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1. Introduction

This paper is about how to compute the Hermite normal form of a random integer matrix in
practice. We describe the best known algorithm for random matrices, due to Micciancio and Warin-
schi [MW01] and explain some new ideas that make it practical. We also apply these techniques to
give a new algorithm for computing the saturation of a module, and present timings.

In this paper we do not concern ourselves with nonrandom matrices, and instead refer the reader
to [SL96,Sto98] for the state of the art for worse case complexity results. Our motivation for focusing
on the random case is that it comes up frequently in algorithms for computing with modular forms.

Among the numerous notions of Hermite normal form, we use the following one, which is the
closest to the familiar notion of reduced row echelon form.

Definition 1.1 (Hermite normal form). For any n × m integer matrix A the Hermite normal form (HNF) of
A is the unique matrix H = (hi, j) such that there is a unimodular n × n matrix U with U A = H , and
such that H satisfies the following two conditions:
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• there exist a sequence of integers j1 < · · · < jn such that for all 0 � i � n we have hi, j = 0 for all
j < ji (row echelon structure),

• for 0 � k < i � n we have 0 � hk, ji < hi, ji (the pivot element is the greatest along its column and
the coefficients above are nonnegative).

Thus the Hermite normal form is a generalization over Z of the reduced row echelon form of
a matrix over Q. Just as computation of echelon forms is a building block for many algorithms for
computing with vector spaces, Hermite normal form is a building block for algorithms for computing
with modules over Z (see, e.g., [Coh93, Chapter 2]).

Example 1.2. The HNF of the matrix

A =

⎛
⎜⎜⎜⎝

−5 8 −3 −9 5 5

−2 8 −2 −2 8 5

7 −5 −8 4 3 −4

1 −1 6 0 8 −3

⎞
⎟⎟⎟⎠

is

H =

⎛
⎜⎜⎜⎝

1 0 3 237 −299 90

0 1 1 103 −130 40

0 0 4 352 −450 135

0 0 0 486 −627 188

⎞
⎟⎟⎟⎠ .

Notice how the entries in the answer are quite large compared to the input.
Heuristic observations: For a random n × m matrix A with n � m, the number of digits of each

entry of the rightmost m − n + 1 columns of H are similar in size to the determinant of the left n × n
submatrix of A. For example, a random 250 × 250 matrix with entries in [−232,232] has HNF with
entries in the last column all having about 2590 digits and determinant with about 2590 digits, but
all other entries are likely to be very small (e.g., a single digit).

There are numerous algorithms for the computing HNF’s, including [KB79,DKLET87,Bra89,MW01].
We describe an algorithm that is based on the heuristically fast algorithm by Micciancio and Warin-
schi [MW01], updated with several practical improvements.

In the rest of this paper, we mainly address computation of the HNF of a square nonsingular ma-
trix A. We also briefly explain how to reduce the general case to the square case, discuss computation
of saturation, and give timings. We give an outline of the algorithm in Section 2 and present more
details in Sections 3, 5 and 6. The cases of more rows than columns and more columns than rows is
discussed in the Section 7. In Section 9, we sketch the main features of our implementation in Sage,
and compare the computation time for various class of matrices.

2. Outline of the algorithm when A is square

For the rest of this section, let A = (ai, j)i, j=0,...,n−1 be an n × n matrix with integer entries. There
are two key ideas behind the algorithm of [MW01] for computing the HNF of A.

1. Every entry in the HNF H of a square matrix A is at most the absolute value of the determinant
det(A), so one can compute H be working modulo the determinant of H . This idea was first
introduced and developed in [DKLET87].

2. The determinant of A may of course still be extremely large. Micciancio and Warinschi’s clever
idea is to instead compute the Hermite form H ′ of a small-determinant matrix constructed
Please cite this article in press as: C. Pernet, W. Stein, Fast computation of Hermite normal forms of random integer
matrices, J. Number Theory (2010), doi:10.1016/j.jnt.2010.01.017
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Fig. 2.1. Distribution of the determinants in (2.1), for 500 random matrices with n = 100 and entries uniformly chosen to satisfy
log2 ‖A‖ = 100. Only 9 elements had a determinant larger than 200, and the largest one was 6816.

from A using the Euclidean algorithm and properties of determinants. Then we recover H from
H ′ via three update steps.

We now explain the second key idea in more detail. Consider the following block decomposition
of A:

A =
⎡
⎣ B b

cT an−1,n

dT an,n

⎤
⎦ ,

where B is the upper left (n − 2) × (n − 1) submatrix of A, and b, c, d are column vectors. Let
d1 = det

([
B cT

])
and d2 = det

([
B dT

])
. Use the extended Euclidean algorithm to find integers s, t

such that

g = sd1 + td2,

where g = gcd(d1,d2).
Since the determinant is linear in row operations, we have

det

([
B

scT + tdT

])
= g. (2.1)

For random matrices, g is likely to be very small. Fig. 2.1 illustrates the distribution of such gcd’s, on
a set of 500 random integer matrices of dimension 100 with 100-bit coefficients.

Algorithm 1 (on page 4) is essentially the algorithm of Micciancio and Warinschi. Our main im-
provement over their work is to greatly optimize Steps 3, 4 and 8. Step 8 is performed by a procedure
they call AddColumn (see Algorithm 3 in Section 5 below), and steps 9 and 10 by a procedure they
call AddRow (see Algorithm 4 in Section 6 below).

3. Double determinant computation

There are many algorithms for computing the determinant of an integer matrix A. One algorithm
involves computing the Hadamard bound on det(A), then computing the determinant modulo p for
Please cite this article in press as: C. Pernet, W. Stein, Fast computation of Hermite normal forms of random integer
matrices, J. Number Theory (2010), doi:10.1016/j.jnt.2010.01.017
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Algorithm 1: Hermite Normal Form [MW01]

Data: A: an n × n nonsingular matrix over Z

Result: H : the Hermite normal form of A
begin1

Write A =
[

B b
cT an−1,n

dT an,n

]
2

Compute d1 = det
([

B
cT

])
3

Compute d2 = det
([

B
dT

])
4

Compute the extended gcd of d1 and d2: g = sd1 + td25

Let C =
[

B
scT +tdT

]
6

Compute H1, the Hermite normal form of C , by working modulo g as explained in Section 47

below. (NOTE: In the unlikely case that g = 0 or g is large, we compute H1 using any HNF
algorithm applied to C , e.g., by recursively applying the main algorithm of this paper to C .)

Obtain from H1 the Hermite form H2 of
[

B b
scT +tdT san−1,n+tan,n

]
8

Obtain from H2 the hermite form H3 of
[

B b
cT an−1,n

]
9

Obtain from H3 the Hermite form H of

[
B b

cT an−1,n

dT an,n

]
10

end11

sufficiently many p using an (asymptotically fast) Gaussian elimination algorithm, and finally using a
Chinese remainder theorem reconstruction. This algorithm has bit complexity

O
(
n4(logn + log ‖A‖) + n3 log2 ‖A‖),

or O(nω+1(log n + log‖A‖)) with fast matrix arithmetic (see [GG99, Chapter 5]).
Abbott, Bronstein and Mulders [ABM99] propose another determinant algorithm based on solving

Ax = v for a random integer vector v using an iterative p-adic solving algorithm (e.g., [Dix82,MC79]).
In particular, by Cramer’s rule the greatest common divisor of the denominators of the entries of x
is a divisor d of D = det(A). The unknown integer D/d can be recovered by computing it modulo p
for several primes and using the Chinese remainder theorem; usually D/d is very small, so this is
fast. This approach has a similar worst case bit complexity: O(n4 + n3(log n + log ‖A‖)2) but a better
average case complexity of O(n3(log2 n + log ‖A‖)2).

The computation time can also be improved by allowing early termination in the Chinese remain-
der algorithm: once a reconstruction stabilizes modulo several primes, the result is likely to remain
the same with a certified probability, and one can avoid the remaining modular computations.

Further details on practical implementations for computing determinants of integer matrices can
be found in [DU06].

Storjohann [Sto05] obtains the best known bit complexity for computing determinants using a Las
Vegas algorithm. He obtains a complexity of O˜(nω log‖A‖), where ω is the exponent for matrix mul-
tiplication. However, no implementation of this algorithm is known that is better in practice than the
p-adic lifting based method for practical problem sizes. Consequently, we based our implementation
on this latter algorithm by [ABM99].

The computation of the two determinants (Steps 3 and 4) therefore involves the solving of two
systems, with very similar matrices. We reduce it to only one system solution in the generic case using
the following lemma. Since this is a bottleneck in the algorithm, this factor of two savings is huge in
practice.
Please cite this article in press as: C. Pernet, W. Stein, Fast computation of Hermite normal forms of random integer
matrices, J. Number Theory (2010), doi:10.1016/j.jnt.2010.01.017
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Algorithm 2: Double determinant computation

Data: B: an (n − 1) × n matrix over Z

Data: c,d: two vectors in Zn

Result: (d1,d2) = (det(
[

BT c
]
),det(

[
BT d

]
))

begin
Solve the system

[
BT c

]
x = d using Dixon’s p-adic lifting

Then yi = −xi/xn , yn = 1/xn solves
[

BT d
]

y = c by Lemma 3.1, unless xn = 0, in which case
we use the usual determinant algorithm to compute the determinants of the two matrices
u1 = lcm(denominators(x))
u2 = lcm(denominators(y))

Compute Hadamard’s bounds h1 and h2 on the determinants of
[

BT c
]

and
[

BT d
]

Select a set of primes (pi) s.t.
∏

i pi > max(h1/u1,h2/u2)

foreach pi do
compute BT = LU P , the LUP decomposition of BT mod pi
q = ∏n−1

i=1 Ui,i mod pi

x = L−1c mod pi
y = L−1d mod pi

v(i)
1 = qxn mod pi

v(i)
2 = qyn mod pi

reconstruct v1 and v2 from (v(i)
1 ) and (v(i)

2 ) using CRT
return (d1,d2) = (u1 v1, u2 v2)

end

Lemma 3.1. Let A be an n × (n − 1) matrix and c and d column vectors of degree n, and assume that the
augmented matrices [A|c] and [A|d] are both invertible. Let x = (xi) be the solution of [A|c]x = d. If xn �= 0,
then the solution y = (yi) to [A|d]y = c is

y =
(

− x1

xn
,− x2

xn
, . . . ,− xn−1

xn
,

1

xn

)
.

Proof. Write ai for the ith column of A. The equation [A|c]x = d is thus (
∑n−1

i=1 ai xi) + cxn = d, so

(
∑n−1

i=1 ai xi)−d = −xnc. Dividing both sides by −xn yields (
∑n−1

i=1 (− xi
xn

)ai)+ 1
xn

d = c, which proves the
lemma. �

Example 3.2. Let A =
[

1 2
−4 3
2 −5

]
, c = (−1,3,5)T , and d = (2,−3,4)T . The solution to [A|c]x = d is

x =
(

111

68
,

35

68
,

45

68

)
.

Thus

y =
(

− x1

x3
,− x2

x3
,

1

x3

)
=

(
−37

15
,−7

9
,

68

45

)
.

Algorithm 2 (on page 5) describes how the two determinants are computed using Lemma 3.1.
Please cite this article in press as: C. Pernet, W. Stein, Fast computation of Hermite normal forms of random integer
matrices, J. Number Theory (2010), doi:10.1016/j.jnt.2010.01.017
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4. Hermite form modulo g

Recall that C is a square nonsingular matrix with “small” determinant g . Step 7 of Algorithm 1
(on page 4) is to compute the HNF of C as explained in [DKLET87, §3]. There it is proved that since

g = det(C), the Hermite normal form of
[

C
gI

]
is

[
H
0

]
where H is the Hermite normal form of C . Using

this result, to compute H , we apply the standard row reduction Hermite normal form algorithm
to C , always reducing all numbers modulo g . Conceptually, think of this as adding multiples of the
rows of g I , which does not change the resulting Hermite form. At the end of this process we obtain a
matrix H = (hij) with 0 � hij < g for all i j. There is one special case; since the product of the diagonal
entries of the Hermite form of C is g , if the lower right entry of H is 0, then we replace it by g . Then
the resulting matrix H is the Hermite normal form of C .

For additional discussion of the modular Hermite form algorithm, see [Coh93, §2.4, p. 71] which
describes the algorithm in detail, including a discussion of our above remark about replacing 0 by g .

Example 4.1. Let C =
[

5 26
2 11

]
. Then g = det(C) = 3, and the reduction mod g of C is

[
2 2
2 2

]
. Subtracting

the second row from the first yields
[

2 2
0 0

]
, which is already reduced modulo 3. Then multiplying

through the first row by −1 and reducing modulo 3 again, we obtain
[

1 1
0 0

]
. Then, as mentioned

above, since the lower right entry is 0, we replace it by g = 3, obtaining the Hermite normal form

H =
[

1 1
0 3

]
.

5. Add a column

Step 8 of Algorithm 1 is to find a column vector e such that

[ H1 e ] = U

[
B b

scT + tdT an−1,n

]
(5.1)

is in Hermite form, for a unimodular matrix U .
By hypothesis C =

[
B

scT +tdT

]
is invertible, so from (5.1), one gets

e = U

[
b

an−1,n−1

]

= H1

[
B

scT + tdT

]−1 [
b

an−1,n−1

]
.

In [MW01], the column e is computed using multi-modular computations and a tight bound on
the size of the entries of e. We instead use the p-adic lifting algorithm of [Dix82,MC79] to solve the
system

[
B

scT + tdT

]
x =

[
b

an−1,n−1

]
.

However, the last row scT + tdT typically has much larger coefficients than the rest of the matrix, thus
unduly penalizing the complexity of finding a solution. Our key idea is to replace the row scT + tdT

by a random row u that has small entries such that the resulting matrix is still invertible, find the
solution y of this modified system, then recover x as follows. Let {k} be a basis of the 1-dimensional
kernel of B . Then the sought for solution of the original system is

x = y + αk,
Please cite this article in press as: C. Pernet, W. Stein, Fast computation of Hermite normal forms of random integer
matrices, J. Number Theory (2010), doi:10.1016/j.jnt.2010.01.017
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Algorithm 3: AddColumn

Data: B =
[

B1 b2

bT
3 b4

]
: an n × n matrix over Z, where B1 is (n − 1) × (n − 1) and b2,b3 are vectors

Data: H1: the Hermite normal form of
[

B1

bT
3

]
Result: H : the Hermite normal form of B
begin

Pick a random vector u such that |ui | � ‖B‖ ∀i

Solve
[

B1
u

]
y =

[
b2
b4

]
Compute a kernel basis vector k of B1

α = b4 − bT
3 ·y

bT
3 ·k

x = y + αk
e = H1x
return [H1 e]

end

where α satisfies

(
scT + tdT ) · (y + αk) = an−1,n−1.

By linearity of the dot product, we have

α = an−1,n−1 − (scT + tdT ) · y

(scT + tdT ) · k
.

Note that if (scT +tdT ) ·k = 0, then Ck = 0, which would contradict our assumption that C =
[

B
scT +tdT

]
is invertible.

6. Add a row

Steps 9 and 10 of Algorithm 1 consist of adding a new row to the current Hermite form and
updating it to obtain a new matrix in Hermite form.

The principle is to eliminate the new row with all existing pivots and update the already computed
parts when necessary. Algorithm 4 (on page 8) describes this in more detail.

7. The nonsquare case

In the case where the matrix is rectangular, with dimensions m × n, we reduce to the case of a
square nonsingular matrix as follows: first compute the column and row rank profile (pivot columns
and subset of independent rows) of A modulo a random word-size prime. With high probability, the
matrix A has the same column and row rank profile over Q, so we can now apply Algorithm 1 to the
square nonsingular r × r matrix obtained by picking the row and column rank profile submatrix of A
over Z.

The additional rows and columns are then incorporated as follows:

additional columns: use Algorithm 3 (AddColumn) with a block of column vectors instead of just
one column. If this fails, then we computed the rank profile incorrectly, in which case we
start over with a different random prime.

additional rows: use Algorithm 4 (AddRow) for each additional row.
Please cite this article in press as: C. Pernet, W. Stein, Fast computation of Hermite normal forms of random integer
matrices, J. Number Theory (2010), doi:10.1016/j.jnt.2010.01.017
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Algorithm 4: AddRow

Data: A: an m × n matrix in Hermite normal form
Data: b: a vector of degree n

Result: H : the Hermite normal form of
[

A
b

]
begin

forall pivots ai, ji of A do
if b ji = 0 then

continue
if Ai, ji |b ji then

b := b − b ji /Ai, ji Ai,1...n

else
/* Extended gcd based elimination */
(g, s, t) = XGCD(ai, ji ,b ji ) ; /* so g = sai, ji + tb ji */
Ai,1...n := sAi,1...n + tb ji

b := b ji /g Ai,1...n − Ai, ji /gb
for k = 1 to i − 1 do

/* Reduces row k with row i */
Ak,1...n := Ak,1...n − �Ak, ji /Ai, ji �Ai,1...n

if b �= 0 then
let j be the index of the first nonzero element of b
insert bT between rows i and i + 1 such that ji < j < ji+1

Return H =
[

A
b

]
end

8. Saturation

If M is a submodule of Zn for some n, then the saturation of M is Zn ∩ (QM), i.e., the intersection
with Zn of the Q-span of any basis of M . For example, if M has rank n, then the saturation of M just
equals Zn . Also, kernels of homomorphisms of free Z-modules are saturated. Saturation comes up in
many number theoretic algorithms, e.g., saturation is an important step in computing a basis over Z

for the space of q-expansions of cuspidal modular forms of given weight and level, and comes up in
explicit computation with homology of modular curves using modular symbols.

There is a well-known connection between saturation and Hermite form. If A is a basis matrix
for M , and H is the Hermite form of the transpose of A with any 0 rows at the bottom deleted (so H
is square), then H−1 A is a matrix whose rows are a basis for the saturation of M . Thus computation
of a saturation of a matrix reduces to computation of one Hermite form and solving a system H X = A.

If A is sufficiently random, then the Hermite form matrix H has a very large last column and all
other entries are small, so we exploit the trick in Section 6 and instead solve a much easier system.

9. Implementation

Our implementation of the algorithms described in this paper are included in Sage [Ste]. This
implementation relies on IML [SC] for the solution of integer systems using p-adic lifting, and on
LinBox [Lin] for the computation of determinants modulo p (the IML and LinBox libraries are
both part of Sage). Our implementation is primarily optimized for the square case.

We illustrate computing a Hermite normal form and saturation in Sage.

sage: A = matrix(ZZ,3,5,[-1,2,5,65,2,4,-1,-3,1,-2,-1,-2,1,-1,1])
sage: A
[-1 2 5 65 2]
Please cite this article in press as: C. Pernet, W. Stein, Fast computation of Hermite normal forms of random integer
matrices, J. Number Theory (2010), doi:10.1016/j.jnt.2010.01.017
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[ 4 -1 -3 1 -2]
[-1 -2 1 -1 1]
sage: A.hermite_form()
[ 1 0 17 259 7]
[ 0 1 31 453 13]
[ 0 0 40 582 17]
sage: A.saturation()
[-1 2 5 65 2]
[ 4 -1 -3 1 -2]
[-1 -2 1 -1 1]

There are implementations of Hermite normal form algorithms in NTL [Sho], PARI [PAR],
GAP [GAP], Maple and Mathematica. The algorithm in this paper is asymptotically better than these
standard implementations.
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