-
tion 3.2 we give an example of an infinite slope eigenform of level 27 that computer
computations suggest cannot be approximated by finite slope forms. For related
investigations, see [CE03].

3.1 An Extension of a Theorem of Hatada

Theorem 3.1. If F =
∑

anq
n is a normalized cuspidal newform over C2 of finite

slope on X0(2
n), then a2 ≡ 0 (mod 8) and ap ≡ p+1 (mod 8) for all odd primes p.

Proof. Suppose F has weight k and finite slope α. The assumption that F has finite
slope implies n ≤ 1. If n = 0 the assertion of Theorem 3.1 was proved by Hatada
in [Hat79], so we may assume that n = 1 and α = (k − 2)/2 (in general, the slope
of a newform on Γ0(p) of weight k is (k− 2)/2). Note that α ≥ 3 since there are no
newforms on X0(2) of weight < 8. It follows from Theorems A of [Col97b] (see §B2
of [Col97b] for the extension to p = 2) and Theorem B5.7 of [Col97b] that if j is
an integer sufficiently close 2-adically to k, then there exists a classical normalized
cuspidal eigenform G on X0(2) of weight j and slope α such that

G(q) ≡ F (q) (mod 8).

If in addition we assume that j > 2(α + 1), then G must be old (since the slope
of a newform of weight j is (j − 2)/2 6= α). Thus there is a cuspidal eigenform
H =

∑

bnq
n of level 1 such that G is a linear combination of H(q) and H(q2).

More precisely,
G(q) = H(q)− ρH(q2)

where ρ is a root of P (X) = X2 − b2X + 2j−1. By Hatada’s theorem ord2(b2) ≥ 3,
and j ≥ 12, so the slopes of the Newton polygon of P (X) at 2 are both at least 3.
Thus G(q) ≡ H(q) (mod 8), which proves the theorem because H has level 1.

Corollary 3.2. Let G be the normalized weight 2 cusp form on X0(32). Then G
is not 2-adically approximable by normalized eigenforms of tame level 1 and finite
slope.
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Proof. If F32 were approximable there would have to be a normalized eigenform F
on X0(2) such that F32(q) ≡ F (q) (mod 8). However, F32(q) =

∑∞
n=1 anq

n where,

ap =

{

2x if p = x2 + y2, written so x+ y ≡ x2 (mod 4)

0 otherwise.

As a3 = 0 6≡ 4 (mod 8), we see from Theorem 3.1 that F does not exist.

Remark 3.3. If p ≡ 1 (mod 4) then the coefficient of ap in F32 agrees modulo 8 with
p + 1. If p is 3 mod 4 it does not because for F32 the coefficient vanishes. What
is happening is that there is a reducible mod 8 pseudo-representation (namely the
trivial one-dimensional representation plus the cyclotomic character) such that any
finite slope level 2n form gives this pseudo-representation mod 8. Conversely the
mod 8 representation associated to F32 is the direct sum of the quadratic character
associated to Q(i) and the cyclotomic character. Hence the congruence works when
p = 1 mod 4 but not otherwise.

3.2 Another Eigenform that Conjecturally Cannot be Approxi-

mated

In this section we consider an infinite slope eigenform that is not a Teichmüller
twist of a finite slope eigenform. We conjecture that this eigenform cannot be
approximated arbitrarily closely by finite slope eigenforms.

Conjecture 3.4. There are exactly five residue classes in (Z/9Z)[[q]] of normalized
eigenforms in Sk(Γ0(N)) where k ≥ 1 and N = 1, 3, 9. They are given in the
following table, where the indicated weight is the smallest weight where that system
of eigenvalues occurs (the level is 1 in each case):

Weight [ a2, a3, . . . , a43 mod 9 ]

12 [ 3, 0, 6, 5, 3, 8, 0, 2, 6, 3, 8, 2, 6, 5 ]

16 [ 0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 2, 2, 0, 2 ]

20 [ 6, 0, 3, 8, 6, 5, 0, 2, 3, 6, 5, 2, 3, 8 ]

24 [ 6, 0, 3, 5, 6, 8, 0, 2, 3, 6, 8, 2, 3, 5 ]

32 [ 3, 0, 6, 8, 3, 5, 0, 2, 6, 3, 5, 2, 6, 8 ]

The system of eigenvalues mod 9 associated to the weight 2 form F on X0(27) is

[ 0, 0, 0, 8, 0, 5, 0, 2, 0, 0, 5, 2, 0, 8 ],

so we conjecture that there is no eigenform f on Γ0(N) with N | 9 such that f ≡ F
(mod 9).

As evidence, we verified that each of the mod 9 reductions of each newform of
level 1 and weight k ≤ 74 has one of the five systems of Hecke eigenvalues listed in
the table. We also verified that all newforms of levels 3 and 9 and weight k ≤ 40
have corresponding system of eigenvalues mod 9 in the above table. We checked
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using the method described in Section 4 that there is no newform of level 1 with
weight k ≤ 300 that approximates the weight 2 form on X0(27) modulo 9.

We now make some remarks about pseudo-representations when p = 3. Let

χ : Z/27Z→ Z/9Z

be the mod 9 cyclotomic character, so χ has order 6 and if gcd(n, 3) = 1 then
χ(n) = n ∈ Z/9Z. The pseudo-representation corresponding to a form of weight k
giving the system of eigenvalues in the table in Conjecture 3.4 are

Weight Pseudo-representation

12 χ2 ⊕ χ3

16 1⊕ χ3

20 χ3 ⊕ χ4

24 1⊕ χ5

32 1⊕ χ
S2(Γ0(27)) χ2 ⊕ χ5

Note that the square of any pseudo-representation of level 1 in the above table has 1
as an eigenvalue, but the square of the pseudo-representation attached to S2(Γ0(27))
does not have 1 as an eigenvalue. Also,

F ≡ f16 ⊗ χ
2 (mod 9),

where f16 is of weight 16. The order of χ
2 is 3, so χ2 is not a power of the Teichmüller

character (which has order 2) and Theorem 2.1 does not apply.
Further computations suggest that the pseudo-representations attached to forms

of level 1 with coefficients in Z9 are

Weight Pseudo-representations

k ≡ 0 (mod 6) 1⊕ χ5, χ2 ⊕ χ3

k ≡ 2 (mod 6) 1⊕ χ, χ3 ⊕ χ4

k ≡ 4 (mod 6) 1⊕ χ3

The pseudo-representations attached to forms of level 27 with coefficients in Z9

seem to be

Weight Pseudo-representations

k ≡ 0 (mod 6) χ⊕ χ4

k ≡ 2 (mod 6) χ2 ⊕ χ5

k ≡ 4 (mod 6) χ⊕ χ2, χ4 ⊕ χ5

Also note that if χi⊕χj is one of the pseudo-representations of level 27 in the table,
then the sum of the orders of χi and χj is 9, whereas at level 1 the sum of the orders
is at most 7.
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4 Computations About Approximating Infinite Slope

Eigenforms

In this section, we investigate computationally how well certain infinite slope form
can be approximated by finite slope eigenforms.

4.1 A Question About Families

The following question is an analogue of [GM92, §8] but for eigenforms of infinite
slope. Fix a prime p and an integer N with (N, p) = 1.

Question 4.1. Suppose f ∈ Sk0(Γ0(Np
r)) is an eigenform having infinite slope

(note that f need not be a newform). Is there a “family” of eigenforms {fk}, with
fk ∈ Sk(Γ0(Np)), where the weights k run through an arithmetic progression

k ∈ K = {k0 +mpν(p− 1) for m = 1, 2, . . .}

for some integer ν, such that

fk ≡ f (mod pn),

where n = ordp(k − k0) + 1? (When p = 2 set n = ord2(k − k0) + 2.)

Our question differs from the one in [GM92, §8] because there the form being
approximated has finite slope, whereas our form f does not. We know, as discussed
in the previous section, that our question sometimes has a negative answer since it
might not be possible to approximate f at all.

4.2 An Approximation Bound

Let
f =

∑

n≥1

anq
n ∈ K[[q]]

be a q-expansion with coefficients that generate a number field K. Fix a prime p
and an even integer k ≥ 2. In order to gather some data about Question 4.1, we
now define a reasonably easy to compute upper bound on how well f can be approx-
imated by an eigenform in Sk(Γ0(p)). Suppose ` ≥ 1, let F be the characteristic
polynomial of T` acting on the space Sk(Γ0(p)) of classical cusp forms of weight k
and tame level 1, and let H be the characteristic polynomial of a` ∈ K. Let G be
the resultant of F (Y ) and H(X + Y ) with respect to the variable Y , normalized
so that G is monic. Thus the roots of G are the differences α − β where α runs
through the roots of F and β runs through the Gal(Q/Q)-conjugates of a`. We
can easily compute the p-valuations of the roots of G without finding the roots,
because the p-valuations of the roots are the slopes of the newton polygon of G.
Let m` ∈ Q∪ {∞} be the maximum of the slopes of the Newton polygon of G. Let

ck(f, r) = min{m` : ` ≤ r is prime}.
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We note that computing ck(f, r) requires knowing only the characteristic polyno-
mials of Hecke operators T` on Sk(Γ0(p)) and of a` for primes ` ≤ r.

Proposition 4.2. If there is a normalized eigenform g ∈ Sk(Γ0(p)) such that f ≡ g
(mod pA), then A ≤ ck(f, r) for any r.

Proof. To see this observe that ck(f, r) is the minimum of the

ordp(an(f)− an(g))

where 1 ≤ n ≤ r and g runs through all normalized eigenforms in Sk(Γ0(p)), and
we run through all possible embeddings of f and g into Zp[[q]].

The motivation for our definition of ck(f, r) is that it is straightforward to com-
pute from characteristic polynomials of Hecke operators, even when the coefficients
of f lie in a complicated number field. The number ck(f, r) could overestimate the
true extent to which f is approximated by an eigenform in Sk(Γ0(p)) in at least two
ways:

1. There is an r′ > r such that ck(f, r
′) < ck(f, r).

2. No single eigenform g is congruent to f , but each coefficient of f is congruent
to some coefficient of some eigenform g.

4.3 Some Data About Approximations

Let p be a prime and f ∈ Sk0(Γ0(p
r)) be a newform of infinite slope. Suppose

that the answer to Question 4.1 for f is yes. If k is a weight (in the arithmetic
progression) then there should be an eigenform fk ∈ Sk(Γ0(p)) such that fk ≡ f
(mod pn+1) where n = ordp(k − k0). Thus we should have

ordp(k − k0) + 1 ≤ ck(f, r)

for all r > 1 and all k in an arithmetic progression K = {k0 +mpν(p− 1) for m =
0, 1, 2, . . .}. (When p = 2 we should have ord2(k − k0) + 2 ≤ ck(f, r).)

The following or the results of some computations of ck(f, r).
p = 2:

1. For k0 = 6, 10, 12, 14, 16, 20 let f ∈ Sk0(Γ0(4)) be the unique newform. Then
for all k with k0 < k ≤ 100 we have ck(f, 47) = ord2(k − k0) + 2.

2. For k0 = 18, 22 let f ∈ Sk0(Γ0(4)) be the unique, up to Galois conjugacy,
newform. Then for all k with k0 < k ≤ 100 we have ck(f, 7) = ord2(k−k0)+2.

3. Let f ∈ S4(Γ0(8)) be the unique newform. For most 4 < k ≤ 100 we have
ck(f, 47) = ord2(k − k0) + 2. However, in this range if ord2(k − k0) ≥ 4 then
ck(f, 47) = 5 Since ord2(68 − 4) + 2 = 8, this is a problem; perhaps this
form is not approximated. Very similar behavior occurs for the newforms in
S6(Γ0(8)), S8(Γ0(8)), and S4(Γ0(16)).
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4. For the two newforms f ∈ S6(Γ0(16)), we have ck(f, 47) ≤ 3 for all k < 100,
so these f probably can not be approximated by finite slope forms.

5. Let f be the 2-deprivation of the unique normalized eigenform in Sk0(Γ0(1)) for
k0 = 12, 16, 18, 20, 22, 26. Then ck(f, 47) = ord2(k− k0) + 2 for 12 < k ≤ 100.
Same statement for k0 = 24, 28 for the 2-deprivation of one of the Galois
conjugates and ck(f, 47) replaced by ck(f, 7).

p = 3:

1. Suppose f is a newform in Sk0(Γ0(9)) for k0 ≤ 12. Then for k0 < k ≤ 100 we
have ck(f, 47) = ord3(k − k0) + 1, except possibly for the nonrational form of
weight 8, where we have only checked that ck(f, 7) ≥ ord3(k − k0) + 1.

2. Let f be the twist of a newform in Sk0(Γ0(1)) by ω3 for k0 ≤ 32. Then
ck(f, 7) ≥ ord3(k − k0) + 1 for k0 < k ≤ 100, with equality usually.

3. Let f be the newform in S2(Γ0(45)) of tame level 5. Then c2+(3−1)3n(f, 7) =
n+1 for n = 0, 1, 2, 3 (here we are testing congruences with forms in Sk(Γ0(15))).

p = 5:

1. Let f = q + q2 + · · · ∈ S4(Γ0(25)) be a newform. Then c4+4(f, 7) = 1,
c4+4·5(f, 7) = 2, and c4+4·52(f, 7) = 3. Same result for the newform f =
q + 4q2 + · · · ∈ S4(Γ0(25)).

2. Let f = q− q2 + · · · ∈ S2(Γ0(2 · 25)). Then c2+4(f, 7) = 1 and c2+4·5(f, 7) = 2,
where we are testing congruences with forms in Sk(Γ0(10)).

3. Let f be one of the newforms in S2(Γ0(5
3)) defined over a quadratic extension

of Q. Then c2+4(f, 7) = c2+4·5(f, 7) = c2+4·52(f, 2) = 1/2. Thus it seems
unlikely that f can be approximated by forms of finite slope.

p = 7:

1. Let f ∈ S2(Γ0(49)) be the newform. Then c2+6(f, 7) = 1 and c2+6·7(f, 7) = 2.
Same statement for the form f = q − q2 ∈ S4(Γ0(49)) at weights 4 + 6 and
4 + 6 · 7.

The data and results of this paper suggests the following:

Guess 4.3. Let p be a prime and N an integer coprime to p. Then the eigenforms
on X0(Np

t) that can be approximated by finite-slope eigenforms are exactly the
eigenforms on X0(Np

2). Suppose f is an infinite slope eigenform that can be ap-
proximated by finite slope eigenforms and f has weight k0. Then for any k > k0

with k ≡ k0 (mod p− 1), there is an eigenform fk on X0(Np) of weight k such that
f ≡ fk (mod pn) where n = ordp(k−k0)+1 (or +2 if p = 2). (In general one might
have to restrict to n sufficiently large.)
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[GM92] F. Gouvêa and B. Mazur, Families of modular eigenforms, Math. Comp.
58 (1992), no. 198, 793–805.
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