
Fast Computation of Hermite Normal Forms of

Random Integer Matrices

Clément Pernet1

William Stein2

Abstract

This paper is about how to compute the Hermite normal form of a ran-
dom integer matrix in practice. We propose significant improvements to the
algorithm by Micciancio and Warinschi, and extend these techniques to the
computation of the saturation of a matrix. Tables of timings confirm the effi-
ciency of this approach. To our knowledge, our implementation is the fastest
implementation for computing Hermite normal form for large matrices with
large entries.

Key words: Hermite normal form, exact linear algebra

1. Introduction

This paper is about how to compute the Hermite normal form of a random
integer matrix in practice. We describe the best known algorithm for random
matrices, due to Micciancio and Warinschi [MW01] and explain some new
ideas that make it practical. We also apply these techniques to give a new
algorithm for computing the saturation of a module, and present timings.

In this paper we do not concern ourselves with nonrandom matrices, and
instead refer the reader to [SL96, Sto98] for the state of the art for worse case
complexity results. Our motivation for focusing on the random case is that
it comes up frequently in algorithms for computing with modular forms.

Among the numerous notions of Hermite normal form, we use the follow-
ing one, which is the closest to the familiar notion of reduced row echelon

1Supported by the National Science Foundation under Grant No. 0713225.
2Supported by the National Science Foundation under Grant No. 0653968.

Preprint submitted to Journal of Algebra January 7, 2009

form.

Definition 1.1 (Hermite Normal Form). For any n × m integer matrix A
the Hermite normal form (HNF) of A is the unique matrix H = (hi,j) such
that there is a unimodular n× n matrix U with UA = H, and such that H
satisfies the following two conditions:

• there exist a sequence of integers j1 < · · · < jn such that for all 0 ≤
i ≤ n we have hi,j = 0 for all j < ji (row echelon structure)

• for 0 ≤ k < i ≤ n we have 0 ≤ hk,ji
< hi,ji

(the pivot element is the
greatest along its column and the coefficient above are nonnegative).

Thus the Hermite normal form is a generalization over Z of the reduced
row echelon form of a matrix over Q. Just as computation of echelon forms
is a building block for many algorithms for computing with vector spaces,
Hermite normal form is a building block for algorithms for computing with
modules over Z (see, e.g., [Coh93, Ch. 2]).

Example 1.2. The HNF of the matrix

A =

−5 8 −3 −9 5 5
−2 8 −2 −2 8 5

7 −5 −8 4 3 −4
1 −1 6 0 8 −3

is

H =

1 0 3 237 −299 90
0 1 1 103 −130 40
0 0 4 352 −450 135
0 0 0 486 −627 188

 .

Notice how the entries in the answer are quite large compared to the input.
Heuristic observations: For a random n ×m matrix A with n ≤ m, the

number of digits of each entry of the rightmost m − n + 1 columns of H
are similar in size to the determinant of the left n × n submatrix of A. For
example, a random 250×250 matrix with entries in [−232, 232] has HNF with
entries in the last column all having about 2590 digits and determinant with
about 2590 digits, but all other entries are likely to be very small (e.g., a
single digit).

2

There are numerous algorithms for the computing HNF’s, including [KB79,
DKLET87, Bra89, MW01]. We describe an algorithm that is based on
the heuristically fast algorithm by Micciancio and Warinschi [MW01], up-
dated with several practical improvements. Our implementation is currently
asymptotically the fastest available (see Section 9).

In the rest of this paper, we mainly address computation of the HNF of
a square nonsingular matrix A. We also briefly explain how to reduce the
general case to the square case, discuss computation of saturation, and give
timings. We give an outline of the algorithm in Section 2 and present more
details in Sections 3, 5 and 6. The cases of more rows than columns and more
columns than rows is discussed in the Section 7. In Section 9, we sketch the
main features of our implementation in Sage, and compare the computation
time for various class of matrices.

Acknowledgement: We thank Allan Steel for providing us with notes from
a talk he gave on his implementation of [MW01]. Steel’s implementation was
much faster than any other system available (e.g., Pari, NTL, Mathematica,
Maple, and GAP), which was the motivation for this paper. The extent to
which our algorithm is similar to Steel’s is unclear, because Steel’s algorithm
has not been published and Magma is closed source. We would also like
to thank Burcin Erocal for implementing mod n computation of Hermite
form in Sage, Robert Bradshaw for help benchmarking our implementation,
Arne Storjohann for helpful conversations about the non-random case, and
Andrew Crites and Michael Goff for their final student project on computing
HNF’s.

2. Outline of the algorithm when A is square

For the rest of this section, let A = (ai,j)i,j=0,...,n−1 be an n×n matrix with
integer entries. There are two key ideas behind the algorithm of [MW01] for
computing the HNF of A.

1. Every entry in the HNF H of a square matrix A is at most the absolute
value of the determinant det(A), so one can compute H be working mod-
ulo the determinant of H. This idea was first introduced and developed
in [DKLET87].

2. The determinant of A may of course still be extremely large. Micciancio
and Warinschi’s clever idea is to instead compute the Hermite form H ′

of a small-determinant matrix constructed from A using the Euclidean

3

algorithm and properties of determinants. Then we recover H from H ′

via three update steps.

We now explain the second key idea in more detail. Consider the following
block decomposition of A:

A =

B b
cT an−1,n

dT an,n

 ,
where B is the upper left (n − 2) × (n − 1) submatrix of A, and b, c, d

are column vectors. Let d1 = det

([
B
cT

])
and d2 = det

([
B
dT

])
. Use the

extended Euclidean algorithm to find integers s, t such that

g = sd1 + td2,

where g = gcd(d1, d2).
Since the determinant is linear in row operations, we have

det

([
B

scT + tdT

])
= g (2.1)

For random matrices, g is likely to be very small. Figure 2.1 illustrates
the distribution of such gcd’s, on a set of 500 random integer matrices of
dimension 100 with 100-bit coefficients.

Algorithm 1 (on page 5) is essentially the algorithm of Micciancio and
Warinschi. Our main improvement over their work is to greatly optimize
Steps 3, 4 and 8. Step 8 is performed by a procedure they call AddColumn
(see Algorithm 3 in Section 5 below), and steps 9 and 10 by a procedure they
call AddRow (see Algorithm 4 in Section 6 below).

3. Double determinant computation

There are many algorithms for computing the determinant of an inte-
ger matrix A. One algorithm involves computing the Hadamard bound on
det(A), then computing the determinant modulo p for sufficiently many p
using an (asymptotically fast) Gaussian elimination algorithm, and finally
using a Chinese remainder theorem reconstruction. This algorithm has bit
complexity

O
(
n4(log n+ log ‖A‖) + n3 log2 ‖A‖

)
,

4

Algorithm 1: Hermite Normal Form [MW01]

Data: A: an n× n nonsingular matrix over Z
Result: H: the Hermite normal form of A
begin1

Write A =

B b
cT an−1,n

dT an,n

2

Compute d1 = det

([
B
cT

])
3

Compute d2 = det

([
B
dT

])
4

Compute the extended gcd of d1 and d2: g = sd1 + td25

Let C =

[
B

scT + tdT

]
6

Compute H1, the Hermite normal form of C, by working modulo g7

as explained in Section 4 below. (NOTE: In the unlikely case that
g = 0 or g is large, we compute H1 using any HNF algorithm
applied to C, e.g., by recursively applying the main algorithm of
this paper to C.)
Obtain from H1 the Hermite form H2 of8 [

B b
scT + tdT san−1,n + tan,n

]
Obtain from H2 the hermite form H3 of

[
B b
cT an−1,n

]
9

Obtain from H3 the Hermite form H of

B b
cT an−1,n

dT an,n

10

end11

5

50 100 150 200

50

100

150

Figure 2.1: Distribution of the determinants in (2.1), for 500 random matrices with n = 100
and entries uniformly chosen to satisfy log2 ‖A‖ = 100. Only 9 elements had a determinant
larger than 200, and the largest one was 6816.

or O (nω+1(log n+ log ‖A‖)) with fast matrix arithmetic (see [GG99, Ch 5]).
Abbott, Bronstein and Mulders [ABM99] propose another determinant

algorithm based on solving Ax = v for a random integer vector v using
an iterative p-adic solving algorithm (e.g., [Dix82, MC79]). In particular,
by Cramer’s rule the greatest common divisor of the denominators of the
entries of x is a divisor d of D = det(A). The unknown integer D/d can be
recovered by computing it modulo p for several primes and using the Chinese
remainder theorem; usually D/d is very small, so this is fast. This approach
has a similar worst case bit complexity: O (n4 + n3(log n+ log ‖A‖)2) but a
better average case complexity of O

(
n3(log2 n+ log ‖A‖)2

)
.

The computation time can also be improved by allowing early termination
in the Chinese remainder algorithm: once a reconstruction stabilizes mod-
ulo several primes, the result is likely to remain the same with a certified
probability, and one can avoid the remaining modular computations.

Further details on practical implementations for computing determinants
of integer matrices can be found in [DU06].

Storjohann [Sto05] obtains the best known bit complexity for comput-
ing determinants using a Las Vegas algorithm. He obtains a complexity of
O˜(nω log ‖A‖), where ω is the exponent for matrix multiplication. However,

6

no implementation of this algorithm is known that is better in practice than
the p-adic lifting based method for practical problem sizes. Consequently,
we based our implementation on this latter algorithm by [ABM99]. See Ta-
ble 9.2 for a table of timings that compares our determinant implementation
to that in Magma and some other systems.

The computation of the two determinants (Steps 3 and 4) therefore in-
volves the solving of two systems, with very similar matrices. We reduce it
to only one system solution in the generic case using the following lemma.
Since this is a bottleneck in the algorithm, this factor of two savings is huge
in practice.

Lemma 3.1. Let A be an n× (n− 1) matrix and c and d column vectors of
degree n, and assume that the augmented matrices [A|c] and [A|d] are both
invertible. Let x = (xi) be the solution of [A|c]x = d. If xn 6= 0, then the
solution y = (yi) to [A|d]y = c is

y =

(
−x1

xn

,−x2

xn

, . . . ,−xn−1

xn

,
1

xn

)
.

Proof. Write ai for the ith column of A. The equation [A|c]x = d is thus(∑n−1
i=1 aixi

)
+ cxn = d, so

(∑n−1
i=1 aixi

)
− d = −xnc. Dividing both sides by

−xn yields
(∑n−1

i=1

(
− xi

xn

)
ai

)
+ 1

xn
d = c, which proves the lemma.

Example 3.2. Let A =

 1 2
−4 3
2 −5

, c = (−1, 3, 5)T , and d = (2,−3, 4)T .

The solution to [A|c]x = d is

x =

(
111

68
,
35

68
,
45

68

)
.

Thus

y =

(
−x1

x3

,−x2

x3

,
1

x3

)
=

(
−37

15
,−7

9
,
68

45

)
.

Algorithm 2 (on page 8) describes how the two determinants are computed
using Lemma 3.1.

7

Algorithm 2: Double determinant computation

Data: B: an (n− 1)× n matrix over Z
Data: c, d: two vectors in Zn.
Result: (d1, d2) =

(
det
([
BT c

])
, det

([
BT d

]))
begin

Solve the system
[
BT c

]
x = d using Dixon’s p-adic lifting.

Then yi = −xi/xn, yn = 1/xn solves
[
BT d

]
y = c by Lemma 3.1,

unless xn = 0, in which case we use the usual determinant
algorithm to compute the determinants of the two matrices.
u1 = lcm(denominators(x))
u2 = lcm(denominators(y))
Compute Hadamard’s bounds h1 and h2 on the determinants of[
BT c

]
and

[
BT d

]
Select a set of primes (pi) s.t.

∏
i pi > max(h1/u1, h2/u2)

foreach pi do
compute BT = LUP , the LUP decomposition of BT mod pi

q =
∏n−1

i=1 Ui,i mod pi

x = L−1c mod pi

y = L−1d mod pi

v
(i)
1 = qxn mod pi

v
(i)
2 = qyn mod pi

reconstruct v1 and v2 from (v
(i)
1) and (v

(i)
2) using CRT

return (d1, d2) = (u1v1, u2v2)
end

8

4. Hermite form modulo g

Recall that C is a square nonsingular matrix with “small” determinant g.
Step 7 of Algorithm 1 (on page 5) is to compute the HNF of C as explained in
[DKLET87, §3]. There it is proved that since g = det(C), the Hermite normal

form of

[
C
gI

]
is

[
H
0

]
where H is the Hermite normal form of C. Using this

result, to compute H, we apply the standard row reduction Hermite normal
form algorithm to C, always reducing all numbers modulo g. Conceptually,
think of this as adding multiples of the rows of gI, which does not change
the resulting Hermite form. At the end of this process we obtain a matrix
H = (hij) with 0 ≤ hij < g for all ij. There is one special case; since the
product of the diagonal entries of the Hermite form of C is g, if the lower
right entry of H is 0, then we replace it by g. Then the resulting matrix H
is the Hermite normal form of C.

For additional discussion of the modular Hermite form algorithm, see
[Coh93, §2.4, pg. 71] which describes the algorithm in detail, including a
discussion of our above remark about replacing 0 by g.

Example 4.1. Let C =

[
5 26
2 11

]
. Then g = det(C) = 3, and the reduction

mod g of C is

[
2 2
2 2

]
. Subtracting the second row from the first yields

[
2 2
0 0

]
,

which is already reduced modulo 3. Then multiplying through the first row

by −1 and reducing modulo 3 again, we obtain

[
1 1
0 0

]
. Then, as mentioned

above, since the lower right entry is 0, we replace it by g = 3, obtaining the

Hermite normal form H =

[
1 1
0 3

]
.

5. Add a column

Step 8 of Algorithm 1 is to find a column vector e such that

[
H1 e

]
= U

[
B b

scT + tdT an−1,n

]
(5.1)

is in Hermite form, for a unimodular matrix U .

9

By Hypothesis C =

[
B

scT + tdT

]
is invertible, so from (5.1), one gets

e = U

[
b

an−1,n−1

]
= H1

[
B

scT + tdT

]−1 [
b

an−1,n−1

]
In [MW01], the column e is computed using multi-modular computations

and a tight bound on the size of the entries of e. We instead use the p-adic
lifting algorithm of [Dix82, MC79] to solve the system[

B
scT + tdT

]
x =

[
b

an−1,n−1

]
However, the last row scT + tdT typically has much larger coefficients than
the rest of the matrix, thus unduly penalizing the complexity of finding a
solution. Our key idea is to replace the row scT + tdT by a random row u
that has small entries such that the resulting matrix is still invertible, find
the solution y of this modified system, then recover x as follows. Let {k} be
a basis of the 1-dimensional kernel of B. Then the sought for solution of the
original system is

x = y + αk,

where α satisfies
(scT + tdT) · (y + αk) = an−1,n−1.

By linearity of the dot product, we have

α =
an−1,n−1 − (scT + tdT) · y

(scT + tdT) · k
Note that if (scT + tdT) · k = 0, then Ck = 0, which would contradict our

assumption that C =

[
B

scT + tdT

]
is invertible.

6. Add a row

Steps 9 and 10 of Algorithm 1 consist of adding a new row to the current
Hermite form and updating it to obtain a new matrix in Hermite form.

The principle is to eliminate the new row with all existing pivots and
update the already computed parts when necessary. Algorithm 4 (on page
12) describes this in more detail.

10

Algorithm 3: AddColumn

Data: B =

[
B1 b2
bT3 b4

]
: a n× n matrix over Z, where B1 is

(n− 1)× (n− 1) and b2, b3 are vectors.

Data: H1: the Hermite normal form of

[
B1

bT3

]
Result: H: the Hermite normal form of B
begin

Pick a random vector u such that |ui| ≤ ‖B‖ ∀i

Solve

[
B1

u

]
y =

[
b2
b4

]
Compute a kernel basis vector k of B1

α = b4 − bT
3 ·y

bT
3 ·k

x = y + αk
e = H1x
return

[
H1 e

]
end

7. The Nonsquare Case

In the case where the matrix is rectangular, with dimensions m × n, we
reduce to the case of a square nonsingular matrix as follows: first compute
the column and row rank profile (pivot columns and subset of independent
rows) of A modulo a random word-size prime. With high probability, the
matrix A has the same column and row rank profile over Q, so we can now
apply Algorithm 1 to the square nonsingular r×r matrix obtained by picking
the row and column rank profile submatrix of A over Z.

The additional rows and columns are then incorporated as follows:

additional columns: use Algorithm 3 (AddColumn) with a block of column
vectors instead of just one column. If this fails, then we computed the
rank profile incorrectly, in which case we start over with a different
random prime.

additional rows: use Algorithm 4 (AddRow) for each additional row.

11

Algorithm 4: AddRow

Data: A: an m× n matrix in Hermite normal form
Data: b: a vector of degree n

Result: H: the Hermite normal form of

[
A
b

]
begin

forall pivots ai,ji
of A do

if bji
= 0 then

continue
if Ai,ji

|bji
then

b := b− bji
/Ai,ji

Ai,1...n

else
/* Extended gcd based elimination */

(g, s, t) = XGCD(ai,ji
, bji

) ; /* so g = sai,ji
+ tbji

*/

Ai,1...n := sAi,1...n + tbji

b := bji
/gAi,1...n − Ai,ji

/gb
for k = 1 to i− 1 do

/* Reduces row k with row i */

Ak,1...n := Ak,1...n − bAk,ji
/Ai,ji

cAi,1...n

if b 6= 0 then
let j be the index of the first nonzero element of b
insert bT between rows i and i+ 1 such that ji < j < ji+1

Return H =

[
A
b

]
end

12

8. Saturation

If M is a submodule of Zn for some n, then the saturation of M is
Zn ∩ (QM), i.e., the intersection with Zn of the Q-span of any basis of M .
For example, if M has rank n, then the saturation of M just equals Zn. Also,
kernels of homomorphisms of free Z-modules are saturated. Saturation comes
up in many number theoretic algorithms, e.g., saturation is an important step
in computing a basis over Z for the space of q-expansions of cuspidal modular
forms of given weight and level, and comes up in explicit computation with
homology of modular curves using modular symbols.

There is a well-known connection between saturation and Hermite form.
If A is a basis matrix for M , and H is the Hermite form of the transpose of
A with any 0 rows at the bottom deleted (so H is square), then H−1A is a
matrix whose rows are a basis for the saturation of M . Thus computation
of a saturation of a matrix reduces to computation of one Hermite form and
solving a system HX = A.

If A is sufficiently random, then the Hermite form matrix H has a very
large last column and all other entries are small, so we exploit the trick in
Section 6 and instead solve a much easier system. We give some timings
below in Table 9.3 of our implementation of this algorithm in Sage.

9. Sage Implementation and Timings

We implemented the algorithms described in this paper as part of Sage
[Ste]. Note that our implementation relies on IML [SC] for the solution of
integer systems using p-adic lifting, and on LinBox [Lin] for the computation
of determinants modulo p (the IML and LinBox libraries are both part of
Sage). Our Sage implementation is currently primarily optimized for the
square case, and all our timings below only involve Hermite forms of square
matrices.

We illustrate computing a Hermite normal form and saturation in Sage.

sage: A = matrix(ZZ,3,5,[-1,2,5,65,2,4,-1,-3,1,-2,-1,-2,1,-1,1])
sage: A
[-1 2 5 65 2]
[4 -1 -3 1 -2]
[-1 -2 1 -1 1]
sage: A.hermite_form()
[1 0 17 259 7]

13

[0 1 31 453 13]
[0 0 40 582 17]
sage: A.saturation()
[-1 2 5 65 2]
[4 -1 -3 1 -2]
[-1 -2 1 -1 1]

There are implementations of Hermite normal form algorithms in NTL
[Sho], Pari [PAR], and GAP [GAP]. The timings in Table 9.1 illustrate that
the algorithm in this paper is asymptotically better than these standard
implementations. For example, reducing a 500x500 random matrix with 32-
bit entries takes less than a minute in Sage (see Table 9.1), but over an hour
in NTL, Pari, and GAP.

Table 9.1 also gives timings using Sage-3.2.3. All computations were run
with proof=True, so no termination conditions were used that could result
in a wrong answer with low probability. All timings in Table 9.1 were done
using a single processor on a Sun Fire X4450 server equipped with Intel
2.66Ghz X7460 Xeon processors3. For comparison, we also give timings for
Magma [BCP97] V2.14-9, which is the only other software we know of that
implements the algorithm of [MW01]. We give some timings using Pari
[PAR] 2.3.3, NTL 5.4.2, and GAP 4.4.10 (these are the versions included in
Sage-3.2.3). We do not include timings for either Maple or Mathematica,
since they are both much slower at computing Hermite forms than any other
system mentioned above, mainly because the only function for computing
Hermite form in Maple and Mathematica also computes the transformation
matrix.

3Purchased using National Science Foundation Grant No. DMS-0821725

14

Table 9.1: Time in seconds to compute the HNF of a random n×n matrix whose entries
are uniformly distributed in the interval [−2b, 2b], where b =bits. For b < 512, we time
five runs and give the range of values obtained. We computed the HNF’s of exactly the
same matrices in Sage and Magma.

n 8 bits 32 bits 128 bits 256 bits 512 bits
Sage 50 0.1–0.1 0.2–0.2 0.7–0.8 2.7–2.9 12.45

250 4.1–5.4 6.6–7.1 33.6–37.0 102.8–110.7 470.22
500 24.8–26.6 38.8–43.5 179.4–187.2 534.7–566.1 2169.41
1000 164.9–191.1 266.3–282.8 1081.4–1143.0 2804.9–3149.9 10506
2000 1500.4 2837.5
4000 11537.3 17105.9

Magma 50 0.0–0.0 0.0–0.1 0.3–0.3 0.9–1.0 2.73
250 0.9–1.1 11.5–14.5 60.1–87.6 196.4–249.4 764.6
500 6.8–8.6 183.5–226.1 977.5–1004.5 2611.9–2649.4 7100.91
1000 70.8–74.6 1580.4–2017.3 7876.0–8582.9 21370.2 58339
2000 886.1 14917.8
4000 6096.5

NTL 50 0.09 0.31
250 74.58 494.46
500 1975 12199

GAP 50 0.12 0.19
250 36.08 165.49
500 712 3982

Pari 50 0.09 0.26
250 163.69 776.91
500 2925 15263

15

Table 9.2: Time in seconds to compute the determinant of a random n×n matrix whose
entries are uniformly distributed in the interval [−2b, 2b], where b =bits.

n 8 bits 32 bits 128 bits 256 bits 512 bits
Sage 50 0.0 0.1 0.3 0.8 3.7

250 1.3 2.0 9.1 31.5 138.2
500 7.2 12.6 54.9 190.2 646.6
1000 55.6 105.0 397.3 1057.4 3435.1
1500 230.6 407.0 1242.7 3255.8 8133.3
2000 544.1 997.1 2828.0 6138.2 15533.5
3000 1991.8 3132.5 7473.8 14385.3 39834.7

Magma 50 0.1 0.1 0.3 0.6 1.8
250 0.4 12.8 62.9 192.3 659.2
500 3.8 108.5 455.7 1175.5 4362.9
1000 40.1 677.7 3871.2 9406.8 25430.3
1500 122.4 3085.8 12327.8 28987.9 78741.3
2000 219.7 6097.1 26438.8 63898.0 185228.1
3000 1175.2 17868.7 82417.0 207316.0

NTL 50 0.0 0.0 0.1 0.1 0.3
250 2.2 9.5 40.3 43.0 93.2
500 46.6 119.3 359.3 1104.5 2100.8
1000 659.8 1943.2 7158.3 14538.8 28711.5

GAP 50 0.1 0.5 2.9 5.5 20.5
250 107.7 548.4 4533.3

Pari 50 0.0 0.1 0.4 1.0 3.2
250 667.6 1288.3 3856.3

16

Table 9.3: Time in seconds for Sage and Magma to compute the saturation of a random
n × m matrix whose entries are uniformly distributed in the interval [−2b, 2b], where
b =bits. When a range is given, we time ten runs and give the range of timings obtained.
We computed the saturations of exactly the same matrices in Sage and Magma.

n×m 8 bits 32 bits 128 bits
Sage 100× 101 0.2–3.2 0.6–3.2 1.8–9.2

100× 150 0.3–0.5 0.4–4.7 1.8–9.7
100× 300 0.3–4.8 0.4–10.5 1.9–14.8
200× 201 1.3–12.0 2.2–12.8 10.3–61.1
200× 300 1.3–3.4 2.3–18.2 11.0–75.5
200× 600 1.5–44.8 2.3–38.8 20.6–83.6
250× 251 2.3–26.1 3.6–33.6 18.9–99.6
250× 375 2.3–4.9 3.7–58.1 18.6–102.8
250× 750 2.5–79.3 3.9–68.8 47.8–55.1
300× 301 3.7–24.0 5.8–41.6 29.8–159.2
300× 450 3.8–42.5 6.3–59.4 26.7–69.3
300× 900 4.1–109.4 6.2–172.2 25.7–198.5
500× 501 14.6–92.1 22.5–145.7 91.4–460.2
500× 750 15.4–246.7 22.3–195.8 94.4–237.6
500× 1500 15.8–30.8 21.3–441.2 95.9–873.3

Magma 100× 101 0.2–0.2 1.2–1.3 6.3–9.6
100× 150 0.3–0.3 1.9–2.3 9.6–11.9
100× 300 0.7–0.8 3.9–5.0 22.0–26.8
200× 201 2.0–2.3 17.3–23.3 86.0–113.5
200× 300 3.1–3.6 21.2–32.1 149.2–185.6
200× 600 7.1–7.8 43.3–51.0 232.5–288.5
250× 251 4.2–4.5 43.5–55.5 177.1–216.3
250× 375 6.5–7.6 55.1–64.0 272.8–294.8
250× 750 14.4–16.4 99.5–107.7 426.1
300× 301 7.8–8.4 73.8–91.5 378.5–434.2
300× 450 11.9–13.7 100.4–128.9 369.9–455.3
300× 900 27.4–31.2 176.0–203.0 822.9–923.9
500× 501 46.5–48.7 323.5–385.7 1576.8–1670.1
500× 750 74.3–88.4 421.9–554.9 2427.1–2731.3
500× 1500 164.7–187.4 855.2–935.8 4758.4–5593.7

17

References

[ABM99] Abbott, Bronstein, and Mulders, Fast deterministic computa-
tion of determinants of dense matrices, International Sympo-
sium on Symbolic and Algebraic Computation, ACM press,
1999.

[BCP97] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra
system. I. The user language, J. Symbolic Comput. 24 (1997),
no. 3–4, 235–265, Computational algebra and number theory
(London, 1993). MR 1 484 478

[Bra89] R. J. Bradford, Hermite normal forms for integer matrices,
European Conference on Computer Algebra (EUROCAL ’87)
(Berlin - Heidelberg - New York), Springer, June 1989, pp. 315–
316.

[Coh93] H. Cohen, A course in computational algebraic number theory,
Springer-Verlag, Berlin, 1993. MR 94i:11105

[Dix82] John D. Dixon, Exact solution of linear equations using p-adic
expansions, Numerische Mathematik 40 (1982), 137–141.

[DKLET87] P. D. Domich, R. Kannan, and Jr L. E. Trotter, Hermite normal
form computation using modulo determinant arithmetic, Math-
ematics of Operations Research 12 (1987), no. 1, 50–59.

[DU06] Jean-Guillaume Dumas and Anna Urbanska, An introspective
algorithm for the integer determinant, Proc. Transgressive Com-
puting, Grenade Spain, april 2006, pp. 185–202.

[GAP] GAP, Groups, algorithms, programming—a system for computa-
tional discrete algebra, http://www-gap.mcs.st-and.ac.uk/.

[GG99] Joachim von zur Gathen and Jürgen Gerhard, Modern computer
algebra, Cambridge University Press, New York, NY, USA,
1999.

[KB79] Ravindran Kannan and Achim Bachem, Polynomial algorithms
for computing the smith and hermite normal forms of an integer
matrix, SIAM J. Comput. 8 (1979), no. 4, 499–507.

18

[Lin] The LinBox Group, LinBox: Exact linear algebra with dense and
blackbox matrices, (Version 1.1.5), http://www.linalg.org.

[MC79] R. Moenck and J. Carter, Approximate algorithms to derive ex-
act solutions to systems of linear equations, Proceedings of the
International Symposium on Symbolic and Algebraic Manipula-
tion (EUROSAM ’79) (Marseille, France) (Edward W. Ng, ed.),
LNCS, vol. 72, Springer, June 1979, pp. 65–73.

[MW01] Daniele Micciancio and Bogdan Warinschi, A linear space algo-
rithm for computing the Hermite Normal Form, International
Symposium on Symbolic and Algebraic Computation, ACM
press, 2001, pp. 231–236.

[PAR] PARI, A computer algebra system designed for fast computa-
tions in number theory, http://pari.math.u-bordeaux.fr/.

[SC] Arne Storjohann and Zhuliang Chen, Integer Matrix Library,
(Version 1.0.2), http://www.cs.uwaterloo.ca/~z4chen/

iml.html.

[Sho] V. Shoup, NTL: Number theory library, www.shoup.net/ntl/.

[SL96] Arne Storjohann and George Labahn, Asymptotically fast com-
putation of Hermite normal forms of integer matrices, Proc.
Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC
’96, ACM Press, 1996, pp. 259–266.

[Ste] William Stein, Sage: Open Source Mathematical Software (Ver-
sion 3.2.3), The Sage Group, http://www.sagemath.org.

[Sto98] Arne Storjohann, Computing Hermite and Smith normal forms
of triangular integer matrices, Linear Algebra Appl 282 (1998),
25–45.

[Sto05] , The shifted number system for fast linear algebra on
integer matrices, Journal of Complexity 21 (2005), no. 4, 609–
650.

19

