
CONSTRUCTING ELEMENTS IN SHAFAREVICH-TATE

GROUPS OF MODULAR MOTIVES

NEIL DUMMIGAN, WILLIAM STEIN, AND MARK WATKINS

Abstract. We study Shafarevich-Tate groups of motives attached to modular

forms on Γ0(N) of weight bigger than 2. We deduce a criterion for the existence

of nontrivial elements of these Shafarevich-Tate groups, and give 16 examples

in which a strong form of the Beilinson-Bloch conjecture implies the existence

of such elements. We also use modular symbols and observations about Tam-

agawa numbers to compute nontrivial conjectural lower bounds on the orders

of the Shafarevich-Tate groups of modular motives of low level and weight at

most 12. Our methods build upon the idea of visibility due to Cremona and

Mazur, but in the context of motives instead of abelian varieties.

1. Introduction

Let E be an elliptic curve defined over Q and let L(E, s) be the associated L-
function. The conjecture of Birch and Swinnerton-Dyer [BS-D] predicts that the
order of vanishing of L(E, s) at s = 1 is the rank of the group E(Q) of rational
points, and also gives an interpretation of the leading term in the Taylor expansion
in terms of various quantities, including the order of the Shafarevich-Tate group
of E.

Cremona and Mazur [CM1] look, among all strong Weil elliptic curves over Q of
conductor N ≤ 5500, at those with nontrivial Shafarevich-Tate group (according
to the Birch and Swinnerton-Dyer conjecture). Suppose that the Shafarevich-Tate
group has predicted elements of prime order p. In most cases they find another
elliptic curve, often of the same conductor, whose p-torsion is Galois-isomorphic to
that of the first one, and which has positive rank. The rational points on the second
elliptic curve produce classes in the common H1(Q, E[p]). They show [CM2] that
these lie in the Shafarevich-Tate group of the first curve, so rational points on one
curve explain elements of the Shafarevich-Tate group of the other curve.

The Bloch-Kato conjecture [BK] is the generalisation to arbitrary motives of the
leading term part of the Birch and Swinnerton-Dyer conjecture. The Beilinson-
Bloch conjecture [B, Be] generalises the part about the order of vanishing at the
central point, identifying it with the rank of a certain Chow group.

This paper is a partial generalisation of [CM1] and [AS] from abelian varieties
over Q associated to modular forms of weight 2 to the motives attached to modular
forms of higher weight. It also does for congruences between modular forms of equal
weight what [Du2] did for congruences between modular forms of different weights.

Date: 28 January 2003.

1991 Mathematics Subject Classification. 11F33, 11F67, 11G40.
Key words and phrases. modular form, L-function, visibility, Bloch-Kato conjecture,

Shafarevich-Tate group.

1



2 NEIL DUMMIGAN, WILLIAM STEIN, AND MARK WATKINS

We consider the situation where two newforms f and g, both of even weight k > 2
and level N , are congruent modulo a maximal ideal q of odd residue characteristic,
and L(g, k/2) = 0 but L(f, k/2) 6= 0. It turns out that this forces L(g, s) to vanish
to order at least 2 at s = k/2. In Section 7, we give sixteen such examples (all with
k = 4 and k = 6), and in each example, we find that q divides the numerator of the
algebraic number L(f, k/2)/ vol∞, where vol∞ is a certain canonical period.

In fact, we show how this divisibility may be deduced from the vanishing of
L(g, k/2) using recent work of Vatsal [V]. The point is, the congruence betweenf
and g leads to a congruence between suitable “algebraic parts” of the special values
L(f, k/2) and L(g, k/2). In slightly more detail, a multiplicity one result of Faltings
and Jordan shows that the congruence of Fourier expansions leads to a congruence of
certain associated cohomology classes. These are then identified with the modular
symbols which give rise to the algebraic parts of special values. If L(g, k/2) vanishes
then the congruence implies that L(f, k/2)/ vol∞ must be divisible by q.

The Bloch-Kato conjecture sometimes then implies that the Shafarevich-Tate
group X attached to f has nonzero q-torsion. Under certain hypotheses and as-
sumptions, the most substantial of which is the Beilinson-Bloch conjecture relating
the vanishing of L(g, k/2) to the existence of algebraic cycles, we are able to con-
struct some of the predicted elements of X using the Galois-theoretic interpretation
of the congruence to transfer elements from a Selmer group for g to a Selmer group
for f . One might say that algebraic cycles for one motive explain elements of X
for the other, or that we use the congruence to link the Beilinson-Bloch conjecture
for one motive with the Bloch-Kato conjecture for the other.

We also compute data which, assuming the Bloch-Kato conjecture, provides
lower bounds for the orders of numerous Shafarevich-Tate groups (see Section 7.3).
We thank the referee for many constructive comments.

2. Motives and Galois representations

This section and the next provide definitions of some of the quantities appearing
later in the Bloch-Kato conjecture. Let f =

∑

anq
n be a newform of weight k ≥ 2

for Γ0(N), with coefficients in an algebraic number field E, which is necessarily
totally real. Let λ be any finite prime of E, and let ` denote its residue characteristic.
A theorem of Deligne [De1] implies the existence of a two-dimensional vector space
Vλ over Eλ, and a continuous representation

ρλ : Gal(Q/Q)→ Aut(Vλ),

such that

(1) ρλ is unramified at p for all primes p not dividing `N , and
(2) if Frobp is an arithmetic Frobenius element at such a p then the character-

istic polynomial of Frob−1p acting on Vλ is x2 − apx+ pk−1.

Following Scholl [Sc], Vλ may be constructed as the λ-adic realisation of a
Grothendieck motive Mf . There are also Betti and de Rham realisations VB and
VdR, both 2-dimensional E-vector spaces. For details of the construction see [Sc].
The de Rham realisation has a Hodge filtration VdR = F 0 ⊃ F 1 = · · · = F k−1 ⊃
F k = {0}. The Betti realisation VB comes from singular cohomology, while Vλ
comes from étale `-adic cohomology. For each prime λ, there is a natural isomor-
phism VB⊗Eλ ' Vλ. We may choose a Gal(Q/Q)-stable Oλ-module Tλ inside each
Vλ. Define Aλ = Vλ/Tλ. Let A[λ] denote the λ-torsion in Aλ. There is the Tate
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twist Vλ(j) (for any integer j), which amounts to multiplying the action of Frobp

by pj .
Following [BK] (Section 3), for p 6= ` (including p =∞) let

H1
f (Qp, Vλ(j)) = ker(H1(Dp, Vλ(j))→ H1(Ip, Vλ(j))).

The subscript f stands for “finite part”, Dp is a decomposition subgroup at a prime
above p, Ip is the inertia subgroup, and the cohomology is for continuous cocycles
and coboundaries. For p = ` let

H1
f (Q`, Vλ(j)) = ker(H1(D`, Vλ(j))→ H1(D`, Vλ(j)⊗Q`

Bcris))

(see Section 1 of [BK] for definitions of Fontaine’s rings Bcris and BdR). Let
H1

f (Q, Vλ(j)) be the subspace of elements of H1(Q, Vλ(j)) whose local restrictions

lie in H1
f (Qp, Vλ(j)) for all primes p.

There is a natural exact sequence

0 −−−−→ Tλ(j) −−−−→ Vλ(j)
π

−−−−→ Aλ(j) −−−−→ 0.

Let H1
f (Qp, Aλ(j)) = π∗H

1
f (Qp, Vλ(j)). Define the λ-Selmer group H1

f (Q, Aλ(j))

to be the subgroup of elements of H1(Q, Aλ(j)) whose local restrictions lie in
H1

f (Qp, Aλ(j)) for all primes p. Note that the condition at p = ∞ is superflu-
ous unless ` = 2. Define the Shafarevich-Tate group

X(j) = ⊕λH
1
f (Q, Aλ(j))/π∗H

1
f (Q, Vλ(j)).

Define an ideal #X(j) of OE , in which the exponent of any prime ideal λ is the
length of the λ-component of X(j). We shall only concern ourselves with the case
j = k/2, and write X for X(k/2). It depends on the choice of Gal(Q/Q)-stable
Oλ-module Tλ inside each Vλ. But if A[λ] is irreducible then Tλ is unique up to
scaling and the λ-part of X is independent of choices.

In the case k = 2 the motive comes from a (self-dual) isogeny class of abelian
varieties over Q, with endomorphism algebra containing E. Choose an abelian
variety B in the isogeny class in such a way that the endomorphism ring of B
contains the full ring of integers OE . If one takes all the Tλ(1) to be λ-adic Tate
modules, then what we have defined above coincides with the usual Shafarevich-
Tate group of B (assuming finiteness of the latter, or just taking the quotient by
its maximal divisible subgroup). To see this one uses 3.11 of [BK], for ` = p. For
` 6= p, H1

f (Qp, V`) = 0. Considering the formal group, every class in B(Qp)/`B(Qp)

is represented by an `-power torsion point in B(Qp), so maps to zero in H1(Qp, A`).
Define the group of global torsion points

ΓQ = ⊕λH
0(Q, Aλ(k/2)).

This is analogous to the group of rational torsion points on an elliptic curve. Define
an ideal #ΓQ of OE , in which the exponent of any prime ideal λ is the length of
the λ-component of ΓQ.

3. Canonical periods

We assume from now on for convenience that N ≥ 3. We need to choose conve-
nient OE-lattices TB and TdR in the Betti and de Rham realisations VB and VdR of
Mf . We do this in a way such that TB and TdR⊗OE

OE [1/Nk!] agree with (respec-
tively) the OE-lattice Mf,B and the OE [1/Nk!]-lattice Mf,dR defined in [DFG1]



4 NEIL DUMMIGAN, WILLIAM STEIN, AND MARK WATKINS

using cohomology, with non-constant coefficients, of modular curves. (In [DFG1],
see especially Sections 2.2 and 5.4, and the paragraph preceding Lemma 2.3.)

For any finite prime λ of OE define the Oλ module Tλ inside Vλ to be the image
of TB ⊗ Oλ under the natural isomorphism VB ⊗ Eλ ' Vλ. Then the Oλ-module
Tλ is Gal(Q/Q)-stable.

Let M(N) be the modular curve over Z[1/N ] parametrising generalised elliptic
curves with full level-N structure. Let E be the universal generalised elliptic curve
overM(N). Let Ek−2 be the (k−2)-fold fibre product of E overM(N). (The motive
Mf is constructed using a projector on the cohomology of a desingularisation of
Ek−2). Realising M(N)(C) as the disjoint union of φ(N) copies of the quotient
Γ(N)\H∗ (where H∗ is the completed upper half plane), and letting τ be a variable
on H, the fibre Eτ is isomorphic to the elliptic curve with period lattice generated
by 1 and τ . Let zi ∈ C/〈1, τ〉 be a variable on the ith copy of Eτ in the fibre
product. Then 2πif(τ) dτ ∧ dz1 ∧ . . . ∧ dzk−2 is a well-defined differential form
on (a desingularisation of) Ek−2 and naturally represents a generating element of
F k−1TdR. (At least we can make our choices locally at primes dividing Nk! so that
this is the case.) We shall call this element e(f).

Under the de Rham isomorphism between VdR ⊗ C and VB ⊗ C, e(f) maps to
some element ωf . There is a natural action of complex conjugation on VB , breaking
it up into one-dimensional E-vector spaces V +B and V −B . Let ω+f and ω−f be the

projections of ωf to V +B ⊗C and V −B ⊗C, respectively. Let T±B be the intersections

of V ±B with TB . These are rank one OE-modules, but not necessarily free, since the

class number of OE may be greater than one. Choose nonzero elements δ±f of T±B
and let a± be the ideals [T±B : OEδ

±
f ]. Define complex numbers Ω±f by ω±f = Ω±f δ

±
f .

4. The Bloch-Kato conjecture

In this section we extract from the Bloch-Kato conjecture for L(f, k/2) a predic-
tion about the order of the Shafarevich-Tate group, by analysing the other terms
in the formula.

Let L(f, s) be the L-function attached to f . For <(s) > k+1
2 it is defined by

the Dirichlet series with Euler product
∑∞

n=1 ann
−s =

∏

p(Pp(p
−s))−1, but there

is an analytic continuation given by an integral, as described in the next section.
Suppose that L(f, k/2) 6= 0. The Bloch-Kato conjecture for the motive Mf (k/2)
predicts the following equality of fractional ideals of E:

L(f, k/2)

vol∞
=

(

∏

p

cp(k/2)

)

#X
a±(#ΓQ)2

.

Here, and from this point onwards, ± represents the parity of (k/2)− 1. The
quantity vol∞ is equal to (2πi)k/2 multiplied by the determinant of the isomorphism
V ±B ⊗ C ' (VdR/F

k/2) ⊗ C, calculated with respect to the lattices OEδ
±
f and the

image of TdR. For l 6= p, ordλ(cp(j)) is defined to be

length H1
f (Qp, Tλ(j))tors − ordλ(Pp(p

−j))

= length
(

H0(Qp, Aλ(j))/H
0
(

Qp, Vλ(j)
Ip/Tλ(j)

Ip
))

.

We omit the definition of ordλ(cp(j)) for λ | p, which requires one to assume
Fontaine’s de Rham conjecture ([Fo1], Appendix A6), and depends on the choices
of TdR and TB , locally at λ. (We shall mainly be concerned with the q-part of the
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Bloch-Kato conjecture, where q is a prime of good reduction. For such primes, the
de Rham conjecture follows from Theorem 5.6 of [Fa].)

Strictly speaking, the conjecture in [BK] is only given for E = Q. We have
taken here the obvious generalisation of a slight rearrangement of (5.15.1) of [BK].
The Bloch-Kato conjecture has been reformulated and generalised by Fontaine and
Perrin-Riou, who work with general E, though that is not really the point of their
work. In Section 11 of [Fo2] it is sketched how to deduce the original conjecture
from theirs, in the case E = Q.

Lemma 4.1. vol∞ /a± = c(2πi)k/2a±Ω±, with c ∈ E and ordλ(c) = 0 for λ - Nk!.

Proof. We note that vol∞ is equal to (2πi)k/2 times the determinant of the period
map from F k/2VdR ⊗ C to V ±B ⊗ C, with respect to lattices dual to those we used
above in the definition of vol∞ (c.f. the last paragraph of 1.7 of [De2]). We are
using here natural pairings. Meanwhile, Ω± is the determinant of the same map
with respect to the lattices F k/2TdR and OEδ

±
f . Recall that the index of OEδ

±
f in

T±B is the ideal a±. Then the proof is completed by noting that, locally away from
primes dividing Nk!, the index of TdR in its dual is equal to the index of TB in its
dual, both being equal to the ideal denoted η in [DFG2]. ¤

Remark 4.2. Note that the “quantities” a±Ω± and vol∞ /a± are independent of
the choice of δ±f .

Lemma 4.3. Let p - N be a prime and j an integer. Then the fractional ideal cp(j)
is supported at most on divisors of p.

Proof. As on p. 30 of [Fl2], for odd l 6= p, ordλ(cp(j)) is the length of the finite
Oλ-module H0(Qp, H

1(Ip, Tλ(j))tors), where Ip is an inertia group at p. But Tλ(j)
is a trivial Ip-module, so H1(Ip, Tλ(j)) is torsion free. ¤

Lemma 4.4. Let q - N be a prime satisfying q > k. Suppose that A[q] is an
irreducible representation of Gal(Q/Q), where q | q. Let p | N be a prime, and if
p2 | N suppose that p 6≡ −1 (mod q). Suppose also that f is not congruent modulo
q (for Fourier coefficients of index coprime to Nq) to any newform of weight k,
trivial character, and level dividing N/p. Then ordq(cp(j)) = 0 for all integers j.

Proof. There is a natural injective map from Vq(j)
Ip/Tq(j)

Ip to H0(Ip, Aq(j)) (i.e.,
Aq(j)

Ip). Consideration of q-torsion shows that

dimOE/q H
0(Ip, A[q](j)) ≥ dimEq

H0(Ip, Vq(j)).

To prove the lemma it suffices to show that

dimOE/q H
0(Ip, A[q](j)) = dimEq

H0(Ip, Vq(j)),

since this ensures thatH0(Ip, Aq(j)) = Vq(j)
Ip/Tq(j)

Ip , hence thatH0(Qp, Aq(j)) =
H0(Qp, Vq(j)

Ip/Tq(j)
Ip). If the dimensions differ then, given that f is not congru-

ent modulo q to a newform of level dividing N/p, Condition (b) of Proposition 2.3
of [L] is satisfied. If Condition (a) was not satisfied then Proposition 2.2 of [L]
would imply that f was congruent modulo q to a twist of level dividing N/p. Since
Condition (c) is clearly also satisfied, we are in a situation covered by one of the
three cases in Proposition 2.3 of [L]. Since p 6≡ −1 (mod q) if p2 | N , Case 3
is excluded, so A[q](j) is unramified at p and ordp(N) = 1. (Here we are using
Carayol’s result that N is the prime-to-q part of the conductor of Vq [Ca1].) But
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then Theorem 1 of [JL] (which uses the condition q > k) implies the existence of
a newform of weight k, trivial character and level dividing N/p, congruent to g
modulo q, for Fourier coefficients of index coprime to Nq. This contradicts our
hypotheses. ¤

Remark 4.5. For an example of what can be done when f is congruent to a form
of lower level, see the first example in Section 7.4 below.

Lemma 4.6. If q | q is a prime of E such that q - Nk!, then ordq(cq) = 0.

Proof. It follows from Lemma 5.7 of [DFG1] (whose proof relies on an application,
at the end of Section 2.2, of the results of [Fa]) that Tq is the Oq[Gal(Qq/Qq)]-
module associated to the filtered module TdR ⊗ Oq by the functor they call V.
(This property is part of the definition of an S-integral premotivic structure given
in Section 1.2 of [DFG1].) Given this, the lemma follows from Theorem 4.1(iii) of
[BK]. (That V is the same as the functor used in Theorem 4.1 of [BK] follows from
the first paragraph of 2(h) of [Fa].) ¤

Lemma 4.7. If A[λ] is an irreducible representation of Gal(Q/Q), then

ordλ(#ΓQ) = 0.

Proof. This follows trivially from the definition. ¤

Putting together the above lemmas we arrive at the following:

Proposition 4.8. Let q - N be a prime satisfying q > k and suppose that A[q] is an
irreducible representation of Gal(Q/Q), where q | q. Assume the same hypotheses
as in Lemma 4.4 for all p | N . Choose TdR and TB which locally at q are as in the
previous section. If L(f, k/2)a±/ vol∞ 6= 0 then the Bloch-Kato conjecture predicts
that

ordq(#X) = ordq(L(f, k/2)a
±/ vol∞).

5. Congruences of special values

Let f =
∑

anq
n and g =

∑

bnq
n be newforms of equal weight k ≥ 2 for Γ0(N).

Let E be a number field large enough to contain all the coefficients an and bn.
Suppose that q | q is a prime of E such that f ≡ g (mod q), i.e. an ≡ bn (mod q)
for all n. Assume that A[q] is an irreducible representation of Gal(Q/Q), and that
q - Nφ(N)k!. Choose δ±f ∈ T±B in such a way that ordq(a

±) = 0, i.e., δ±f generates

T±B locally at q. Make two further assumptions:

L(f, k/2) 6= 0 and L(g, k/2) = 0.

Proposition 5.1. With assumptions as above, ordq(L(f, k/2)/ vol∞) > 0.

Proof. This is based on some of the ideas used in Section 1 of [V]. Note the apparent
typo in Theorem 1.13 of [V], which presumably should refer to “Condition 2”. Since
ordq(a

±) = 0, we just need to show that ordq(L(f, k/2)/((2πi)
k/2Ω±)) > 0, where

±1 = (−1)(k/2)−1. It is well known, and easy to prove, that
∫ ∞

0

f(iy)ys−1dy = (2π)−sΓ(s)L(f, s).
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Hence, if for 0 ≤ j ≤ k − 2 we define the jth period

rj(f) =

∫ i∞

0

f(z)zjdz,

where the integral is taken along the positive imaginary axis, then

rj(f) = j!(−2πi)−(j+1)Lf (j + 1).

Thus we are reduced to showing that ordq(r(k/2)−1(f)/Ω±) > 0.

Let D0 be the group of divisors of degree zero supported on P1(Q). For a Z-
algebra R and integer r ≥ 0, let Pr(R) be the additive group of homogeneous
polynomials of degree r in R[X,Y ]. Both these groups have a natural action of
Γ1(N). Let SΓ1(N)(k,R) := HomΓ1(N)(D0, Pk−2(R)) be the R-module of weight k
modular symbols for Γ1(N).

Via the isomorphism (8) in Section 1.5 of [V], combined with the argument
in 1.7 of [V], the cohomology class ω±f corresponds to a modular symbol Φ±f ∈

SΓ1(N)(k,C), and δ±f corresponds to an element ∆±f ∈ SΓ1(N)(k,OE,q). We are

now dealing with cohomology over X1(N) rather than M(N), which is why we
insist that q - φ(N). It follows from the last line of Section 4.2 of [St] that, up to
some small factorials which do not matter locally at q,

Φ±f ([∞]− [0]) =
k−2
∑

j=0,j≡(k/2)−1 (mod 2)

rf (j)X
jY k−2−j .

Since ω±f = Ω±f δ
±
f , we see that

∆±f ([∞]− [0]) =

k−2
∑

j=0,j≡(k/2)−1 (mod 2)

(rf (j)/Ω
±
f )X

jY k−2−j .

The coefficient of X(k/2)−1Y (k/2)−1 is what we would like to show is divisible by q.
Similarly

Φ±g ([∞]− [0]) =

k−2
∑

j=0,j≡(k/2)−1 (mod 2)

rg(j)X
jY k−2−j .

The coefficient of X(k/2)−1Y (k/2)−1 in this is 0, since L(g, k/2) = 0. Therefore it
would suffice to show that, for some µ ∈ OE , the element ∆±f −µ∆

±
g is divisible by q

in SΓ1(N)(k,OE,q). It suffices to show that, for some µ ∈ OE , the element δ±f −µδ
±
g

is divisible by q, considered as an element of q-adic cohomology of X1(N) with
non-constant coefficients. This would be the case if δ±f and δ±g generate the same
one-dimensional subspace upon reduction modulo q. But this is a consequence of
Theorem 2.1(1) of [FJ] (for which we need the irreducibility of A[q]). ¤

Remark 5.2. The signs in the functional equations of L(f, s) and L(g, s) are equal.
They are determined by the eigenvalue of the Atkin-Lehner involution WN , which
is determined by aN and bN modulo q, because aN and bN are each Nk/2−1 times
this sign and q has residue characteristic coprime to 2N . The common sign in
the functional equation is (−1)k/2wN , where wN is the common eigenvalue of WN

acting on f and g.



8 NEIL DUMMIGAN, WILLIAM STEIN, AND MARK WATKINS

This is analogous to the remark at the end of Section 3 of [CM1], which shows
that if q has odd residue characteristic and L(f, k/2) 6= 0 but L(g, k/2) = 0 then
L(g, s) must vanish to order at least two at s = k/2. Note that Maeda’s conjecture
implies that there are no examples of g of level one with positive sign in their
functional equation such that L(g, k/2) = 0 (see [CF]).

6. Constructing elements of the Shafarevich-Tate group

Let f , g and q be as in the first paragraph of the previous section. In the previ-
ous section we showed how the congruence between f and g relates the vanishing
of L(g, k/2) to the divisibility by q of an “algebraic part” of L(f, k/2). Conjec-
turally the former is associated with the existence of certain algebraic cycles (for
Mg) while the latter is associated with the existence of certain elements of the
Shafarevich-Tate group (for Mf , as we saw in §4). In this section we show how the
congruence, interpreted in terms of Galois representations, provides a direct link
between algebraic cycles and the Shafarevich-Tate group.

For f we have defined Vλ, Tλ and Aλ. Let V
′
λ, T

′
λ and A′λ be the corresponding

objects for g. Since ap is the trace of Frob−1p on Vλ, it follows from the Cebotarev

Density Theorem that A[q] and A′[q], if irreducible, are isomorphic as Gal(Q/Q)-
modules.

Recall that L(g, k/2) = 0 and L(f, k/2) 6= 0. Since the sign in the functional
equation for L(g, s) is positive (this follows from L(f, k/2) 6= 0, see Remark 5.2),
the order of vanishing of L(g, s) at s = k/2 is at least 2. According to the
Beilinson-Bloch conjecture [B, Be], the order of vanishing of L(g, s) at s = k/2

is the rank of the group CH
k/2
0 (Mg)(Q) of Q-rational rational equivalence classes

of null-homologous, algebraic cycles of codimension k/2 on the motive Mg. (This
generalises the part of the Birch–Swinnerton-Dyer conjecture which says that for
an elliptic curve E/Q, the order of vanishing of L(E, s) at s = 1 is equal to the
rank of the Mordell-Weil group E(Q).)

Via the q-adic Abel-Jacobi map, CH
k/2
0 (Mg)(Q) maps to H1(Q, V ′

q
(k/2)), and

its image is contained in the subspace H1
f (Q, V ′q(k/2)), by 3.1 and 3.2 of [Ne]. If,

as expected, the q-adic Abel-Jacobi map is injective, we get (assuming also the
Beilinson-Bloch conjecture) a subspace of H1

f (Q, V ′q(k/2)) of dimension equal to

the order of vanishing of L(g, s) at s = k/2. In fact, one could simply conjecture
that the dimension of H1

f (Q, V ′q(k/2)) is equal to the order of vanishing of L(g, s) at

s = k/2. This would follow from the “conjectures” Cr(M) and Ci
λ(M) in Sections 1

and 6.5 of [Fo2]. We shall call it the “strong” Beilinson-Bloch conjecture.
Similarly, if L(f, k/2) 6= 0 then we expect that H1

f (Q, Vq(k/2)) = 0, so that

H1
f (Q, Aq(k/2)) coincides with the q-part of X.

Theorem 6.1. Let q - N be a prime satisfying q > k. Let r be the dimension of
H1

f (Q, V ′q(k/2)). Suppose that A[q] is an irreducible representation of Gal(Q/Q)

and that for no prime p | N is f congruent modulo q (for Fourier coefficients of
index coprime to Nq) to a newform of weight k, trivial character and level dividing
N/p. Suppose that, for all primes p | N , p 6≡ −wp (mod q), with p 6≡ −1 (mod q)
if p2 | N . (Here wp is the common eigenvalue of the Atkin-Lehner involution Wp

acting on f and g.) Then the q-torsion subgroup of H1
f (Q, Aq(k/2)) has Fq-rank at

least r.
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Proof. The theorem is trivially true if r = 0, so we assume that r > 0. It follows
easily from our hypothesis that the rank of the free part of H1

f (Q, T ′q(k/2)) is r.

The natural map from H1
f (Q, T ′q(k/2))/qH1

f (Q, T ′q(k/2)) to H1(Q, A′[q](k/2)) is
injective. Take a nonzero class c in the image, which has Fq-rank r. Choose

d ∈ H1
f (Q, T ′q(k/2)) mapping to c. Consider the Gal(Q/Q)-cohomology of the

short exact sequence

0 −−−−→ A′[q](k/2) −−−−→ A′
q
(k/2)

π
−−−−→ A′

q
(k/2) −−−−→ 0,

where π is multiplication by a uniformising element of Oq. By irreducibility,
H0(Q, A[q](k/2)) is trivial. HenceH0(Q, Aq(k/2)) is trivial, soH

1(Q, A[q](k/2)) in-
jects intoH1(Q, Aq(k/2)), and we get a nonzero, q-torsion class γ ∈ H1(Q, Aq(k/2)).

Our aim is to show that resp(γ) ∈ H1
f (Qp, Aq(k/2)), for all (finite) primes p. We

consider separately the cases p - qN , p | N and p = q.

Case (1) p - qN :
Consider the Ip-cohomology of the short exact sequence above. Since in this

case A′
q
(k/2) is unramified at p, H0(Ip, A

′
q
(k/2)) = A′

q
(k/2), which is q-divisible.

Therefore H1(Ip, A
′[q](k/2)) (which, remember, is the same as H1(Ip, A[q](k/2)))

injects into H1(Ip, A
′
q
(k/2)). It follows from the fact that d ∈ H1

f (Q, T ′q(k/2)) that
the image inH1(Ip, A

′
q
(k/2)) of the restriction of c is zero, hence that the restriction

of c to H1(Ip, A
′[q](k/2)) ' H1(Ip, A[q](k/2)) is zero. Hence the restriction of γ

to H1(Ip, Aq(k/2)) is also zero. By line 3 of p. 125 of [Fl1], H1
f (Qp, Aq(k/2)) is

equal to (not just contained in) the kernel of the map from H1(Qp, Aq(k/2)) to
H1(Ip, Aq(k/2)), so we have shown that resp(γ) ∈ H1

f (Qp, Aq(k/2)).

Case (2) p | N :
First we show that H0(Ip, A

′
q
(k/2)) is q-divisible. It suffices to show that

dimH0(Ip, A
′[q](k/2)) = dimH0(Ip, V

′
q
(k/2)),

since then the natural map from H0(Ip, V
′
q
(k/2)) to H0(Ip, A

′
q
(k/2)) is surjec-

tive; this may be done as in the proof of Lemma 4.4. It follows as above that
the image of c ∈ H1(Q, A[q](k/2)) in H1(Ip, A[q](k/2)) is zero. Then resp(c)
comes from H1(Dp/Ip, H

0(Ip, A[q](k/2))), by inflation-restriction. The order of
this group is the same as the order of the group H0(Qp, A[q](k/2)) (this is Lemma
1 of [W]), which we claim is trivial. By the work of Carayol [Ca1], the level
N is the conductor of Vq(k/2), so p | N implies that Vq(k/2) is ramified at p,
hence dimH0(Ip, Vq(k/2)) = 0 or 1. As above, we see that dimH0(Ip, Vq(k/2)) =
dimH0(Ip, A[q](k/2)), so we need only consider the case where this common di-

mension is 1. The (motivic) Euler factor at p for Mf is (1−αp−s)−1, where Frob−1p

acts as multiplication by α on the one-dimensional space H0(Ip, Vq). It follows from
Theoréme A of [Ca1] that this is the same as the Euler factor at p of L(f, s). By The-
orems 3(ii) and 5 of [AL], it then follows that p2 - N and α = −wpp

(k/2)−1, where

wp = ±1 is such thatWpf = wpf . Twisting by k/2, Frob−1p acts on H0(Ip, Vq(k/2))

(hence also on H0(Ip, A[q](k/2))) as −wpp
−1. Since p 6≡ −wp (mod q), we see that

H0(Qp, A[q](k/2)) is trivial. Hence resp(c) = 0 so resp(γ) = 0 and certainly lies in
H1

f (Qp, Aq(k/2)).

Case (3) p = q:
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Since q - N is a prime of good reduction for the motive Mg, V
′
q
is a crystalline

representation of Gal(Qq/Qq), meaning Dcris(V
′
q
) and V ′

q
have the same dimension,

where Dcris(V
′
q
) := H0(Qq, V

′
q
⊗Qq

Bcris). (This is a consequence of Theorem 5.6 of

[Fa].) As already noted in the proof of Lemma 4.6, Tq is theOq[Gal(Qq/Qq)]-module
associated to the filtered module TdR ⊗ Oq. Since also q > k, we may now prove,
in the same manner as Proposition 9.2 of [Du1], that resq(γ) ∈ H1

f (Qq, Aq(k/2)).
For the convenience of the reader, we give some details.

In Lemma 4.4 of [BK], a cohomological functor {hi}i≥0 is constructed on the
Fontaine-Lafaille category of filtered Dieudonné modules over Zq. hi(D) = 0 for

all i ≥ 2 and all D, and hi(D) = Exti(1FD, D) for all i and D, where 1FD is the
“unit” filtered Dieudonné module.

Now let D = TdR ⊗Oq and D′ = T ′dR ⊗Oq. By Lemma 4.5 (c) of [BK],

h1(D) ' H1
e (Qq, Tq),

where

H1
e (Qq, Tq) = ker(H1(Qq, Tq)→ H1(Qq, Vq)/H

1
e (Qq, Vq))

and

H1
e (Qq, Vq) = ker(H1(Qq, Vq)→ H1(Qq, B

f=1
cris ⊗Qq

Vq)).

Likewise h1(D′) ' H1
e (Qq, T

′
q
). When applying results of [BK] we view D, Tq etc.

simply as Zq-modules, forgetting the Oq-structure.
For an integer j let D(j) be D with the Hodge filtration shifted by j. Then

h1(D(j)) ' H1
e (Qq, Tq(j))

(as long as k − p+ 1 < j < p− 1, so that D(j) satisfies the hypotheses of Lemma
4.5 of [BK]). By Corollary 3.8.4 of [BK],

H1
f (Qq, Vq(j))/H

1
e (Qq, Vq(j)) ' (D(j)⊗Zq

Qq)/(1− f)(D(j)⊗Zq
Qq),

where f is the Frobenius operator on crystalline cohomology. By 1.2.4(ii) of [Sc],
and the Weil conjectures, H1

e (Qq, Vq(j)) = H1
f (Qq, Vq(j)), since j 6= (k − 1)/2.

Similarly H1
e (Qq, V

′
q
(j)) = H1

f (Qq, V
′
q
(j)).

We have

h1(D(k/2)) ' H1
f (Qq, Tq(k/2)) and h1(D′(k/2)) ' H1

f (Qq, T
′
q
(k/2)).

The exact sequence in the middle of page 366 of [BK] gives us a commutative
diagram.

h1(D′(k/2))
π

−−−−→ h1(D′(k/2)) −−−−→ h1(D′(k/2)/qD′(k/2))




y





y





y

H1(Qq, T
′
q
(k/2))

π
−−−−→ H1(Qq, T

′
q
(k/2)) −−−−→ H1(Qq, A

′[q](k/2)).

The vertical arrows are all inclusions and we know that the image of h1(D′(k/2))
in H1(Qq, T

′
q
(k/2)) is exactly H1

f (Qq, T
′
q
(k/2)). The top right horizontal map is

surjective since h2(D′(k/2)) = 0.
The class resq(c) ∈ H1(Qq, A

′[q](k/2)) is in the image of H1
f (Qq, T

′
q
(k/2)), by

construction, and therefore is in the image of h1(D′(k/2)/qD′(k/2)). By the fullness
and exactness of the Fontaine-Lafaille functor [FL] (see Theorem 4.3 of [BK]),
D′(k/2)/qD′(k/2) is isomorphic to D(k/2)/qD(k/2).
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It follows that the class resq(c) ∈ H1(Qq, A[q](k/2)) is in the image of h1(D(k/2)/qD(k/2))
by the vertical map in the exact sequence analogous to the above. Since the map
from h1(D(k/2)) to h1(D(k/2)/qD(k/2)) is surjective, resq(c) lies in the image
of H1

f (Qq, Tq(k/2)). From this it follows that resq(γ) ∈ H1
f (Qq, Aq(k/2)), as de-

sired. ¤

Theorem 2.7 of [AS] is concerned with verifying local conditions in the case k = 2,
where f and g are associated with abelian varieties A and B. (Their theorem also
applies to abelian varieties over number fields.) Our restriction outlawing congru-
ences modulo q with cusp forms of lower level is analogous to theirs forbidding q
from dividing Tamagawa factors cA,l and cB,l. (In the case where A is an elliptic
curve with ordl(j(A)) < 0, consideration of a Tate parametrisation shows that if
q | cA,l, i.e., if q | ordl(j(A)), then it is possible that A[q] is unramified at l.)

In this paper we have encountered two technical problems which we dealt with
in quite similar ways:

(1) dealing with the q-part of cp for p | N ;
(2) proving local conditions at primes p | N , for an element of q-torsion.

If our only interest was in testing the Bloch-Kato conjecture at q, we could have
made these problems cancel out, as in Lemma 8.11 of [DFG1], by weakening the
local conditions. However, we have chosen not to do so, since we are also interested
in the Shafarevich-Tate group, and since the hypotheses we had to assume are not
particularly strong. Note that, since A[q] is irreducible, the q-part of X does not
depend on the choice of Tq.

7. Examples and Experiments

This section contains tables and numerical examples that illustrate the main
themes of this paper. In Section 7.1, we explain Table 1, which contains 16 exam-
ples of pairs f, g such that the strong Beilinson-Bloch conjecture and Theorem 6.1
together imply the existence of nontrivial elements of the Shafarevich-Tate group
of the motive attached to f . Section 7.2 outlines the higher-weight modular symbol
computations that were used in making Table 1. Section 7.3 discusses Table 2,
which summarizes the results of an extensive computation of conjectural orders of
Shafarevich-Tate groups for modular motives of low level and weight. Section 7.4
gives specific examples in which various hypotheses fail. Note that in §7 “modular
symbol” has a different meaning from in §5, being related to homology rather than
cohomology. For precise definitions see [SV].

7.1. Visible X Table 1. Table 1 on page 11 lists sixteen pairs of newforms f
and g (of equal weights and levels) along with at least one prime q such that there
is a prime q | q with f ≡ g (mod q). In each case, ords=k/2 L(g, k/2) ≥ 2 while
L(f, k/2) 6= 0. The notation is as follows. The first column contains a label whose
structure is

[Level]k[Weight][GaloisOrbit]

This label determines a newform g =
∑

anq
n, up to Galois conjugacy. For example,

127k4C denotes a newform in the third Galois orbit of newforms in S4(Γ0(127)).
The Galois orbits are ordered first by the degree of Q(. . . , an, . . .), then by the
sequence of absolute values |Tr(ap(g))| for p not dividing the level, with positive
trace being first in the event that the two absolute values are equal, and the first
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Table 1. Visible X

g deg(g) f deg(f) q’s
127k4A 1 127k4C 17 43
159k4B 1 159k4E 16 5, 23
365k4A 1 365k4E 18 29
369k4B 1 369k4I 9 13

453k4A 1 453k4E 23 17
465k4B 1 465k4I 7 11
477k4B 1 477k4L 12 73
567k4B 1 567k4H 8 23

581k4A 1 581k4E 34 192

657k4A 1 657k4C 7 5
657k4A 1 657k4G 12 5
681k4A 1 681k4D 30 59

684k4C 1 684k4K 4 72

95k6A 1 95k6D 9 31, 59
122k6A 1 122k6D 6 73
260k6A 1 260k6E 4 17

Galois orbit is denoted A, the second B, and so on. The second column contains the
degree of the field Q(. . . , an, . . .). The third and fourth columns contain f and its
degree, respectively. The fifth column contains at least one prime q such that there
is a prime q | q with f ≡ g (mod q), and such that the hypotheses of Theorem 6.1
(except possibly r > 0) are satisfied for f , g, and q.

For the two examples 581k4E and 684k4K, the square of a prime q appears in
the q-column, meaning q2 divides the order of the group Sk(Γ0(N),Z)/(W +W⊥),
defined at the end of 7.3 below.

We describe the first line of Table 1 in more detail. See the next section for
further details on how the computations were performed.

Using modular symbols, we find that there is a newform

g = q − q2 − 8q3 − 7q4 − 15q5 + 8q6 − 25q7 + · · · ∈ S4(Γ0(127))

with L(g, 2) = 0. Because W127(g) = g, the functional equation has sign +1, so
L′(g, 2) = 0 as well. We also find a newform f ∈ S4(Γ0(127)) whose Fourier coeffi-
cients generate a number field K of degree 17, and by computing the image of the
modular symbol XY {0,∞} under the period mapping, we find that L(f, 2) 6= 0.
The newforms f and g are congruent modulo a prime q of K of residue character-
istic 43. The mod q reductions of f and g are both equal to

f = q + 42q2 + 35q3 + 36q4 + 28q5 + 8q6 + 18q7 + · · · ∈ F43[[q]].

There is no form in the Eisenstein subspaces of M4(Γ0(127)) whose Fourier co-
efficients of index n, with (n, 127) = 1, are congruent modulo 43 to those of f , so
ρf,q ≈ ρg,q is irreducible. Since 127 is prime and S4(SL2(Z)) = 0, f does not arise
from a level 1 form of weight 4. Thus we have checked the hypotheses of Theo-
rem 6.1, so if r is the dimension of H1

f (Q, V ′q(k/2)) then the q-torsion subgroup of

H1
f (Q, Aq(k/2)) has Fq-rank at least r.
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Recall that since ords=k/2 L(g, s) ≥ 2, we expect that r ≥ 2. Then, since

L(f, k/2) 6= 0, we expect that the q-torsion subgroup of H1
f (Q, Aq(k/2)) is equal to

the q-torsion subgroup of X. Admitting these assumptions, we have constructed
the q-torsion in X predicted by the Bloch-Kato conjecture.

For particular examples of elliptic curves one can often find and write down ratio-
nal points predicted by the Birch and Swinnerton-Dyer conjecture. It would be nice
if likewise one could explicitly produce algebraic cycles predicted by the Beilinson-
Bloch conjecture in the above examples. Since L′(g, k/2) = 0, Heegner cycles have

height zero (see Corollary 0.3.2 of [Z]), so ought to be trivial in CH
k/2
0 (Mg)⊗Q.

7.2. How the computation was performed. We give a brief summary of how
the computation was performed. The algorithms that we used were implemented
by the second author, and most are a standard part of MAGMA (see [BCP]).

Let g, f , and q be some data from a line of Table 1 and let N denote the level of g.
We verified the existence of a congruence modulo q, that L(g, k2 ) = L′(g, k2 ) = 0

and L(f, k2 ) 6= 0, and that ρf,q = ρg,q is irreducible and does not arise from any
Sk(Γ0(N/p)), as follows:

To prove there is a congruence, we showed that the corresponding integral spaces
of modular symbols satisfy an appropriate congruence, which forces the existence of
a congruence on the level of Fourier expansions. We showed that ρg,q is irreducible
by computing a set that contains all possible residue characteristics of congruences
between g and any Eisenstein series of level dividing N , where by congruence, we
mean a congruence for all Fourier coefficients of index n with (n,N) = 1. Similarly,
we checked that g is not congruent to any form h of level N/p for any p that exactly
divides N by listing a basis of such h and finding the possible congruences, where
again we disregard the Fourier coefficients of index not coprime to N .

To verify that L(g, k2 ) = 0, we computed the image of the modular symbol

e = X
k
2−1Y

k
2−1{0,∞} under a map with the same kernel as the period mapping,

and found that the image was 0. The period mapping sends the modular symbol e
to a nonzero multiple of L(g, k2 ), so that e maps to 0 implies that L(g, k2 ) = 0. In a

similar way, we verified that L(f, k2 ) 6= 0. Next, we checked thatWN (g) = (−1)k/2g

which, because of the functional equation, implies that L′(g, k2 ) = 0. Table 1 is of
independent interest because it includes examples of modular forms of even weight
> 2 with a zero at k

2 that is not forced by the functional equation. We found no
such examples of weights ≥ 8.

7.3. Conjecturally nontrivial X. In this section we apply some of the results
of Section 4 to compute lower bounds on conjectural orders of Shafarevich-Tate
groups of many modular motives. The results of this section suggest that X of a
modular motive is usually not “visible at level N”, i.e., explained by congruences
at level N , which agrees with the observations of [CM1] and [AS]. For example,
when k > 6 we find many examples of conjecturally nontrivial X but no examples
of nontrivial visible X.

For any newform f , let L(Mf/Q, s) =
∏d

i=1 L(f
(i), s) where f (i) runs over the

Gal(Q/Q)-conjugates of f . Let T be the complex torus Cd/(2πi)k/2L, where the
lattice L is defined by integrating integral cuspidal modular symbols (for Γ0(N))
against the conjugates of f . Let ΩMf/Q denote the volume of the (−1)(k/2)−1

eigenspace T± = {z ∈ T : z = (−1)(k/2)−1z} for complex conjugation on T .
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Lemma 7.1. Suppose that p - Nk! is such that f is not congruent to any of its
Galois conjugates modulo a prime dividing p. Then the p-parts of

L(Mf/Q, k/2)
ΩMf/Q

and Norm

(

L(f, k/2)

vol∞
a±
)

are equal, where vol∞ is as in Section 4.

Proof. Let H be the Z-module of all integral cuspidal modular symbols for Γ0(N).
Let I be the image ofH under projection into the submodule ofH⊗Q corresponding
to f and its Galois conjugates. Note that I is not necessarily contained in H, but
it is contained in H ⊗ Z[ 1m ] where m is divisible by the residue characteristics of
any primes of congruence between f and cuspforms of weight k for Γ0(N) which
are not Galois conjugate to f .

The lattice L defined in the paragraph before the lemma is (up to divisors of
Nk!) obtained by pairing the cohomology modular symbols Φ±

f(i) (as in §5) with

the homology modular symbols in H; equivalently, since the pairing factors through
the map H → I, the lattice L is obtained by pairing with the elements of I. For
1 ≤ i ≤ d let Ii be the OE-module generated by the image of the projection of I
into I ⊗ E corresponding to f (i). The finite index of I ⊗ OE in ⊕d

i=1Ii is divisible
only by primes of congruence between f and its Galois conjugates. Up to these
primes, ΩMf/Q/(2πi)

((k/2)−1)d is then a product of the d quantities obtained by

pairing Φ±
f(i) with Ii, for 1 ≤ i ≤ d. (These quantities inhabit a kind of tensor

product of C∗ over E∗ with the group of fractional ideals of E.) Bearing in mind
the last line of §3, we see that these quantities are the a±Ω±

f(i) , up to divisors of

Nk!. Now we may apply Lemma 4.1. We have then a factorisation of the left hand
side which shows it to be equal to the right hand side, to the extent claimed by the

lemma. Note that L(f,k/2)
vol∞

a± has an interpretation in terms of integral modular
symbols, as in §5, and just gets Galois-conjugated when one replaces f by some
f (i). ¤

Remark 7.2. The newform f = 319k4C is congruent to one of its Galois conjugates

modulo 17 and 17 |
L(Mf/Q,k/2)

ΩMf /Q
so the lemma and our computations say nothing

about whether or not 17 divides Norm
(

L(f,k/2)
vol∞

a±
)

.

Let S be the set of newforms with level N and weight k satisfying either k = 4
and N ≤ 321, or k = 6 and N ≤ 199, or k = 8 and N ≤ 149, or k = 10 and N ≤ 72,
or k = 12 and N ≤ 49. Given f ∈ S, let B be defined as follows:

(1) Let L1 be the numerator of the rational number L(Mf/Q, k/2)/ΩMf/Q. If
L1 = 0 let B = 1 and terminate.

(2) Let L2 be the part of L1 that is coprime to Nk!.
(3) Let L3 be the part of L2 that is coprime to p + 1 for every prime p such

that p2 | N .
(4) Let L4 be the part of L3 coprime to the residue characteristic of any prime

of congruence between f and a form of weight k and lower level. (By
congruence here, we mean a congruence for coefficients an with n coprime
to the level of f .)

(5) Let L5 be the part of L4 coprime to the residue characteristic of any prime
of congruence between f and an Eisenstein series. (This eliminates residue
characteristics of reducible representations.)
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Table 2. Conjecturally nontrivial X (mostly invisible)

f deg(f) B (X bound) all odd congruence primes
127k4C∗ 17 432 43, 127
159k4E∗ 8 232 3, 5, 11, 23, 53, 13605689
263k4B 39 412 263
269k4C 39 232 269
271k4B 39 292 271
281k4B 40 292 281
295k4C 16 72 3, 5, 11, 59, 101, 659, 70791023
299k4C 20 292 13, 23, 103, 20063, 21961
321k4C 16 132 3, 5, 107, 157, 12782373452377
95k6D∗ 9 312 ·592 3, 5, 17, 19, 31, 59, 113, 26701
101k6B 24 172 101
103k6B 24 232 103
111k6C 9 112 3, 37, 2796169609
122k6D∗ 6 732 3, 5, 61, 73, 1303196179
153k6G 5 72 3, 17, 61, 227
157k6B 34 2512 157
167k6B 40 412 167
172k6B 9 72 3, 11, 43, 787
173k6B 39 712 173
181k6B 40 1072 181
191k6B 46 850912 191
193k6B 41 312 193
199k6B 46 2003292 199
47k8B 16 192 47
59k8B 20 292 59
67k8B 20 292 67
71k8B 24 3792 71
73k8B 22 1972 73
74k8C 6 232 37, 127, 821, 8327168869
79k8B 25 3072 79
83k8B 27 10192 83
87k8C 9 112 3, 5, 7, 29, 31, 59, 947, 22877, 3549902897
89k8B 29 444912 89
97k8B 29 112 ·2772 97
101k8B 33 192 ·115032 101
103k8B 32 753672 103
107k8B 34 172 ·4912 107
109k8B 33 232 ·2292 109
111k8C 12 1272 3, 7, 11, 13, 17, 23, 37, 6451, 18583, 51162187
113k8B 35 672 ·6412 113
115k8B 12 372 3, 5, 19, 23, 572437, 5168196102449
117k8I 8 192 3, 13, 181
118k8C 8 372 5, 13, 17, 59, 163, 3923085859759909
119k8C 16 12832 3, 7, 13, 17, 109, 883, 5324191, 91528147213
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f deg(f) B (X bound) all odd congruence primes
121k8F 6 712 3, 11, 17, 41
121k8G 12 132 3, 11
121k8H 12 192 5, 11
125k8D 16 1792 5
127k8B 39 592 127
128k8F 4 112 1
131k8B 43 2412 ·8178382012 131
134k8C 11 612 11, 17, 41, 67, 71, 421, 2356138931854759
137k8B 42 712 ·7490932 137
139k8B 43 472 ·892 ·10212 139
141k8C 14 132 3, 5, 7, 47, 4639, 43831013, 4047347102598757
142k8B 10 112 3, 53, 71, 56377, 1965431024315921873
143k8C 19 3072 3, 11, 13, 89, 199, 409, 178397, 639259, 1744053597287
143k8D 21 1092 3, 7, 11, 13, 61, 79, 103, 173, 241, 769, 36583
145k8C 17 295872 5, 11, 29, 107, 251623, 393577, 518737, 9837145699
146k8C 12 36912 11, 73, 269, 503, 1673540153, 11374452082219
148k8B 11 192 3, 37
149k8B 47 114 ·409967892 149
43k10B 17 4492 43
47k10B 20 22132 47
53k10B 21 6732 53
55k10D 9 712 3, 5, 11, 251, 317, 61339, 19869191
59k10B 25 372 59
62k10E 7 232 3, 31, 101, 523, 617, 41192083
64k10K 2 192 3
67k10B 26 1912 ·6172 67
68k10B 7 832 3, 7, 17, 8311
71k10B 30 11032 71
19k12B 9 672 5, 17, 19, 31, 571
31k12B 15 672 ·712 31, 13488901
35k12C 6 172 5, 7, 23, 29, 107, 8609, 1307051
39k12C 6 732 3, 13, 1491079, 3719832979693
41k12B 20 543472 7, 41, 3271, 6277
43k12B 20 2129692 43, 1669, 483167
47k12B 23 244692 17, 47, 59, 2789
49k12H 12 2712 7

(6) Let B be the part of L5 coprime to the residue characteristic of any prime
of congruence between f and any one of its Galois conjugates.

Proposition 4.8 and Lemma 7.1 imply that if ordp(B) > 0 then, according to the
Bloch-Kato conjecture, ordp(#X) = ordp(B) > 0.

We computed B for every newform in S. There are many examples in which L3 is
large, but B is not, and this is because of Tamagawa factors. For example, 39k4C
has L3 = 19, but B = 1 because of a 19-congruence with a form of level 13; in this
case we must have 19 | c3(2), where c3(2) is as in Section 4. See Section 7.4 for more
details. Also note that in every example B is a perfect square, which, away from
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congruence primes, is as predicted by the existence of Flach’s generalised Cassels-
Tate pairing [Fl1]. (Note that if A[λ] is irreducible then the lattice Tλ is at worst a
scalar multiple of its dual, so the pairing shows that the order of the λ-part of X,
if finite, is a square.) That our computed value of B should be a square is not a
priori obvious.

For simplicity, we discard residue characteristics instead of primes of rings of
integers, so our definition of B is overly conservative. For example, 5 occurs in
row 2 of Table 1 but not in Table 2, because 159k4E is Eisenstein at some prime
above 5, but the prime of congruences of characteristic 5 between 159k4B and
159k4E is not Eisenstein.

The newforms for which B > 1 are given in Table 2. The second column of the
table records the degree of the field generated by the Fourier coefficients of f . The
third contains B. Let W be the intersection of the span of all conjugates of f with
Sk(Γ0(N),Z) andW⊥ the Petersson orthogonal complement ofW in Sk(Γ0(N),Z).
The fourth column contains the odd prime divisors of #(Sk(Γ0(N),Z)/(W +W⊥)),
which are exactly the possible primes of congruence between f and non-conjugate
cusp forms of the same weight and level. We place a ∗ next to the four entries of
Table 2 that also occur in Table 1.

7.4. Examples in which hypotheses fail. We have some other examples where
forms of different levels are congruent (for Fourier coefficients of index coprime to
the levels). However, Remark 5.2 does not apply, so that one of the forms could have
an odd functional equation, and the other could have an even functional equation.
For instance, we have a 19-congruence between the newforms g = 13k4A and
f = 39k4C of Fourier coefficients of index coprime to 39. Here L(f, 2) 6= 0, while
L(g, 2) = 0 since L(g, s) has odd functional equation. Here f fails the condition
about not being congruent to a form of lower level, so in Lemma 4.4 it is possible
that ordq(c3(2)) > 0. In fact this does happen. Because V ′

q
(attached to g of

level 13) is unramified at p = 3, H0(Ip, A[q]) (the same as H0(Ip, A
′[q])) is two-

dimensional. As in (2) of the proof of Theorem 6.1, one of the eigenvalues of Frob−1p

acting on this two-dimensional space is α = −wpp
(k/2)−1, where Wpf = wpf .

The other must be β = −wpp
k/2, so that αβ = pk−1. Twisting by k/2, we see

that Frob−1p acts as −wp on the quotient of H0(Ip, A[q](k/2)) by the image of

H0(Ip, Vq(k/2)). Hence ordq(cp(k/2)) > 0 when wp = −1, which is the case in our
example here with p = 3. Likewise H0(Qp, A[q](k/2)) is nontrivial when wp = −1,
so (2) of the proof of Theorem 6.1 does not work. This is just as well, since had
it worked we would have expected ordq(L(f, k/2)/ vol∞) ≥ 3, which computation
shows not to be the case.

In the following example, the divisibility between the levels is the other way
round. There is a 7-congruence between g = 122k6A and f = 61k6B, both
L-functions have even functional equation, and L(g, 3) = 0. In the proof of The-
orem 6.1, there is a problem with the local condition at p = 2. The map from
H1(I2, A

′[q](3)) to H1(I2, A
′
q
(3)) is not necessarily injective, but its kernel is at

most one dimensional, so we still get the q-torsion subgroup of H1
f (Q, Aq(2)) hav-

ing Fq-rank at least 1 (assuming r ≥ 2), and thus get elements of X for 61k6B
(assuming all along the strong Beilinson-Bloch conjecture). In particular, these
elements of X are invisible at level 61. When the levels are different we are no
longer able to apply Theorem 2.1 of [FJ]. However, we still have the congruences of
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integral modular symbols required to make the proof of Proposition 5.1 go through.
Indeed, as noted above, the congruences of modular forms were found by producing
congruences of modular symbols. Despite these congruences of modular symbols,
Remark 5.2 does not apply, since there is no reason to suppose that wN = wN ′ ,
where N and N ′ are the distinct levels.

Finally, there are two examples where we have a form g with even functional
equation such that L(g, k/2) = 0, and a congruent form f which has odd functional
equation; these are a 23-congruence between g = 453k4A and f = 151k4A, and
a 43-congruence between g = 681k4A and f = 227k4A. If ords=2 L(f, s) = 1,
it ought to be the case that dim(H1

f (Q, Vq(2))) = 1. If we assume this is so,

and similarly that r = ords=2(L(g, s)) ≥ 2, then unfortunately the appropriate
modification of Theorem 6.1 (with strong Beilinson-Bloch conjecture) does not
necessarily provide us with nontrivial q-torsion in X. It only tells us that the q-
torsion subgroup ofH1

f (Q, Aq(2)) has Fq-rank at least 1. It could all be in the image

of H1
f (Q, Vq(2)). X appears in the conjectural formula for the first derivative of

the complex L function, evaluated at s = k/2, but in combination with a regulator
that we have no way of calculating.

Let Lq(f, s) and Lq(g, s) be the q-adic L functions associated with f and g by
the construction of Mazur, Tate and Teitelbaum [MTT], each divided by a suitable
canonical period. We may show that q | L′q(f, k/2), though it is not quite clear
what to make of this. This divisibility may be proved as follows. The measures
dµf,α and (a q-adic unit times) dµg,α′ in [MTT] (again, suitably normalised) are
congruent mod q, as a result of the congruence between the modular symbols out
of which they are constructed. Integrating an appropriate function against these
measures, we find that L′q(f, k/2) is congruent mod q to L′q(g, k/2). It remains to
observe that L′q(g, k/2) = 0, since L(g, k/2) = 0 forces Lq(g, k/2) = 0, but we are
in a case where the signs in the functional equations of L(g, s) and Lq(g, s) are
the same, positive in this instance. (According to the proposition in Section 18 of
[MTT], the signs differ precisely when Lq(g, s) has a “trivial zero” at s = k/2.)

We also found some examples for which the conditions of Theorem 6.1 were
not met. For example, we have a 7-congruence between 639k4B and 639k4H,
but w71 = −1, so that 71 ≡ −w71 (mod 7). There is a similar problem with a
7-congruence between 260k6A and 260k6E — here w13 = 1 so that 13 ≡ −w13
(mod 7). According to Propositions 5.1 and 4.8, Bloch-Kato still predicts that
the q-part of X is non-trivial in these examples. Finally, there is a 5-congruence
between 116k6A and 116k6D, but here the prime 5 is less than the weight 6 so
Propositions 5.1 and 4.8 (and even Lemma 7.1) do not apply.
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