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Abstract
Let f be a non-CM newform of weight k ≥ 2 without nontrivial in-

ner twists. In this article we study the set of primes p such that the eigen-
value ap(f) of the Hecke operator Tp acting on f generates the field of
coefficients of f . We show that this set has density 1, and prove a natural
analogue for newforms having inner twists. We also present some new data
on reducibility of Hecke polynomials, which suggest questions for further
investigation.

Mathematics Subject Classification (2000): 11F30 (primary); 11F11,
11F25, 11F80, 11R45 (secondary).

1 Introduction
The main aim of this paper is to prove the following theorem.

Theorem 1. Let f be a newform (i.e., a new normalized cuspidal Hecke eigen-
form) of weight k ≥ 2, level N and Dirichlet character χ which does not have
complex multiplication (CM, see [R80, p. 48]). Let Ef = Q(an(f) : (n,N) = 1)

be the field of coefficients of f and Ff = Q
(

an(f)2

χ(n)
: (n,N) = 1

)
.
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(a) The set {
p prime : Q

(
ap(f)2

χ(p)

)
= Ff

}
has density 1.

(b) If f does not have any nontrivial inner twists, then the set

{p prime : Q(ap(f)) = Ef}

has density 1.

A twist of f by a Dirichlet character ε is said to be inner if there exists a
(necessarily unique) field automorphism σε : Ef → Ef such that

ap(f ⊗ ε) = ap(f)ε(p) = σε(ap(f))

for almost all primes p. If N is square free, k = 2 and the Dirichlet character χ
of f is the trivial character, then there are no nontrivial inner twists of f . For a
discussion of inner twists we refer the reader to [R80, §3] and [R85, §3].

In the presence of nontrivial inner twists, the conclusion of Part (b) of the
theorem never holds. To see this, we let ε be a nontrivial inner twist with as-
sociated field automorphism σε. The set of primes p such that ε(p) = 1 has
a positive density and for any such p we have σε(ap(f)) = ap(f). Therefore,
ap(f) ∈ E〈σ〉

f ( Ef for a set of primes p of positive density.

In the literature there are related but weaker results in the context of Maeda’s
conjecture, i.e., they concern the case of level 1 and assume that Sk(1) consists of
a single Galois orbit of newforms (see, e.g., [JO98] and [BM03]). We now show
how Part (b) of Theorem 1 extends the principal results of these two papers.

Let f be a newform of level N , weight k ≥ 2 and trivial Dirichlet character
χ = 1 which neither has CM nor nontrivial inner twists. This is true when N = 1.
Let T be the Q-algebra generated by all Tn with n ≥ 1 inside End(Sk(N, 1)) and

let P be the kernel of the Q-algebra homomorphism T Tn 7→an(f)−−−−−−→ Ef . As T is re-

duced, the map TP
Tn 7→an(f)−−−−−−→ Ef is a ring isomorphism with TP the localization

of T at P. Non canonically TP is also isomorphic as a TP-module (equivalently
as an Ef -vector space) to its Q-linear dual, which can be identified with the lo-
calization at P of the Q-vector space Sk(N, 1;Q) of cusp forms in Sk(N, 1) with
q-expansion in Q[[q]]. Hence, Q(ap(f)) = Ef precisely means that the character-
istic polynomial Pp ∈ Q[X] of Tp acting on the localization at P of Sk(N, 1;Q)
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is irreducible. Part (b) of Theorem 1 hence shows that the set of primes p such
that Pp is irreducible has density 1.

This extends Theorem 1 of [JO98] and Theorem 1.1 of [BM03]. Both theo-
rems restrict to the case N = 1 and assume that there is a unique Galois orbit of
newforms, i.e., a unique P, so that no localization is needed. Theorem 1 of [JO98]
says that

#{p < X prime : Pp is irreducible in Q[X]} � X

logX

and Theorem 1.1 of [BM03] states that there is δ > 0 such that

#{p < X prime : Pp is reducible in Q[X]} � X

(logX)1+δ
.
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2 Group theoretic input
Lemma 1. Let q be a prime power and ε a generator of the cyclic group F×q .

(a) The conjugacy classes c in GL2(Fq) have the following four kinds of repre-
sentatives:

Sa =

(
a 0
0 a

)
, Ta =

(
a 0
1 a

)
, Ua,b =

(
a 0
0 b

)
, Vx,y =

(
x εy
y x

)
where a 6= b, and y 6= 0.

(b) The number of elements in each of these conjugacy classes are: 1, q2−1, q2 +
q, and q2 − q, respectively.

Proof. See Fulton-Harris [FH91], page 68.

We use the notation [g]G for the conjugacy class of g in G.
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Proposition 1. Let q be a prime power and r a positive integer. Let further R ⊆
R̃ ⊆ F×qr be subgroups. Put

√
R̃ = {s ∈ F×qr : s2 ∈ R̃}. Set

H = {g ∈ GL2(Fq) : det(g) ∈ R}

and let
G ⊆ {g ∈ GL2(Fqr) : det(g) ∈ R̃}

be any subgroup such that H is a normal subgroup of G. Then the following
statements hold.

(a) The group G/(G ∩ F×qr) (with F×qr identified with scalar matrices) is either
equal to PSL2(Fq) or to PGL2(Fq). More precisely, if we let {s1, . . . , sn} be

a system of representatives for
√
R̃/R, then for all g ∈ G there is i such that

g
(

s−1
i 0

0 s−1
i

)
∈ G ∩GL2(Fq) and

(
si 0
0 si

)
∈ G.

(b) Let g ∈ G such that g
(

s−1
i 0

0 s−1
i

)
∈ G ∩GL2(Fq) and

(
si 0
0 si

)
∈ G. Then

[g]G = [g
(

s−1
i 0

0 s−1
i

)
]G∩GL2(Fq)

(
si 0
0 si

)
.

(c) Let P (X) = X2 − aX + b ∈ Fqr [X] be a polynomial. Then the inequality∑
C

|C| ≤ 2|R̃/R|(q2 + q)

holds, where the sum runs over the conjugacy classes C of G with character-
istic polynomial equal to P (X).

Proof. (a) The classification of the finite subgroups of PGL2(Fq) yields that the
group G/(G ∩ F×qr) is either PGL2(Fqu) or PSL2(Fqu) for some u | r. This,
however, can only occur with u = 1, as PSL2(Fqu) is simple. The rest is only a
reformulation.

(b) This follows from (a), since scalar matrices are central.
(c) From (b) we get the inclusion⊔

C

C ⊆
n⊔

i=1

⊔
D

D
(

si 0
0 si

)
,

whereC runs over the conjugacy classes ofGwith characteristic polynomial equal
to P (X) andD runs over the conjugacy classes ofG∩GL2(Fq) with characteristic

4



polynomial equal to X2 − as−1
i X + bs−2

i (such a conjugacy class is empty if the
polynomial is not in Fq[X]). The group G ∩ GL2(Fq) is normal in GL2(Fq),
as it contains SL2(Fq). Hence, any conjugacy class of GL2(Fq) either has an
empty intersection with G ∩ GL2(Fq) or is a disjoint union of conjugacy classes
of G ∩ GL2(Fq). Consequently, by Lemma 1, the disjoint union

⊔
D D

(
si 0
0 si

)
is

equal to one of

(i) [Ua,b]GL2(Fq)

(
si 0
0 si

)
,

(ii) [Vx,y]GL2(Fq)

(
si 0
0 si

)
or

(iii) [Sa]GL2(Fq)

(
si 0
0 si

)
t [Ta]GL2(Fq)

(
si 0
0 si

)
.

Still by Lemma 1, the first set contains q2+q, the second set q2−q and the third one
q2 elements. Hence, the set

⊔
C C contains at most 2|R̃/R|(q2 + q) elements.

3 Proof
The proof of Theorem 1 relies on the following important theorem by Ribet,
which, roughly speaking, says that the image of the mod ` Galois representation
attached to a fixed newform is as big as it can be for almost all primes `.

Theorem 2 (Ribet). Let f be a Hecke eigenform of weight k ≥ 2, level N and
Dirichlet character χ : (Z/NZ)× → C×. Suppose that f does not have CM. Let
Ef and Ff be as in Theorem 1 and denote by OEf

and OFf
the corresponding

rings of integers.
There exists an abelian extension K/Q such that for almost all prime num-

bers ` the following statement holds:

Let L̃ be a prime ideal of OEf
dividing `. Put L = L̃ ∩ OFf

and
OFf

/L ∼= F. Consider the residual Galois representation

ρf, eL : Gal(Q/Q) → GL2(OEf
/L̃)

attached to f . Then the image ρf, eL(Gal(Q/K)) is equal to

{g ∈ GL2(F) : det(g) ∈ F×(k−1)
` }.
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Proof. It suffices to take Ribet [R85, Thm. 3.1] mod L̃. Note that Ff is the
field EΓ

f . To see this, one checks immediately that Ff ⊆ EΓ
f with Γ the group

of the field automorphisms associated with the inner twists as in [R80, §3]. On
the other hand, let σ be a field embedding Ef → C which is the identity on Ff ,
i.e., on an(f)2

χ(n)
for all n with (n,N) = 1. Then σ(an(f))2

an(f)2
= σ(χ(n))

χ(n)
is a root of unity,

and, thus, so is ε(n) = σ(an(f))
an(f)

. This defines a Dirichlet character ε by which f
has an inner twist. Hence, σ ∈ Γ and Ff = EΓ

f .
Ribet does not say explicitly that K/Q is abelian, but this follows since it is a

composite of abelian extensions of K, which are each cut out by a character.

Remark 1. The field Ff defined in Theorem 1 is invariant under twisting. More
precisely, let ε be any Dirichlet character and consider the twisted modular form
f ⊗ ε, the Dirichlet character of which is χε2. Then the Fourier coefficients satisfy
an(f ⊗ ε) = an(f)ε(n) and, thus, an(f⊗ε)2

χ(n)ε(n)2
= an(f)2

χ(n)
.

Remark 2. If f in Theorem 1 does not have any nontrivial inner twists, then
K = Q and Ff = Ef , since Ff = EΓ

f with Γ the group of field automorphisms
associated with the inner twists (see the proof of Theorem 2).

Theorem 3. Let f be a non-CM newform of weight k ≥ 2, level N and Dirichlet
character χ. Let Ff be as in Theorem 1 and let L ⊂ Ff be any proper subfield.
Then the set {

p prime :
ap(f)2

χ(p)
∈ L

}
has density zero.

Proof. Let L ( Ff be a proper subfield and OL its integer ring. We define the set

S := {L ⊂ OFf
prime ideal : [OFf

/L : OL/(L ∩ L)] ≥ 2}.

Notice that this set is infinite. For, if it were finite, then all but finitely many
primes would split completely in the extension Ff/L, which is not the case by
Chebotarev’s density theorem.

Let L ∈ S be any prime, ` its residue characteristic and L̃ a prime of OEf

lying over L. Put Fq = OL/(L ∩ L), Fqr = OFf
/L and Fqrs = OEf

/L̃. We
have r ≥ 2. Let W be the subgroup of F×qrs consisting of the values of χ mod-
ulo L̃; its size |W | is less than or equal to |(Z/NZ)×|. Let R = F×(k−1)

` be
the subgroup of (k − 1)st powers of elements in the multiplicative group F×` and
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let R̃ = 〈R,W 〉 ⊂ F×qrs . The size of R̃ is less than or equal to |R| · |W |. Let

H = {g ∈ GL2(Fqr) : det(g) ∈ R} and G = Gal(Q
ker ρ

f, eL/Q). By Galois the-
ory, G can be identified with the image of the residual representation ρf, eL, and we
shall make this identification from now on. By Theorem 2 we have the inclusion
of groups

H ⊆ G ⊆ {g ∈ GL2(Fqrs) : det(g) ∈ R̃}
with H being normal in G.

If C is a conjugacy class of G, by Chebotarev’s density theorem the density of

{p prime : [ρf, eL(Frobp)]G = C}

equals |C|/|G|. We consider the set

ML :=
⊔
C

{p prime : [ρf, eL(Frobp)]G = C} ⊇

{
p prime :

(
ap(f)2

χ(p)

)
∈ Fq

}
,

where the reduction modulo L of an element x ∈ OFf
is denoted by x and C runs

over the conjugacy classes of G with characteristic polynomials equal to some
X2 − aX + b ∈ Fqrs [X] such that

a2 ∈ {t ∈ Fqrs : ∃u ∈ Fq ∃w ∈ W : t = uw}

and automatically b ∈ R̃. The set ML has the density δ(ML) =
∑

C
|C|
|G| with C as

before. There are at most 2q|W |2 · |R| such polynomials. We are now precisely in
the situation to apply Prop. 1, Part (c), which yields the inequality

δ(ML) ≤ 4|W |3q(q2r + qr)

(q3r − qr)
= O

(
1

qr−1

)
≤ O

(
1

q

)
,

where for the denominator we used |G| ≥ |H| = |R| · | SL2(Fqr)|.
Since q is unbounded for L ∈ S, the intersection M :=

⋂
L∈S ML is a set

having a density and this density is 0. The inclusion{
p prime :

ap(f)2

χ(p)
∈ L

}
⊆M

finishes the proof.

Proof of Theorem 1. To obtain (a), it suffices to apply Theorem 3 to each of the
finitely many sub-extension of Ff . (b) follows from (a) by Remark 2 and the
fact that χ must take values in {±1}, as otherwise Ef would be a CM-field and
complex conjugation would give a nontrivial inner twist.
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4 Reducibility of Hecke polynomials: questions
Motivated by a conjecture of Maeda, there has been some speculation that for ev-
ery integer k and prime number p, the characteristic polynomial of Tp acting on
Sk(1) is irreducible. See, for example, [FJ02], which verifies this for all k < 2000
and p < 2000. The most general such speculation might be the following ques-
tion: if f is a non-CM newform of level N ≥ 1 and weight k ≥ 2 such that
some ap(f) generates the field Ef = Q(an(f) : n ≥ 1), do all but finitely many
prime-indexed Fourier coefficients ap(f) have irreducible characteristic polyno-
mial? The answer in general is no. An example is given by the newform in
level 63 and weight 2 that has an inner twist by

( ·
4

)
. Also for non-CM newforms

of weight 2 without nontrivial inner twists such that [Ef : Q] = 2, we think that
the answer is likely no.

Let f ∈ Sk(Γ0(N)) be a newform of weight k and level N . The degree of
f is the degree of the field Ef , and we say that f is a reducible newform if the
characteristic polynomial of ap(f) is reducible for infinitely many primes p.

For each even weight k ≤ 12 and degree d = 2, 3, 4, we used [SAGE] to find
newforms f of weight k and degree d. For each of these forms, we computed the
reducible primes p < 1000, i.e., the primes such that the characteristic polynomial
of ap(f) is reducible. The result of this computation is given in Table 1. Table 2
contains the number of reducible primes p < 10000 for the first 20 newforms of
degree 2 and weight 2. This data inspires the following question.

Question 1. If f ∈ S2(Γ0(N)) is a newform of degree 2, is f necessarily re-
ducible? That is, are there infinitely many primes p such that ap(f) ∈ Z, or
equivalently, such that the characteristic polynomial of ap(f) is reducible?

Tables 4–6 contain additional data about the first few newforms of given de-
gree and weight, which may suggest other similar questions. In particular, Table 4
contains data for all primes up to 106 for the first degree 2 form f withL(f, 1) 6= 0,
and for the first degree 2 form g with L(g, 1) = 0. We find that there are 386
primes < 106 with ap(f) ∈ Z (i.e., has reducible characteristic polynomial), and
309 with ap(g) ∈ Z.

Question 2. If f ∈ S2(Γ0(N)) is a newform of degree 2, can the asymptotic
behaviour of the function

N(x) := #{p prime : p < x, ap(f) ∈ Z}
be described as a function of x?

The authors intend to investigate these questions in a subsequent paper.
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Table 1: Counting Reducible Characteristic Polynomials
k d N reducible p < 1000
2 2 23 13, 19, 23, 29, 43, 109, 223, 229, 271, 463, 673, 677, 883, 991
2 3 41 17, 41
2 4 47 47
4 2 11 11
4 3 17 17
4 4 23 23
6 2 7 7
6 3 11 11
6 4 17 17
8 2 5 5
8 3 17 17
8 4 11 11
10 2 5 5
10 3 7 7
10 4 13 13
12 2 5 5
12 3 7 7
12 4 21 3, 7

Table 2: First 20 Newforms of Degree 2 and Weight 2
k d N #{reducible p < 10000}
2 2 23 47
2 2 29 42
2 2 31 78
2 2 35 48
2 2 39 71
2 2 43 43
2 2 51 64
2 2 55 95
2 2 62 77
2 2 63 622 (inner twist by

( ·
4

)
)

k d N #{reducible p < 10000}
2 2 65 43
2 2 65 90
2 2 67 51
2 2 67 19
2 2 68 53
2 2 69 47
2 2 73 43
2 2 73 55
2 2 74 52
2 2 74 21
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Table 3: Newforms 23a and 67b: values of ψ(x) = #{reducible p < x · 105}
k d N ran 1 2 3 4 5 6 7 8 9 10
2 2 23 0 127 180 210 243 277 308 331 345 360 386
2 2 67 1 111 159 195 218 240 257 276 288 301 309

Table 4: First 5 Newforms of Degrees 3, 4 and Weight 2
k d N reducible p < 10000
2 3 41 17, 41
2 3 53 13, 53
2 3 61 61, 2087
2 3 71 23, 31, 71, 479,

647, 1013, 3181
2 3 71 13, 71, 509, 3613

k d N reducible p < 10000
2 4 47 47
2 4 95 5, 19
2 4 97 97
2 4 109 109, 4513
2 4 111 3, 37

Table 5: First 5 Newforms of Degrees 2, 3 and Weight 4
k d N reducible p < 1000
4 2 11 11
4 2 13 13
4 2 21 3, 7
4 2 27 3, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103,

109, 127, 139, 151, 157, 163, 181, 193, 199, 211,

223, 229,241, 271, 277, 283, 307, 313, 331, 337,

349, 367, 373, 379, 397, 409, 421, 433, 439, 457,

463, 487, 499, 523, 541, 547, 571, 577, 601, 607,

613, 619, 631, 643, 661, 673, 691, 709, 727, 733,

739, 751, 757, 769, 787, 811, 823, 829, 853, 859,

877, 883, 907, 919, 937, 967, 991, 997

(has inner twists)
4 2 29 29

k d N reducible p < 1000
4 3 17 17
4 3 19 19
4 3 35 5, 7
4 3 39 3, 13
4 3 41 41
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Table 6: Newforms on Γ0(389) of Weight 2

k d N reducible p < 10000
2 1 389 none (degree 1 polynomials are all irreducible)
2 2 389 5, 11, 59, 97, 157, 173, 223, 389, 653, 739, 859, 947, 1033, 1283, 1549, 1667, 2207, 2417, 2909, 3121, 4337,

5431, 5647, 5689, 5879, 6151, 6323, 6373, 6607, 6763, 7583, 7589, 8363, 9013, 9371, 9767

2 3 389 7, 13, 389, 503, 1303, 1429, 1877, 5443
2 6 389 19, 389
2 20 389 389
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