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There are genus one curves over Q of
every odd index

ByWilliam A. Stein*) at Harvard University

Abstract. The index of a genus one curve X over a field K is the smallest degree of
an extension L of K such that X ðLÞ is nonempty. Let K be a number field. We prove that
for every integer r not divisible by 8, there is a genus one curve X over K of index r. Our
proof involves an analysis of Kolyvagin’s Euler system of Heegner points combined with
explicit computations on the modular curve X0ð17Þ.

1. Introduction

How complicated are curves of genus one? One possible measure of the complexity
of a curve is the smallest degree of an extension of the base field in which the curve has a
point. Consider a curve X of positive genus g over a number field K. The canonical divisor
class on X contains a K-rational e¤ective divisor of degree 2g� 2, so the greatest common
divisor of the degrees of the extension fields in which X has a rational point divides 2g� 2.
When g ¼ 1 this is no condition at all!

In the 1950s, S. Lang and J. Tate asked in [11] whether, given a positive integer r,
there exists a genus one curve X such that r is the smallest of all degrees of extensions of K
over which X has a point. Using Kolyvagin’s Euler system of Heegner points, we answer
their question in the a‰rmative, under the hypothesis that r is odd. The curves we produce
are torsors for the elliptic curve X0ð17Þ, though our methods apply to a more general class
of genus one curves. The following theorem is proved in Section 5.4.

Theorem 1.1. Let K be a number field and let r be an integer not divisible by 8. Then
there are infinitely many genus one curves over K of index r.

In Section 2 we recall standard facts about indexes of genus one curves. Section 3
contains a brief discussion of Heegner points, and summarizes the relevant results about
Kolyvagin’s Euler system from [18]. In Section 4, which forms the heart of our paper, we
prove a nonvanishing result for Kolyvagin’s cohomology classes. Finally, in Section 5, we

*) Supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.



prove Theorem 1.1 by combining a general result about Galois representations with explicit
computations on X0ð17Þ.
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2. Indexes of genus one curves

Let E be an elliptic curve over an arbitrary field k. The Galois cohomology group
H 1ðk;EÞ ¼ H 1

�
Galðk sep=kÞ;Eðk sepÞ

�
classifies the isomorphism classes of torsors (princi-

pal homogeneous spaces) for E over k.

Definition 2.1 (Index of cohomology class). The index of c A H 1ðk;EÞ, denoted
indðcÞ, is the greatest common divisor of the degrees of the separable extensions K of k for
which resKðcÞ ¼ 0.

The torsor X corresponding to c is a genus one curve over k equipped with an action
of E. Furthermore, X ðKÞ3j exactly when resKðcÞ ¼ 0, so

indðcÞ ¼ gcdf½K : k�: XðKÞ3jg:

Thus indðcÞ generates the image of the degree map deg: DivkðXÞ ! Z. We now define
indðXÞ so that indðX Þ ¼ indðcÞ.

Definition 2.2 (Index of curve). The index of an algebraic curve over k is the cardi-
nality of the cokernel of the degree map.

Any canonical divisor is an element of DivkðX Þ of degree 2g� 2, where g is the genus
of X, so indðXÞ divides 2g� 2. As mentioned in the introduction, when g ¼ 1 this is no
condition; in fact, E. Artin conjectured, and Lang and Tate proved in [11], pg. 670, that for
every integer r there is some genus one curve X over some field L such that indðXÞ ¼ r. The
construction of [11] requires the existence of an L-rational point of order r on the elliptic
curve E ¼ JacðX Þ. The torsion subgroups of elliptic curves are ‘‘uniformly bounded’’, so
for K a fixed number field and for almost all r, the results of [11] do not imply the existence
of genus one curves over K of index r.

Let E be an elliptic curve over a number field K, and let r be a positive integer. Is
there an element of H 1ðK ;EÞ of index r? In [21], Shafarevich proved that H 1ðK ;EÞ con-
tains infinitely many elements of every order (see also [5], §27 where Cassels sketches an
alternative approach to proving Shafarevich’s theorem). However, this does not answer the
question of Artin, because the order need not equal the index as Cassels remarked in [4],
where he found an elliptic curve E and a class c A H 1ðQ;EÞ such that c has order 2 and
index 4.

2.1. Elementary facts about the index. We pause to state some basic facts about the
order and index, which we will use later. Fix an elliptic curve E over a number field K, and
let c and c 0 be elements of H 1ðK ;EÞ.
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Proposition 2.3. ordðcÞ j indðcÞ, and they have the same prime factors.

Proof. See [11], §2, Prop. 5. r

Lemma 2.4. There is an extension L of K such that ½L : K � ¼ indðcÞ and resLðcÞ ¼ 0.

Proof. See the paragraph before the corollary in [11], §2. r

Proposition 2.5. Suppose c 0 has order coprime to c. Then indðcþ c 0Þ ¼ indðcÞ � indðc 0Þ.

Proof. IfM is a field that splits cþ c 0, thenM also splits ordðc 0Þðcþ c 0Þ ¼ ordðc 0Þc,
so M splits c. Likewise, M splits c 0, so indðcÞ � indðc 0Þ j indðcþ c 0Þ. For the other divisi-
bility, note that by Lemma 2.4, there are extensions L and L 0 such that ½L : K � ¼ indðcÞ,
½L 0 : K � ¼ indðc 0Þ, and resLðcÞ ¼ resL 0 ðc 0Þ ¼ 0. Then the compositum L:L 0 splits cþ c 0 and
½L:L 0 : K � ¼ indðcÞ � indðc 0Þ. Thus indðcþ c 0Þ divides indðcÞ � indðc 0Þ. r

Remark 2.6. In [12], Lichtenbaum proved that indðcÞ j ordðcÞ2 for any c A H 1ðK ;EÞ,
and Cassels proved in [3] that if c A [ðE=KÞ, then ordðcÞ ¼ indðcÞ.

If E is an elliptic curve over Q such thatK[ðE=QÞ ¼ KEðQÞtor ¼ 1, then the results
mentioned above do not rule out the possibility that every element of H 1ðQ;EÞ has index a
perfect square. We prove, under the assumption that LðE; 1Þ3 0, that there is an integer B
such that H 1ðQ;EÞ contains infinitely many elements of index n, for every integer n that is
coprime to B (see Theorem 3.1). For example, in Section 5 we prove that one can take
B ¼ 2 for the elliptic curve X0ð17Þ.

3. Kolyvagin’s Euler system

In this section, we recall the definition of Heegner points and several basic results
about the system of cohomology classes Kolyvagin attaches to these points. We also state
the main theorem of this paper.

3.1. Kolyvagin classes. Let E be an elliptic curve over Q of conductor N, and denote
by X0ðNÞ the modular curve that classifies cyclic isogenies of degree N. By [1], there is a
surjective map p: X0ðNÞ ! E. (Note that for the proof of Theorem 1.1 we do not need any
modularity theorems, because we take E ¼ X0ð17Þ.) Let K be a quadratic imaginary exten-
sion of Q in which all primes dividing N split, and let DK be the discriminant and O the ring
of integers of K. Since all primes dividing N split, there is an ideal aHO such that O=a is
cyclic of order N. Let H be the Hilbert class field of K, and xH AX0ðNÞðHÞ be the Heegner
points corresponding to ðC=O; a�1=OÞ. Set yH ¼ pðxHÞ A EðHÞ, yK ¼ trH=KðyHÞ A EðKÞ,
and y ¼ yK � ytK A EðKÞ�, where t denotes complex conjugation. Assume that LðE; 1Þ3 0,
so by [2] and [15] there are infinitely many ways in which to choose K as above so that y
has infinite order. Under this nonvanishing hypothesis on LðE; 1Þ, Kolyvagin proves in [10]
that the groups EðQÞ and [ðE=QÞ are both finite.

In the course of his proof, Kolyvagin considers more general Heegner points
yl A Eð �QQÞ, for appropriate primes l, and from these constructs cohomology classes
cl;pn A H 1ðQ;EÞ½ pn� that are used to bound the orders of certain Selmer groups associated
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to E. We will study Kolyvagin’s classes further and prove that for each prime p not in an
explicit finite set and each positive integer n, there are infinitely many primes l such that

ordðcl;pnÞ ¼ indðcl;pnÞ ¼ pn:

We thus obtain the following theorem, which will be proved in Section 4.2.

Theorem 3.1. Let E be an elliptic curve over Q such that LðE; 1Þ3 0. Then there is an
integer B such that, for all integers r coprime to B, there are infinitely many c A H 1ðQ;EÞ
such that ordðcÞ ¼ indðcÞ ¼ r.

Remark 3.2. Cathy O’Neil [16] has investigated the obstruction to ordðcÞ ¼ indðcÞ.
We show that when E has analytic rank 0, this obstruction vanishes for infinitely many c.

3.2. Basic properties of Kolyvagin’s Euler system. In [18], Rubin gives a concise ac-
count of Kolyvagin’s proof of finiteness of[ðE=QÞ½ py�, under the simplifying assumption
that p is odd. Though Kolyvagin’s argument works even when p ¼ 2, for simplicity, we
rely exclusively on Rubin’s paper.

Let K be a quadratic imaginary field as above, chosen in such a way that the asso-
ciated Heegner point yK has infinite order. Fix embeddings of �QQ into C and into each p-
adic field �QQp. Let t denote complex conjugation, and for any Z½t�-module A, let Aþ and A�

denote the kernel of t� 1 and tþ 1, respectively. For the remainder of this section, we
assume that p is an odd prime, and if K ¼ Qð

ffiffiffiffiffiffiffi
�3

p
Þ that pf 5. If l is a prime that is inert

in K, let Kl denote the completion of K at the unique prime lying over l. If L is a finite
Galois extension of Q, let FroblðL=QÞ denote the conjugacy class of some Frobenius ele-
ment of a prime lying over l. For each prime laN, let al ¼ lþ 1�KEðFlÞ be the lth
Fourier coe‰cient of the newform attached to E.

Definition 3.3. For each place v of Q, let

mv ¼ KH 1
�
Qunrv =Qv;EðQunrv Þ

�
:

By [14], I.3.8, each mv is finite and mv ¼ 1 for all but finitely many v, so

mðpÞ ¼ supfordpðmvÞ: all places v of Qg

is well defined, and mðpÞ ¼ 0 for almost all p.

Let n be a positive integer.

Proposition 3.4. Let p be a prime that does not divide the class number of K and for

which mðpÞ ¼ 0. Suppose la pDKN and Frobl
�
KðE½ pn�Þ=Q

�
¼ ½t�. Then there is an ele-

ment cl;pn A H 1ðQ;EÞ½ pn� such that the order of reslðcl;pnÞ in H 1ðQl;EÞ½ pn� is equal to the
order of the image of y in EðKlÞ=pnEðKlÞ, and the index of cl;pn divides pn.

Proof. The existence of cl;pn and statement about its order is proved in [18], Prop. 5,
where cl;pn is constructed from Heegner points on X0ðNÞ. For the index bound, note that in
the proof of [18], Prop. 5, when pa ½H : K �, Rubin constructs a class
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c 0 A H 1
�
K 0=K ;EðK 0Þ

�
½ pr�þ;

where r ¼ nþmðpÞ and K 0 is the unique extension of K of degree pr in a certain class field
of K. Since p is odd, the restriction map res: H 1ðQ;EÞ½ pr� ! H 1ðK ;EÞ½ pr�þ is an iso-
morphism. Rubin takes cl;pn ¼ res�1ðc 0Þ. Since cl;pn splits over the degree 2pr extension
K 0 of Q, the index of cl;pn divides 2p

r. But cl;pn has odd order and, by Proposition 2.3,
indðcl;pnÞ has the same prime factors as ordðcl;pnÞ, so indðcl;pnÞ divides pr. r

Remark 3.5. The author does not know whether or not the proposition is true if p is
allowed to divide the class number of K.

4. Nonvanishing of cohomology classes

In this section, we prove a nonvanishing result about the cohomology classes cl;pn of
Proposition 3.4, then use it to deduce Theorem 3.1.

4.1. Local nonvanishing. Let E be as above. For any point x A EðKÞ, let Kð½ pn��1xÞ
denote the field obtained by adjoining the coordinates of all pnth roots of x to K. Without
imposing further hypothesis, this field need not be Galois over Q.

Lemma 4.1. If x A EðKÞþ WEðKÞ�, then Kð½ pn��1xÞ is Galois over Q.

Proof. Since GQ acts on x by G1, the subgroup Zx is GQ-invariant. Since
½ pn�: E ! E is a Q-rational isogeny the inverse image ½ pn��1Zx is also GQ-invariant, so
Kð½ pn��1xÞ ¼ Kð½ pn��1ZxÞ is Galois over Q. r

Definition 4.2. An odd prime p is firm for E if mðpÞ ¼ 0, there are no nontrivial Q-
rational cyclic subgroups of E½ py�, and H 1

�
KðE½ pn�Þ=K ;E½ pn�

�
¼ 0 for all nf 1.

Remark 4.3. The set of primes that are not firm is finite, by Serre’s theorem [19] and
the theory of complex multiplication.

Let p be an odd prime that is firm for E. The following proposition produces infinitely
many primes l such that we have control over the orders of the image in EðKlÞ=pnEðKlÞ of
a global point. It will be used as input to Proposition 3.4 to produce cohomology classes of
known index. The proof, which involves an application of the Chebotarëv density theorem,
follows a strategy similar to that used in the proof of Kolyvagin’s theorem on page 135 of
[18].

Proposition 4.4. Let p be a prime that is firm for E, and let x A EðKÞG. Then there is
a set of primes l of positive Dirichlet density such that Frobl

�
KðE½ pn�Þ=Q

�
¼ ½t� and the

orders of the images of x in EðKÞ=pnEðKÞ and in EðKlÞ=pnEðKlÞ are the same.

Proof. Let pa be the order of the image of x in EðKÞ=pnEðKÞ. If a ¼ 0, then there
is nothing to prove, so assume that a > 0. If l is a prime such that the orders of the images
of pa�1x in EðKÞ=pnEðKÞ and EðKlÞ=pnEðKlÞ both equal p, then the images of x in
EðKÞ=pnEðKÞ and EðKlÞ=pnEðKlÞ both have order pa. It thus su‰ces to prove the prop-
osition in the case when the order of the image of x in EðKÞ=pnEðKÞ is p.
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Let L ¼ KðE½ pn�Þ, suppose l is a prime such that FroblðL=QÞ ¼ ½t�, and let l be one
of the prime ideals of L that lies over l. We have a diagram

EðKÞ=pnEðKÞ H��! H 1ðK;E½ pn�Þ H��! HomðGL;E½ pn�Þ???y
???y

???y
EðKlÞ=pnEðKlÞ ���! H 1ðKl;E½ pn�Þ ���! HomðGLl

;E½ pn�Þ:

Let j: GL ! E½ pn� be the element of HomðGL;E½ pn�Þ that x maps to. The top row is in-
jective, because p is firm, so it su‰ces to show that the image jl of j in HomðGLl

;E½ pn�Þ is
nonzero.

Let M be the fixed field of the kernel of j. Since M is the compositum of the two
Galois extensions Kð½ pn��1xÞ and QðE½ pn�Þ of Q, it is also Galois (see Lemma 4.1). Be-
cause FroblðM=QÞjL ¼ ½t�, there is an element s A GalðM=LÞ such that

FroblðM=QÞ ¼ ½st�:

The order of st equals the degree ofMl 0 over Ql, where l
0 is a prime ofM lying over l. If

jl ¼ 0, thenMl 0 ¼ Ll ¼ Kl, so st would have order 2.

The image of j is a nonzero subgroup H of E½ pn�, which is defined over Q since
x A EðKÞG. If every s A GalðM=LÞ has the property that st has order 2, then HHE½ pn��.
This contradicts our assumption that p is firm, since H is a nontrivial cyclic subgroup of
E½ py�. Thus there exists s A GalðM=LÞ such that st has order di¤erent than 2. For this s
and for any prime l such that FroblðM=QÞ ¼ ½st�, we see that jl 3 0. The Chebotarëv
density theorem provides a positive density of such l. r

4.2. Proof of Theorem 3.1. Let E be an elliptic curve over Q such that LðE; 1Þ3 0.
Let K be one of the infinitely many imaginary quadratic fields such that the associated
Heegner point y has infinite order. Let BK be an integer that is divisible by 2 and

– the primes p such that y A pEðKÞ,

– the primes p that are not firm,

– the orderKEðKÞtor, and

– the class number of K.

If K ¼ Qð
ffiffiffiffiffiffiffi
�3

p
Þ, assume in addition that 3 divides BK .

Fix a prime paBK . Since EðKÞ has rank 1 (see, e.g., [9], Thm. 1.3) and paKEðKÞtor,
the image of y in EðKÞ=pnEðKÞ has order pn. By Proposition 4.4 there are infinitely many
primes l such that Frobl

�
KðE½ pn�Þ=Q

�
¼ ½t� and the image of y in EðKlÞ=pnEðKlÞ has

order pn. For these l, Proposition 4.4 produces infinitely many cohomology classes cl;pn

having order and index both equal to pn. (Note that if l3 l 0 then cl;pn 3 cl 0;pn .)
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Let B be the greatest common divisor of the set of integers BK , as K varies over
all quadratic imaginary extensions such that the associated Heegner point has infinite or-
der. For each prime power pn that does not divide B, we have produced infinitely many
c A H 1ðQ;EÞ having order and index both equal to pn. If the orders of c and c 0 are co-
prime, then ordðcþ c 0Þ ¼ ordðcÞ � ordðc 0Þ and, by Proposition 2.5,

indðcþ c 0Þ ¼ indðcÞ � indðc 0Þ:

This proves the theorem. r

5. Computing the bound BK

In this section we compute, in some cases, the the bound BK that appears in Section
4.2. First we prove a general theorem about semistable elliptic curves. Next we compute the
index of a Heegner point, and finally in Section 5.4 we prove Theorem 1.1.

5.1. Galois representations attached to isolated curves. The following proposition
sometimes permits us to compute the integer BK , which appears in Section 4.2.

Proposition 5.1. Let E be a semistable elliptic curve over Q of conductor N, let p be
an odd prime, and let K be a quadratic imaginary field such that gcdðDK ; pNÞ ¼ 1. Assume
that pa ordl

�
jðEÞ

�
, for each prime ljN, and that E admits no isogenies of degree p. Then

paKEðKÞtor and p is firm for E.

Before giving the proof, we summarize its main ingredients. First, we observe that the
assertion that mðpÞ ¼ 0 (see Definition 3.3) uses a standard result that relates unramified
Galois cohomology to component groups. Next, we use the semistability and isogeny hy-
potheses to deduce that rE;p is surjective. Then we use standard group cohomology to de-
duce that p is firm.

Proof. Let l be a prime. By [14], I.3.8,

H 1
�
Qunrl =Ql;EðQunrl Þ

�
GH 1

�
Fl=Fl;FE;lðFlÞ

�
;

where FE;l is the component group of E at l. If laN, there is nothing further to prove,
so assume ljN. Since E is semistable, KFE;lðFlÞ ¼ �ordlð jÞ. By hypothesis, pa ordlð jÞ.
Thus mðpÞ ¼ 0.

Since E admits no isogenies of degree p, the Galois representation

rE;p: GQ ! GLð2;E½p�Þ

is irreducible, and there are no nontrivial Q-rational cyclic subgroups of E½ py�. Since E is
semistable, work of Serre [19], Prop. 21 and [20], §3.1 implies that rE;p is surjective. Thus
paKEðKÞtor because a point in Eð �QQÞ of order p must generate an extension of Q of de-
gree at least p2 � 1f 3.

The field K and QðE½ p�Þ are linearly disjoint, since gcdðDK ; pNÞ ¼ 1, so
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H 1
�
KðE½p�Þ=K ;E½p�

�
GH 1

�
QðE½p�Þ=Q;E½p�

�
AH 1

�
GLð2; FpÞ; F2p

�
:

The group H ¼ H 1
�
KðE½ pn�Þ=K ;E½ pn�

�
has exponent a power of p. If an element

a in Gal
�
KðE½ pn�Þ=K

�
HGL2ðZ=pnZÞ is scalar, then every element of H has order di-

viding a� 1. This is because the scalar is central, so the morphism of pairs it induces
is both the identity and multiplication by a. It is necessary only to choose a such that
gcdða� 1; pÞ ¼ 1. Since p is odd, �1 is a nonidentity element of

AutðE½p�Þ ¼ Gal
�
KðE½p�Þ=K

�
:

Every automorphism lifts, so �1 lifts to some g in Gal
�
KðE½ pn�Þ=K

�
HAutðE½ pn�Þ. Then

gp
n�1 ¼ �1 in AutðE½ pn�Þ, so �1 A Gal

�
KðE½ pn�Þ=K

�
and every element of H has order

dividing 2. (To show that gp
n�1 ¼ �1, we use that ordp

pn

k

� �
¼ nþ ordp

1

k

� �
.) r

5.2. The number BK for X0(17). In this section, we show that for E ¼ X0ð17Þ and
K ¼ Qð

ffiffiffiffiffiffiffi
�2

p
Þ, we have BK ¼ 2. This is accomplished by showing that the index ½EðKÞ : Zy�

is a power of 2. The elliptic curve E ¼ X0ð17Þ given by the Weierstrass equation

y2 þ xyþ y ¼ x3 � x2 � x� 14

satisfies the hypothesis of Proposition 5.1 for each odd prime p. Since the j-invariant of E is
33 � 113=174, every odd prime p is firm for E and KEðKÞtor is a power of 2.

The conductor 17 of E splits in K, and the quadratic twist E 0 of E by K is the curve
y2 ¼ x3 � 44xþ 7120, which is labeled 1088K4 in [7]. Using MAGMA (or mwrank),
one finds that E 0ðQÞGZP� Z=2, where P ¼ ð�3; 85Þ A E 0ðQÞ has infinite order. Since
the rank of E 0 is 1, we set K ¼ Qð

ffiffiffiffiffiffiffi
�2

p
Þ in Section 4.2. Then BK is divisible only by 2

and the index ½EðKÞ : Zy�. This index can only change by a power of 2 if y is replaced
by yK , so we instead consider the index ½EðKÞ : ZyK �. The cokernel of the natural map
EðQÞlE 0ðQÞ ! EðKÞ is a 2-group and EðQÞGZ=4Z, so ½EðKÞ : ZyK � is a power of 2
times hðyKÞ=hðPÞ, where h is the Néron-Tate canonical height on EK . By the Gross-Zagier
formula (see [8], Thm. 6.3),

hðyKÞ ¼
u2jDj

1
2

kof k
L 0
E 0 ð1ÞLEð1Þ;

where D ¼ �8 is the discriminant of K, u ¼ 1 is half the number of units, and kof k is
the Peterson norm of the newform f corresponding to E. Generators for the period
lattice of E are o1@ 1:547079 and o2@ 0:773539þ 1:372869i; taking the determinant
gives kof k@ 2:123938. Furthermore, again from [7], we find that LEð1Þ@ 0:386769 and
L 0
E 0 ð1Þ@ 2:525026, so hðyKÞ@ 1:300533. Using a computer, we find that hðPÞ@ 1:300533
as well, so ½EðKÞ : ZyK � is a power of two.

5.3. Elements of index 2 and 4. The torsion subgroup of E ¼ X0ð17Þ is isomorphic
to Z=4Z, so [11], pg. 670 implies that there are infinitely many elements of H 1ðQ;EÞ having
order and index equal to 2, and also infinitely many having order and index equal to 4.

5.4. Proof of Theorem 1.1. To prove Theorem 1.1, we combine the above compu-
tations with Theorem 3.1, and an observation about the local properties of Kolyvagin’s
classes cl;pn .
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Proof of Theorem 1.1. Let E ¼ X0ð17Þ as above, and let K be an arbitrary number
field. Let pn be either an odd prime power, or 2, or 4. The computations of the previous
section combined with Theorem 3.1 prove that there are infinitely many elements cl;pn of
H 1ðQ;EÞ whose index and order both equal pn. Let A be the subgroup of H 1ðQ;EÞ gen-
erated by these classes. The kernel B of resK : A! H 1ðK;EÞ is finite, so the setS of primes
l such that reslðcÞ3 0 for some c A B is finite. By Proposition 3.4, we have resvðcl;pnÞ ¼ 0
for all places v3 l, so the subgroup A 0 of A generated by all cl;pn with l B S has trivial
intersection with B. Thus resKðA 0Þ consists of infinitely many classes in H 1ðK ;EÞ having
order and index both equal to pn, and the theorem now follows from Proposition 2.3. r
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