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Abstract

The index of a genus one curve X over a field K is the smallest degree of an
extension L of K such that X(L) is nonempty. Let K be a number field. We prove
that for every integer r not divisible by 8, there is a genus one curve X over K

of index r. Our proof involves an analysis of Kolyvagin’s Euler system of Heegner
points combined with explicit computations on the modular curve X0(17).

1 Introduction

How complicated are curves of genus one? One possible measure of the complexity of
a curve is the smallest degree of an extension of the base field in which the curve has
a point. Consider a curve X of positive genus g over a number field K. The canonical
divisor class on X contains a K-rational effective divisor of degree 2g−2, so the greatest
common divisor of the degrees of the extension fields in which X has a rational point
divides 2g − 2. When g = 1 this is no condition at all!

In the 1950s, S. Lang and J. Tate asked in [11] whether, given a positive integer r,
there exists a genus one curve X such that r is the smallest of all degrees of extensions
of K over which X has a point. Using Kolyvagin’s Euler system of Heegner points, we
answer their question in the affirmative, under the hypothesis that r is odd. The curves
we produce are torsors for the elliptic curve X0(17), though our methods apply to a
more general class of genus one curves. The following theorem is proved in Section 5.4.

Theorem 1.1. Let K be a number field and let r be an integer not divisible by 8. Then
there are infinitely many genus one curves over K of index r.

In Section 2 we recall standard facts about indexes of genus one curves. Section 3
contains a brief discussion of Heegner points, and summarizes the relevant results about
Kolyvagin’s Euler system from [18]. In Section 4, which forms the heart of our paper, we
prove a nonvanishing result for Kolyvagin’s cohomology classes. Finally, in Section 5,
we prove Theorem 1.1 by combining a general result about Galois representations with
explicit computations on X0(17).
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2 Indexes of genus one curves

Let E be an elliptic curve over an arbitrary field k. The Galois cohomology group
H1(k,E) = H1(Gal(ksep/k), E(ksep)) classifies the isomorphism classes of torsors (prin-
cipal homogeneous spaces) for E over k.

Definition 2.1 (Index of cohomology class). The index of c ∈ H1(k,E), denoted
ind(c), is the greatest common divisor of the degrees of the separable extensions K of k
for which resK(c) = 0.

The torsor X corresponding to c is a genus one curve over k equipped with an action
of E. Furthermore, X(K) 6= ∅ exactly when resK(c) = 0, so

ind(c) = gcd{[K : k] : X(K) 6= ∅}.

Thus ind(c) generates the image of the degree map deg : Divk(X)→ Z. We now define
ind(X) so that ind(X) = ind(c).

Definition 2.2 (Index of curve). The index of an algebraic curve over k is the
cardinality of the cokernel of the degree map.

Any canonical divisor is an element of Divk(X) of degree 2g−2, where g is the genus
of X, so ind(X) divides 2g − 2. As mentioned in the introduction, when g = 1 this is
no condition; in fact, E. Artin conjectured, and Lang and Tate proved in [11, pg. 670],
that for every integer r there is some genus one curve X over some field L such that
ind(X) = r. The construction of [11] requires the existence of an L-rational point of
order r on the elliptic curve E = Jac(X). The torsion subgroups of elliptic curves are
“uniformly bounded”, so for K a fixed number field and for almost all r, the results of
[11] do not imply the existence of genus one curves over K of index r.

Let E be an elliptic curve over a number field K, and let r be a positive integer. Is
there an element of H1(K,E) of index r? In [21], Shafarevich proved that H1(K,E)
contains infinitely many elements of every order (see also [5, §27] where Cassels sketches
an alternative approach to proving Shafarevich’s theorem). However, this does not
answer the question of Artin, because the order need not equal the index as Cassels
remarked in [4], where he found an elliptic curve E and a class c ∈ H1(Q, E) such
that c has order 2 and index 4.

2.1 Elementary facts about the index

We pause to state some basic facts about the order and index, which we will use later.
Fix an elliptic curve E over a number field K, and let c and c′ be elements of H1(K,E).

Proposition 2.3. ord(c) | ind(c), and they have the same prime factors.

Proof. See [11, §2, Prop. 5].

Lemma 2.4. There is an extension L of K such that [L : K] = ind(c) and resL(c) = 0.

Proof. See the paragraph before the corollary in [11, §2].

Proposition 2.5. Suppose c′ has order coprime to c. Then ind(c+c′) = ind(c) · ind(c′).

Proof. If M is a field that splits c+c′, then M also splits ord(c′)(c+c′) = ord(c′)c, so M
splits c. Likewise, M splits c′, so ind(c) · ind(c′) | ind(c+ c′). For the other divisibility,
note that by Lemma 2.4, there are extensions L and L′ such that [L : K] = ind(c),
[L′ : K] = ind(c′), and resL(c) = resL′(c

′) = 0. Then the compositum L.L′ splits c+ c′

and [L.L′ : K] = ind(c) · ind(c′). Thus ind(c+ c′) divides ind(c) · ind(c′).
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Remark 2.6. In [12], Lichtenbaum proved that ind(c) | ord(c)2 for any c ∈ H1(K,E),
and Cassels proved in [3] that if c ∈X(E/K), then ord(c) = ind(c).

If E is an elliptic curve over Q such that #X(E/Q) = #E(Q)tor = 1, then the
results mentioned above do not rule out the possibility that every element of H1(Q, E)
has index a perfect square. We prove, under the assumption that L(E, 1) 6= 0, that
there is an integer B such that H1(Q, E) contains infinitely many elements of index n,
for every integer n that is prime to B (see Theorem 3.1). For example, in Section 5 we
prove that one can take B = 2 for the elliptic curve X0(17).

3 Kolyvagin’s Euler system

In this section, we recall the definition of Heegner points and several basic results about
the system of cohomology classes Kolyvagin attaches to these points. We also state the
main theorem of this paper.

3.1 Kolyvagin classes

Let E be an elliptic curve over Q of conductor N , and denote by X0(N) the modular
curve that classifies cyclic isogenies of degree N . By [1], there is a surjective map
π : X0(N)→ E. (Note that for the proof of Theorem 1.1 we do not need any modularity
theorems, because we take E = X0(17).) Let K be a quadratic imaginary extension
of Q in which all primes dividing N split, and let DK be the discriminant and O the
ring of integers of K. Since all primes dividing N split, there is an ideal a ⊂ O such that
O/a is cyclic of order N . Let H be the Hilbert class field of K, and xH ∈ X0(N)(H)
be the Heegner points corresponding to (C/O, a−1/O). Set yH = π(xH) ∈ E(H),
yK = trH/K(yH) ∈ E(K), and y = yK − yτK ∈ E(K)−, where τ denotes complex
conjugation. Assume that L(E, 1) 6= 0, so by [2, 15] there are infinitely many ways
in which to choose K as above so that y has infinite order. Under this nonvanishing
hypothesis on L(E, 1), Kolyvagin proves in [10] that the groups E(Q) and X(E/Q) are
both finite.

In the course of his proof, Kolyvagin considers more general Heegner points y` ∈
E(Q), for appropriate primes `, and from these constructs cohomology classes c`,pn ∈
H1(Q, E)[pn] that are used to bound the orders of certain Selmer groups associated
to E. We will study Kolyvagin’s classes further and prove that for each prime p not in
an explicit finite set and each positive integer n, there are infinitely many primes ` such
that

ord(c`,pn) = ind(c`,pn) = pn.

We thus obtain the following theorem, which will be proved in Section 4.2.

Theorem 3.1. Let E be an elliptic curve over Q such that L(E, 1) 6= 0. Then there
is an integer B such that, for all integers r coprime to B, there are infinitely many
c ∈ H1(Q, E) such that ord(c) = ind(c) = r.

Remark 3.2. Cathy O’Neil [16] has investigated the obstruction to ord(c) = ind(c). We
show that when E has analytic rank 0, this obstruction vanishes for infinitely many c.

3.2 Basic properties of Kolyvagin’s Euler system

In [18], Rubin gives a concise account of Kolyvagin’s proof of finiteness of X(E/Q)[p∞],
under the simplifying assumption that p is odd. Though Kolyvagin’s argument works
even when p = 2, for simplicity, we rely exclusively on Rubin’s paper.

Let K be a quadratic imaginary field as above, chosen in such a way that the
associated Heegner point yK has infinite order. Fix embeddings of Q into C and into
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each p-adic field Qp. Let τ denote complex conjugation, and for any Z[τ ]-module A,
let A+ and A− denote the kernel of τ − 1 and τ + 1, respectively. For the remainder of
this section, we assume that p is an odd prime, and if K = Q(

√
−3) that p ≥ 5. If `

is a prime that is inert in K, let K` denote the completion of K at the unique prime
lying over `. If L is a finite Galois extension of Q, let Frob`(L/Q) denote the conjugacy
class of some Frobenius element of a prime lying over `. For each prime ` - N , let
a` = `+ 1−#E(F`) be the `th Fourier coefficient of the newform attached to E.

Definition 3.3. For each place v of Q, let

mv = #H1(Qunr
v /Qv, E(Qunr

v )).

By [14, I.3.8], each mv is finite and mv = 1 for all but finitely many v, so

m(p) = sup{ordp(mv) : all places v of Q}

is well defined, and m(p) = 0 for almost all p.

Let n be a positive integer.

Proposition 3.4. Let p be a prime that does not divide the class number of K and for
which m(p) = 0. Suppose ` - pDKN and Frob`(K(E[pn])/Q) = [τ ]. Then there is an
element c`,pn ∈ H1(Q, E)[pn] such that the order of res`(c`,pn) in H1(Q`, E)[pn] is equal
to the order of the image of y in E(K`)/p

nE(K`), and the index of c`,pn divides pn.

Proof. The existence of c`,pn and statement about its order is proved in [18, Prop. 5],
where c`,pn is constructed from Heegner points on X0(N). For the index bound, note
that in the proof of [18, Prop. 5], when p - [H : K], Rubin constructs a class c′ ∈
H1(K ′/K,E(K ′))[pr]+, where r = n + m(p) and K ′ is the unique extension of K
of degree pr in a certain class field of K. Since p is odd, the restriction map res :
H1(Q, E)[pr] → H1(K,E)[pr]+ is an isomorphism. Rubin takes c`,pn = res−1(c′).
Since c`,pn splits over the degree 2pr extension K ′ of Q, the index of c`,pn divides 2pr.
But c`,pn has odd order and, by Proposition 2.3, ind(c`,pn) has the same prime factors
as ord(c`,pn), so ind(c`,pn) divides pr.

Remark 3.5. The author does not know whether or not the proposition is true if p is
allowed to divide the class number of K.

4 Nonvanishing of cohomology classes

In this section, we prove a nonvanishing result about the cohomology classes c`,pn of
Proposition 3.4, then use it to deduce Theorem 3.1.

4.1 Local nonvanishing

Let E be as above. For any point x ∈ E(K), let K([pn]−1x) denote the field obtained
by adjoining the coordinates of all pnth roots of x to K. Without imposing further
hypothesis, this field need not be Galois over Q.

Lemma 4.1. If x ∈ E(K)+ ∪ E(K)−, then K([pn]−1x) is Galois over Q.

Proof. Since GQ acts on x by ±1, the subgroup Zx is GQ-invariant. Since [pn] : E → E
is aQ-rational isogeny the inverse image [pn]−1Zx is also GQ-invariant, so K([pn]−1x) =
K([pn]−1Zx) is Galois over Q.

Definition 4.2. An odd prime p is firm for E if m(p) = 0, there are no nontrivial
Q-rational cyclic subgroups of E[p∞], and H1(K(E[pn])/K,E[pn]) = 0 for all n ≥ 1.
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Remark 4.3. The set of primes that are not firm is finite, by Serre’s theorem [19] and
the theory of complex multiplication.

Let p be an odd prime that is firm for E. The following proposition produces
infinitely many primes ` such that we have control over the orders of the image in
E(K`)/p

nE(K`) of a global point. It will be used as input to Proposition 3.4 to produce
cohomology classes of known index. The proof, which involves an application of the
Chebotarëv density theorem, follows a strategy similar to that used in the proof of
Kolyvagin’s theorem on page 135 of [18].

Proposition 4.4. Let p be a prime that is firm for E, and let x ∈ E(K)±. Then there
is a set of primes ` of positive Dirichlet density such that Frob`(K(E[pn])/Q) = [τ ] and
the orders of the images of x in E(K)/pnE(K) and in E(K`)/p

nE(K`) are the same.

Proof. Let pa be the order of the image of x in E(K)/pnE(K). If a = 0, then there
is nothing to prove, so assume that a > 0. If ` is a prime such that the orders of the
images of pa−1x in E(K)/pnE(K) and E(K`)/p

nE(K`) both equal p, then the images
of x in E(K)/pnE(K) and E(K`)/p

nE(K`) both have order pa. It thus suffices to prove
the proposition in the case when the order of the image of x in E(K)/pnE(K) is p.

Let L = K(E[pn]), suppose ` is a prime such that Frob`(L/Q) = [τ ], and let λ be
one of the prime ideals of L that lies over `. We have a diagram

E(K)/pnE(K) Â

Ä

//

²²

H1(K,E[pn])
Â

Ä

//

²²

Hom(GL, E[pn])

²²

E(K`)/p
nE(K`) // H1(K`, E[pn]) // Hom(GLλ , E[pn]),

Let ϕ : GL → E[pn] be the element of Hom(GL, E[pn]) that x maps to. The top
row is injective, because p is firm, so it suffices to show that the image ϕ` of ϕ in
Hom(GLλ , E[pn]) is nonzero.

Let M be the fixed field of the kernel of ϕ. Since M is the compositum of the two Ga-
lois extensionsK([pn]−1x) andQ(E[pn]) ofQ, it is also Galois (see Lemma 4.1). Because
Frob`(M/Q)|L = [τ ], there is an element σ ∈ Gal(M/L) such that Frob`(M/Q) = [στ ].
The order of στ equals the degree of Mλ′ over Q`, where λ′ is a prime of M lying over `.
If ϕ` = 0, then Mλ′ = Lλ = K`, so στ would have order 2.

The image of ϕ is a nonzero subgroup H of E[pn], which is defined over Q since
x ∈ E(K)±. If every σ ∈ Gal(M/L) has the property that στ has order 2, then
H ⊂ E[pn]−. This contradicts our assumption that p is firm, since H is a nontrivial
cyclic subgroup of E[p∞]. Thus there exists σ ∈ Gal(M/L) such that στ has order
different than 2. For this σ and for any prime ` such that Frob`(M/Q) = [στ ], we see
that ϕ` 6= 0. The Chebotarëv density theorem provides a positive density of such `.

4.2 Proof of Theorem 3.1

Proof of Theorem 3.1. Let E be an elliptic curve over Q such that L(E, 1) 6= 0. Let K
be one of the infinitely many imaginary quadratic fields such that the associated Heegner
point y has infinite order. Let BK be an integer that is divisible by 2 and

— the primes p such that y ∈ pE(K),

— the primes p that are not firm,

— the order #E(K)tor, and

— the class number of K.

If K = Q(
√
−3), assume in addition that 3 divides BK .

Fix a prime p - BK . Since E(K) has rank 1 (see, e.g., [9, Thm 1.3]) and p -
#E(K)tor, the image of y in E(K)/pnE(K) has order pn. By Proposition 4.4 there
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are infinitely many primes ` such that Frob`(K(E[pn])/Q) = [τ ] and the image of y in
E(K`)/p

nE(K`) has order pn. For these `, Proposition 4.4 produces infinitely many
cohomology classes c`,pn having order and index both equal to pn. (Note that if ` 6= `′

then c`,pn 6= c`′,pn .)
Let B be the greatest common divisor of the set of integers BK , as K varies over

all quadratic imaginary extensions such that the associated Heegner point has infinite
order. For each prime power pn that does not divide B, we have produced infinitely
many c ∈ H1(Q, E) having order and index both equal to pn. If the orders of c and c′

are coprime, then ord(c + c′) = ord(c) · ord(c′) and, by Proposition 2.5, ind(c + c′) =
ind(c) · ind(c′). This proves the theorem.

5 Computing the bound BK

In this section we compute, in some cases, the the bound BK that appears in Section 4.2.
First we prove a general theorem about semistable elliptic curves. Next we compute the
index of a Heegner point, and finally in Section 5.4 we prove Theorem 1.1.

5.1 Galois representations attached to isolated curves

The following proposition sometimes permits us to compute the integer BK , which
appears in Section 4.2.

Proposition 5.1. Let E be a semistable elliptic curve over Q of conductor N , let p
be an odd prime, and let K be a quadratic imaginary field such that gcd(DK , pN) = 1.
Assume that p - ord`(j(E)), for each prime `, and that E admits no isogenies of degree p.
Then p - #E(K)tor and p is firm for E.

Before giving the proof, we summarize its main ingredients. First, we observe that
the assertion that m(p) = 0 (see Definition 3.3) uses a standard result that relates
unramified Galois cohomology to component groups. Next, we use the semistability
and isogeny hypotheses to deduce that ρE,p is surjective. Then we use standard group
cohomology to deduce that p is firm.

Proof. Let ` be a prime. By [14, I.3.8], H1(Qunr
` /Q`, E(Qunr

` )) ∼= H1(F`/F`,ΦE,`(F`)),
where ΦE,` is the component group of E at `. If ` - N , there is nothing further to
prove, so assume ` | N . Since E is semistable, #ΦE,`(F`) = − ord`(j). By hypothesis,
p - ord`(j). Thus m(p) = 0.

Since E admits no isogenies of degree p, the Galois representation ρE,p : GQ →
GL(2, E[p]) is irreducible, and there are no nontrivial Q-rational cyclic subgroups of
E[p∞]. Since E is semistable, work of Serre [19, Prop. 21] and [20, §3.1] implies that
ρE,p is surjective. Thus p - #E(K)tor because a point in E(Q) of order p must generate
an extension of Q of degree at least p2 − 1 ≥ 3.

The field K and Q(E[p]) are linearly disjoint, since gcd(DK , pN) = 1, so

H1(K(E[p])/K,E[p]) ∼= H1(Q(E[p])/Q, E[p]) ≈ H1(GL(2,Fp),F
2
p).

The group H = H1(K(E[pn])/K,E[pn]) has exponent a power of p. If an element α
in Gal(K(E[pn])/K) ⊂ GL2(Z/p

nZ) is scalar, then every element of H has order divid-
ing α−1. This is because the scalar is central, so the morphism of pairs it induces is both
the identity and multiplication by α. It is necessary only to choose α such that gcd(α−
1, p) = 1. Since p is odd, −1 is a nonidentity element of Aut(E[p]) = Gal(K(E[p])/K).
Every automorphism lifts, so −1 lifts to some g in Gal(K(E[pn])/K) ⊂ Aut(E[pn]).

Then gp
n−1

= −1 in Aut(E[pn]), so −1 ∈ Gal(K(E[pn])/K) and every element of H has

order dividing 2. (To show that gp
n−1

= −1, we use that ordp
(

pn

k

)

= n+ordp
(

1
k

)

.)
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5.2 The number BK for X0(17)

In this section, we show that for E = X0(17) and K = Q(
√
−2), we have BK = 2. This

is accomplished by showing that the index [E(K) : Zy] is a power of 2. The elliptic
curve E = X0(17) given by the Weierstrass equation

y2 + xy + y = x3 − x2 − x− 14

satisfies the hypothesis of Proposition 5.1 for each odd prime p. Since the j-invariant
of E is 33 · 113/174, every odd prime p is firm for E and #E(K)tor is a power of 2.

The conductor 17 of E splits in K, and the quadratic twist E ′ of E by K is the curve
y2 = x3−44x+7120, which is labeled 1088K4 in [7]. Using MAGMA (or mwrank), one
finds that E′(Q) ∼= ZP × Z/2, where P = (−3, 85) ∈ E ′(Q) has infinite order. Since
the rank of E′ is 1, we set K = Q(

√
−2) in Section 4.2. Then BK is divisible only

by 2 and the index [E(K) : Zy]. This index can only change by a power of 2 if y is
replaced by yK , so we instead consider the index [E(K) : ZyK ]. The cokernel of the
natural map E(Q)⊕ E′(Q)→ E(K) is a 2-group and E(Q) ∼= Z/4Z, so [E(K) : ZyK ]
is a power of 2 times h(yK)/h(P ), where h is the Néron-Tate canonical height on EK .
By the Gross-Zagier formula (see [8, Thm. 6.3]),

h(yK) =
u2|D| 12
||ωf ||

L′E′(1)LE(1), (1)

where D = −8 is the discriminant of K, u = 1 is half the number of units, and ||ωf ||
is the Peterson norm of the newform f corresponding to E. Generators for the period
lattice of E are ω1 ∼ 1.547079 and ω2 ∼ 0.773539 + 1.372869i; taking the determinant
gives ||ωf || ∼ 2.123938. Furthermore, again from [7], we find that LE(1) ∼ 0.386769
and L′E′(1) ∼ 2.525026, so h(yK) ∼ 1.300533. Using a computer, we find that h(P ) ∼
1.300533 as well, so [E(K) : ZyK ] is a power of two.

5.3 Elements of index 2 and 4

The torsion subgroup of E = X0(17) is isomorphic to Z/4Z, so [11, pg. 670] implies
that there are infinitely many elements of H1(Q, E) having order and index equal to 2,
and also infinitely many having order and index equal to 4.

5.4 Proof of Theorem 1.1

To prove Theorem 1.1, we combine the above computations with Theorem 3.1, and an
observation about the local properties of Kolyvagin’s classes c`,pn .

Proof of Theorem 1.1. Let E = X0(17) as above, and let K be an arbitrary number
field. Let pn be either an odd prime power, or 2, or 4. The computations of the previous
section combined with Theorem 3.1 prove that there are infinitely many elements c`,pn

of H1(Q, E) whose index and order both equal pn. Let A be the subgroup of H1(Q, E)
generated by these classes. The kernel B of resK : A→ H1(K,E) is finite, so the set S
of primes ` such that res`(c) 6= 0 for some c ∈ B is finite. By Proposition 3.4, we have
resv(c`,pn) = 0 for all places v 6= `, so the subgroup A′ of A generated by all c`,pn with
` 6∈ S has trivial intersection with B. Thus resK(A′) consists of infinitely many classes
in H1(K,E) having order and index both equal to pn, and the theorem now follows
from Proposition 2.3.
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