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Let E be an elliptic curve over Q of conductor N , and let K/Q be an imaginary
quadratic field of discriminant D 6= −4,−5 for which all prime factors of N are
split in K. Kolyvagin [Kol90] uses the system of Heegner points of conductor n for
K to construct a family of cohomology classes τn ∈ H1(K,E[pa]). Here p is an odd
prime and n is a squarefree integer whose prime divisors obey a certain congruence
condition relative to E, K and pa. Once the existence of a nonzero Kolyvagin class
τn is exhibited, there are strong consequences for the arithmetic of E. The most
fundamental example is Kolyvagin’s original theorem: if the extension Q(E[p])/Q
has Galois group GL2(Z/pZ), and τ1 does not vanish, then the group E(K) has rank
1, and the Tate-Shavarevich group X(E/K)p is trivial. Furthermore, in [Kol91]
Kolyvagin conjectures that if p is given, then there will exist a power q = pa and an
integer n for which the class τn ∈ H1(K,E[pa]) is nonzero. Granting this conjecture,
he gives a precise description of the structure of the Selmer group Sel(K,E[q]).

In this paper, we calculate the density (in an appropriately defined sense) of
the set of squarefree integers n for which τn is nonvanishing modulo p, under the
assumption that there exists at least one such nonvanishing class. We also offer a
means of calculating the classes τn under the further assumption that the p-torsion
part of the Tate-Shafarevich group of E/K is trivial.

The elliptic curve E is modular: let f =
∑
n anq

n be the associated newform
and let the sign in the functional equation for E/Q be −ε. Whenever M is a
Gal(K/Q)-module over a ring in which 2 is invertible, let M± be the ±-eigenspace
under the action of the nontrivial action c ∈ Gal(K/Q).

We define a Kolyvagin prime to be a rational prime ` - NDp satisfying the
following pair of conditions:

(1) ` is inert in K
(2) a` ≡ `+ 1 ≡ 0 (mod p).

These conditions imply that (E(OK/`OK)⊗Z/pZ)± is cyclic of order p. Let Ls
be the collection of sqarefree products of s Kolyvagin primes, and let L = ∪s≥0Ls.
Given n ∈ Ls, Kolyvagin constructs a class τn ∈ H1(K,Ep)(−1)sε.

We define a notion of density for subsets of Ls. For N ≥ 2, let Ls(N) be the set
of n ∈ Ls which are supported on primes p ≤ N . Given a subset S ⊂ Ls, define
S(N) = S ∩ Ls(N) and define

δ(S) = lim
N→∞

#S(N)
#Ls(N)

whenever this limit exists.
Let r± = dimFp Sel(K,E[p])±, and let r = r+ + r−. By exchanging E with ED

we can and do assume that r+ ≥ r−.

Hypothesis. We impose the following conditions on the data E,K, p:
1
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(1) The representation ρE,p : Gal(Q/Q)→ AutE[p] is surjective.
(2) There exists s0 ≥ 0 and n ∈ Ls0 with τn ∈ H1(K,E[p]) nonzero.

Now let s ≥ 0 with (−1)s = ε. Under Hypothesis (1), the Kolyvagin class τn is
a well-defined element of H1(K,E[p])+/(Z/pZ)×. Under hypothesis (2), the parity
of s matches the parity of r+−1 (say more about this!). To state our density result,
we need to introduce some notation. For integers a, b ≥ 0 of the same parity with
b ≥ a, define

f0(a, b) =
b−a+2∏
i=3
i odd

(
1− 1

pi

) b∏
j=b−a+3

(
1− 1

pj

)
.

For integers a, b ≥ 0 of opposite parity with b ≥ a− 1, define

f1(a, b) =
b−a+1∏
i=1
i odd

(
1− 1

pi

) b+1∏
j=b−a+2

(
1− 1

pj

)
.

(These products are set to 1 if the lower limit exceeds the upper limit.)

Theorem 0.1. Let Lτ 6=0
s be the set of n ∈ Ls for which τn 6= 0. Assume hypotheses

(1) and (2) above. Then Lτ 6=0
s is nonempty if and only if s ≥ r+ − 1. If this

inequality holds then
δ
(
Lτ 6=0
s

)
= f1(r+, s)f0(r−, s).

1. The Kolyvagin system of Heegner points

1.1. Heegner points and Kolyvagin classes: basic definitions. If ` is a ra-
tional prime inert in K, we will often use the same symbol ` for the unique place
of K lying above `. As all prime divisors of N are split in K, there exists an ideal
N ⊂ OK for which OK/N = Z/NZ. For any s ≥ 0 and n ∈ Ls let On be the
order of conductor n in OK . Let yn be the image under X0(N) → E of the point
represented by the cyclic isogeny C/On → C/(On ∩ N )−1. Then yn belongs to
E(K[n]), where K[n]/K is the ray class field corresponding to On.

Let G(n) = Gal(K[n]/K[1]). Then G(n) ∼=
∏
`|nG(`), where ` runs over the

prime divisors of n. For each Kolyvagin prime ` we have G(`) ∼= F×`2/F
×
` . Fix a

generator σ` of G(`) and define the derivative operators

D` =
∑̀
i=1

iσi` ∈ Z[G(`)]

Dn =
∏
`|n

D` ∈ Z[G(`)]

Let S be a set of coset representatives for G(n) in Gal(K[n]/K), and define

Pn =
∑
σ∈S

σ(Dnyn) ∈ E(K[n]).

Then the image of the point Pn in E(Kn)/pE(Kn) is fixed by Gal(K[n]/K) ([Gro91],
§4.)

We now adopt Hypothesis (1): assume that ρE,p : Gal(Q/Q)→ AutE[p] is sur-
jective. The Kolyvagin class τn ∈ H1(K,E[p]) is the unique class whose restriction
to K[n] equals the image of [Pn] ∈ E(K[n])/pE(K[n]) under the Kummer map.
(Hypothesis (1) ensures that the restriction map H1(K,E[p])→ H1(K[n], E[p]) is
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an isomorphism, see [Gro91], Lemma 4.3.) The cohomology classes τn as n runs
through L form a Kolyvagin system in the sense of [How04], §1.2, although it should
be stressed that the Kolyvagin classes appearing in that paper have coefficients in
Zp-modules of higher length, not simply E[p].

1.2. Local Selmer conditions. For a place v we write locv : H1(K,E[p]) →
H1(Kv, E[p]) for the localization map. We write H1

f (Kv, E[p]) for the finite part
of H1(Kv, E[p]), this is

H1
f (Kv, E[p]) =

{
kerH1(Kv, E[p])→ H1(Knr

v , E[p]), v - p,
image of E(Kv)⊗ Z/pZ→ H1(Kv, E[p]), v | p

For a Kolyvagin prime ` we also define the “transverse” part of H1(K`, E[p]) by

H1
t (K`, E[p]) = ker(H1(K`, E[p])→ H1(L,E[p])),

where L/K` is a maximal totally ramified elementary abelian p-extension; e.g. L
is the subextension of degree p in the localization of the ring class field K[`] at a
prime above `. Recall that we have chosen a generator σ` of Gal(K[`]/K) for each
Kolyvagin prime `; this choice also gives us a generator of Gal(L/K`), which we
also call σ`.

If ` is a Kolyvagin prime, then the action of Gal(K`/K`) on E[p] is trivial, so
that there is an isomorphism

(1) H1
f (Kv, E[p])→̃E[p]

given by evaluation of classes on Frobenius. The transverse subspace H1
t (K`, E[p])

is linearly disjoint from H1
f (Kv, E[p]), so that the composition

(2) H1
t (K`, E[p]) ↪→ H1(K`, E[p])→ H1

s (K`, E[p])

is an isomorphism.
There is an isomorphism

(3) H1
t (K`, E[p])→ E[p]

given by c 7→ c(σ`) (see [How04], Prop. 1.1.7).
By combining the isomorphisms of (1), (2) and (3) we arrive at the finite-singular

comparison map
ψfs : H1

f (K`, E[p])→̃H1
s (K`, E[p])

1.3. Global Selmer structures. For n ∈ L, we write H1
F(n)(K,E[p]) for the

Fp-vector space of classes ξ ∈ H1(K,E[p]) for which

locv ξ ∈

{
H1
f (Kv, E[p]), v - n

H1
t (Kv, E[p]), v | n

for all places v.

Lemma 1.1. For n ∈ L we have τn ∈ H1
F(n)(K,E[p]). If n = `n′ for a prime `,

then loc` τn lies in H1
f (K`, E[p]) if and only if Pn′ ∈ pE(K[n′])λ) for any (hence

all) places λ|` in K[n′].

Proof. The statement that τn belongs to H1
F(n)(K,E[p]) is Lemma 1.7.2 of [How04].

The criterion for loc` τn to lie in H1
f (K`, E[p]) is Prop. 6.2 of [Gro91]. �
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The following property of Kolyvagin classes τn accounts for their remarkable
rigidity as n runs through L.

Lemma 1.2. Up to a nonzero scalar in Fp we have φfs(loc` τn) = loc`(τn`).

(In the lemma, loc`(τn`) must be interpreted as the image of τn` in H1
s (K`, E[p]).)

Proof. This is the content of [How04], Prop. 1.7.4. �

1.4. A vanishing criterion for Kolyvagin classes. We give a criterion for the
vanishing behavior of the Kolyvagin classes τn. For n ∈ L we abbreviate H(n) =
H1
F(n)(K,E[p]) and H(n)± = H1

F(n)(K,E[p])±. The proof of the following theorem
will occupy the remainder of this section.

Theorem 1.3. Assume Hypothesis (1) and (2), and let s ≥ 0. Then for n ∈ Ls,
τn 6= 0 if and only if dimH(n) = 1.

First we review a result from [How04], an application of the Poitou-Tate sequence
in class field theory, which will be used in nearly every argument that follows.

Lemma 1.4 ([How04], Lemma 1.5.3). For n` ∈ L:
(1) If loc`(H(n)±) 6= 0, then dimH(n`)± = dimH(n)±−1, and loc`(H(n`)±) =

0.
(2) if loc`(H(n)±) = 0, then dimH(n`)± = dimH(n)± + 1.

Lemma 1.4 implies that the parity of the dimension of H(n) does not depend on
n. We have r = dimH(1) is odd.

We are ready to prove one direction of Thm. 1.3.

Proposition 1.5. Let n ∈ L. If τn 6= 0 then dimH(n) = 1.

Proof. This is a corollary of [How04], Lemma 1.6.4, but we give a self-contained
proof. Let ε(n) = ±1 be the unique sign for which τn belongs to H(n)ε(n).

We claim H(n)−ε(n) = 0. Assume otherwise. Choose a Kolyvagin prime ` at
which both τn and H(n)−ε(n) have nontrivial localization. Then by Lemma 1.4,
dimH(n`) = dimH(n) − 2 and loc`H(n`) = 0. But consider τn`: its localization
at ` is loc` τn` = φfs loc` τn, which is nonzero by our choice of `, contradiction.

Therefore H(n)−ε(n) = 0. It remains to show that dimH(n)ε(n) = 1. Choose a
Kolyvagin prime ` at which τn has nontrivial localization. Then dimH(n`)ε(n) =
dimH(n) − 1 and dimH(n`)−ε(n) = 1. Once again we have loc` τn` 6= 0, so in
particular τn` 6= 0. The case of the previous paragraph now applies with n` in place
of `: we must have H(n`)ε(n) = 0. Therefore dimH(n) = dimH(n)ε(n) = 1. �

1.5. Kolyvagin systems: an overview. For the “if” direction of Thm. 1.3, we
apply the theory of Kolyvagin systems developed in [MR04], §4. We give a brief
synopsis of this theory as it is presented there before adapting it to our situation.
Let T be a R[Gal(Q/Q)]-module of finite R-length, where R is a principal local
Artinian ring with maximal ideal m. One considers the family of spaces H(n) =
H1
F(n)(Q, T ) for an arbitrary Selmer structure F , and one defines the quantities

λ(n, T ) = length(H(n)). Here n ranges through a set of admissible squarefree
integers, akin to our L. These integers constitute the vertices of a graph X in a
natural way, see Definition 3.1.2. A vertex n is called a core vertex if λ(n, T ) or
λ(n, T ∗) equals 0. If n is a core vertex then H1

F(n)(Q, T ) is a free R-module of rank
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independent of n (Thm 4.1.10); this rank is the core rank χ(T ). Finally one defines
the stub Selmer sheaf H′(n) = mλ(n,T∗)(n, T ) for any vertex n of X .

When T is a Galois module of core rank χ(T ) = 1, one has results on the
existence of nontrivial Kolyvagin systems. We state the theorem in the case that
R = Z/pZ.

Theorem 1.6. Assume R = Z/pZ and χ(T ) = 1. Suppose κ is a Kolyvagin system
for T for which κm generates H′(m) for some vertex m. Then κn generates H′(n)
for every vertex n.

Proof. This is Cor. 4.5.2(ii) of [MR04], with j = 0. �

In the present situation, Q is replaced with imaginary quadratic field K. We
take T = E[p] as our Z/pZ[Gal(K/K)]-module. Then T is self-dual. The role
of λ(n, T ) are played by the λ(k)(n) of [How04], §1.6. The classes τn constitute a
Kolyvagin system τ ∈ KS(T ) up to a nonzero scalar, cf. [How04], 1.7.5.

In the following sections we will adapt the proof of Thm. 1.6 to the context of
the Kolyvagin system of Heegner points. The proof is nearly identical in its details
to that given in [MR04], but the adaptation required enough modifications to merit
a self-contained proof here.

1.6. Connectedness of the core graph X 0. Define a graph X by taking the
integers n ∈ L as vertices and by drawing an edge between each pair n, n` ∈ L. We
define the core subgraph X 0 of X by including only those vertices n with dimH(n) =
1. An edge of X 0 joins n and n` if and only if the localization map

loc` : H1
F(n)(K,E[p])→ H1

f (K`, E[p])

is nonzero.
The action of complex conjugation preserves each H(n). Therefore if n is a

vertex of X 0 there is a unique sign ε(n) = ±1 for which H(n) = H(n)ε(n). We have

(4) ε(n) = (−1)r
++ν(n)+1

Lemma 1.7. Suppose n and n` are vertices of X 0. Then n and n` are adjacent in
X 0, and ε(n`) = −ε(n).

Proof. We have H(n)−ε(n) = 0, so by Lemma 1.4, dimH(n`)−ε(n) = 1. Since n`
is also a vertex of X 0, dimH(n`) = 1 and therefore ε(n`) = −ε(n). Once again
by Lemma 1.4, we must have loc`H(n) = loc`H(n)ε(n) 6= 0; thus n and n` are
adjacent in X 0. �

Lemma 1.8. Every connected component of X 0 contains a vertex m with ν(m) =
r+ − 1.

Proof. Let n be an arbitrary vertex of X 0; we claim there exists a path in X 0 from
n to a vertex m with ν(m) = r+ − 1. If ν(n) = r+ − 1 we are done; therefore
assume ν(n) ≥ r+. It is enough to show that there exists a path in X 0 from n to
a vertex m with ν(m) < ν(n), whence we can proceed inductively. There are two
cases to consider.

Case (i): There exists r|n for which locr(H(n)) 6= 0. This is equivalent to
locrH(n)ε(n) 6= 0. By Lemma 1.4 we have locr(H(n/r))ε(n) = 0. It follows that
dimH(n/r)ε(n) = 0. On the other hand, since H(n)−ε(n) = 0, Lemma 1.4 forces
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dimH(n/r)−ε(n) = 1 and locr(H(n)−ε(n)) 6= 0. Thus m = n/r is a vertex of X 0

adjacent to n as required.
Case (ii): locr(H(n)) = 0 for all r|n. This implies that H(n) ⊂ H(1)ε(n).

For each r, let H(1)ε(n)
r ⊂ H(1)ε(n) denote the subspace of classes with trivial

localization at r. Then
H(n) =

⋂
r|n

H(1)ε(n)
r

is a nonzero intersection of ν(n) ≥ r+ ≥ rε(n) subspaces of an rε(n)-dimensional
vector space. Therefore at least one of the spaces in the above intersection is
redundant: there is a prime q dividing n so that

(5) H(n) =
⋂
r|nq

H(1)ε(n)
` .

If dimH(n/q) = 1, then n/q is a vertex of X 0, so that by Lemma 1.7, n and
n/q are adjacent vertices in X 0 and we are done. Assume otherwise, so that
dimH(n/q)ε(n) = 2 and dimH(n/q)−ε(n) = 1. Our strategy is to find a prime
r|(n/q) and an auxiliary prime ` for which n`, n`/q, and m = n`/qr are vertices of
X 0, thereby linking n to a vertex m for which ν(m) = ν(n)− 1.

Let c ∈ H(n)ε(n) and d± ∈ H(n/q)±ε(n) be nonzero elements, and choose
` ∈ L1 be such that loc`(c) and loc`(d±) are all nonzero. Then by Lemma 1.4,
dimH(n`/q) = 1 and n`/q is a vertex of X 0. By the same lemma, loc`(H(n`/q)ε(n))
is zero, so thatH(n`/q)ε(n) ⊂ H(n/q)ε(n). By the assumption of Case (ii), locqH(n)
is also zero, so that H(n)ε(n) ⊂ H(n/q)ε(n) as well.

The situation can be summarized as follows. In the diagram

H1
f (K`, E[p]) H1

f (Kq, E[p])

H(n/q)ε(n)

loc`

ggOOOOOOOOOOO locq

77ooooooooooo

H(n)ε(n)

* 


77ooooooooooo
H(n`/q)ε(n)

4 T

ggOOOOOOOOOOO

,

the space H(n/q)ε(n) two-dimensional, while the spaces H(n)ε(n) and H(n`/q)ε(n)

are each one-dimensional. Applying Lemma 1.4 once again shows that each diagonal
is exact. The lower spaces are disjoint because the element c ∈ H(n)ε(n) has loc` c ∈
H1
f (K`, E[p]) nonzero, so that c 6∈ H(n`/q)ε(n). It follows that loc`(H(n)ε(n)) 6= 0,

for otherwise we would have H(n)ε(n) = H(n`/q)ε(n), contradiction. Therefore
dimH(n`)ε(n) = dimH(n`/q)ε(n) − 1 = 0. Meanwhile, dimH(n`)−ε(n) = 0 is
automatic because H(n)−ε = 0. We find that n` is a vertex of X 0, necessarily
adjacent to n by Lemma 1.7.

We claim there exists a prime r|(n/q) for which locr(H(n`/q)) 6= 0. Assume not:
then locr(H(n`/q) = 0 for all primes r dividing n`/q (including `, by the above
diagram). Therefore

H(n`/q) ⊂
⋂
r|nq

H(1)ε(n)
r ,

but by Eq. 5 this intersection is H(n), contradiction.



KOLYVAGIN CLASSES ON ELLIPTIC CURVES: STRUCTURE, DISTRIBUTION, AND ALGORITHMS7

Therefore let r|(n/q) be such that locr(H(n`/q)) 6= 0. It follows immediately
that n`/qr is a vertex of X 0. Since ν(n`/qr) = ν(n)− 1, the proof is complete. �

Theorem 1.9. The graph X 0 is connected.

Proof. By Lemma 1.8 it is enough to show that if m and n are two vertices of X 0

with ν(m) = ν(n) = r+ − 1, then m and n are connected by a path in X 0. We will
prove this by induction on µ(m,n) = r+ − ν(gcd(m,n)) ≥ 1. If µ(m,n) = 1 then
m = n and there is nothing to prove.

Assume m 6= n. Since ν(m) = ν(n), there must exist distinct primes q|n and r|m.
By Eq. (4) we have ε(m) = ε(n) = 1. We have dimH(n/q)+ = dimH(m/r)+ = 2
and dimH(n/q)− = dimH(m/r)− = 1. Choose nonzero elements c1, c2, c3, c4 from
each of these four spaces and find a prime ` ∈ L1 with loc`(ci) 6= 0 for i = 1, . . . , 4.
Then by Lemma 1.4 we have dimH(n`/q) = dimH(m`/r) = 1, so that n`/q and
m`/r are vertices of X 0. In fact n` and m` are also vertices of X 0: the argument
is identical to that given in the proof of Lemma 1.8.

There are paths in X 0 connecting n and m to n`/q and m`/r, respectively, and
µ(m`/r, n`/q) = µ(m,n) − 1, so by the inductive hypothesis, m and n are joined
by a path in X 0 as well. �

1.7. Conclusion of the proof of Thm. 1.3. Suppose there exists m ∈ L with
τm 6= 0. Let n be a vertex of X 0. To complete the proof of Thm. 1.3, we need to
prove that τn 6= 0.

By Thm. 1.9 there is a path m = k0, k1, . . . , kt = n joining m to n in X 0. We
can show that τki 6= 0 by induction on i. Suppose τki 6= 0. Since ki and ki+1 are
adjacent in X 0, we have either ki+1 = ki` or ki = ki+1`.

Case (i): ki+1 = ki`. By definition of adjacency in X 0 we have loc`H(ki)ε(ki) 6=
0. In particular loc` τki 6= 0. But then loc` τki+1 must also be nonzero, since by
Lemma 1.2 the image of this class under φfs agrees with loc` τki up to a nonzero
constant.

Case (ii): ki = ki+1`. We have dimH(ki)ε(ki) = 1 and dimH(ki+1)ε(ki) = 0.
Therefore loc`H(ki)ε(ki) 6= 0, for otherwise we would haveH(ki)ε(ki) ⊂ H(ki+1)ε(ki).
Since τki

6= 0 it spans H(ki)ε(ki) and therefore loc` τki
6= 0. Applying Lemma 1.2

we have τki+1 6= 0.

2. A density calculation

Lemma 2.1. Let n ∈ L, and let ρ(n)± = dimH(n)±. For a choice of sign d ∈
{1,−1}, let

P±n,d =
{
` ∈ P

∣∣∣∣ ` - n, ρ(n`)± = ρ(n)± + d

}
.

Then

δ
(
P±n,d

)
=

{
p−ρ(n)± , d = 1
1− p−ρ(n)± , d = 1.

Proof. This is an application of the Cebotarev density theorem to Lemma 1.4. For
any class ζ ∈ H(n)±, the restriction resK(E[p]) ζ ∈ Hom(Gal(Q/K(E[p]), E[p]) cuts
out an extension Mζ/K(E[p]) of exponent p; let M(n)± be the compositum of the
Mζ for ζ ∈ H(n)±. Then there is a perfect pairing of Fp-vector spaces

H(n)± ×Gal(M(n)±/K(E[p]))→ E[p]±
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whereby (ζ, σ) 7→ ζ(σ); in particular Gal(M(n)±/K(E[p])) ≈ (Z/pZ)ρ(n)± . Now
let ` - n be a Kolyvagin prime. In light of Lemma 1.4, we have p ∈ P±n,1 if and only
if loc`H(n)± = 0. Let λ|` be a place of K(E[p]); the Kolyvagin condition implies
that K(E[p])λ ≈ Kλ. Thus loc`H(n)± = 0 if and only if locλ resK(E[p])H(n)± = 0,
which means precisely that λ splits completely in M(n)±. The relative density of
such ` relative to the Kolyvagin primes is 1/[M(n)± : K(E[p])] = p−ρ(n)± . �

Recall that r± = dim Sel(K,E[p])±.

Proposition 2.2. Let s ≥ r± − ν, and let ν ∈ {0, 1}. Let

L±s,ν =
{
n ∈ Ls

∣∣∣∣ dimH(n)± = ν

}
.

Then
δ
(
L±s,ν

)
= fν(r±, s).

Proof. The proof is by inductive application of Lemma 2.1. Let r1, r2 ≥ 0, and let
m ∈ Ls′ be such that ρ(m)± = r1.

D(r1, r2, s) = δ

({
n ∈ Ls

∣∣∣∣ ρ(mn) = r2

})
Define D(r1, r2, s) = 0 if any of the arguments r1, r2, s are negative. It will become
clear momentarily that D(r1, r2, s) does not depend on the choice of s′ or m ∈ Ls′ .
Clearly we have

D(r1, r2, 0) =

{
1, r1 = r2 ≥ 0
0, otherwise

Lemma 2.1 implies that d(r1, r2, s) satisfies the recursion relation

D(r1, r2, s) =
pr1 − 1
pr1

D(r1 − 1, r2, s− 1) +
1
pr1

D(r1 + 1, r2, s− 1),

which together with the initial condition above is enough to determine D(r1, r2, s)
for all values of r1, r2, s. For ν ∈ {0, 1} we have D(r1, ν, s) = fν(r1, s) (proof by
induction – haven’t actually checked it yet). �

3. An algorithm for the computation of Kolyvagin classes

[Whereby given n ∈ L we determine whether dimH(n) = 1 through a devilishly
clever procedure.]

References

[Gro91] Benedict H. Gross, Kolyvagin’s work on modular elliptic curves, L-functions and arith-

metic (Durham, 1989), London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ.

Press, Cambridge, 1991, pp. 235–256. MR MR1110395 (93c:11039)
[How04] Benjamin Howard, The Heegner point Kolyvagin system, Compos. Math. 140 (2004),

no. 6, 1439–1472. MR MR2098397 (2006a:11070)
[Kol90] V. A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Vol. II, Progr. Math.,
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