TORSION POINTS ON ELLIPTIC CURVES
OVER QUARTIC NUMBER FIELDS
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ABSTRACT. We complete the proof that there are no elliptic curves over a
number field K of degree < 4 that have a K-rational point of prime order > 17.

1. INTRODUCTION

For an integer d > 1, we let S(d) be the set of primes p such there exists an elliptic
curve F over a number field K of degree < d with a K-rational point of order p
in F(K). Mazur has famously proved that

S(1) =12,3,5,7}.
Kamienny and Mazur showed that
S(2) ={2,3,5,7,11,13},
and Parent, building on earlier work by Kamienny, proved that

S(3) = {2,3,5,7,11,13}.

Our main result is the following.

Theorem 1.

S(4) = {2,3,5,7,11,13,17}.

Proof. Kamienny and Stein [!] show that S(4) does not contain any p > 31.
Theorem 10 below shows that 19,23 ¢ S(4). Theorem 8 below shows that 31 ¢
S(4). Finally, Theorem 9 below shows that 29 ¢ S(4). O

Should be extended and proper references added.
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2. THE RESULT

We first state a general results on points of degree < d on a curve over Q. All
curves will be assumed to be smooth, projective and geometrically integral. We
will use C?@ to denote the dth symmetric power of C.

Proposition 2. Let C'/Q be a curve with Jacobian J, let d > 1 be an integer, and
let ¢ be a prime of good reduction for C. Let Py € C(Q) be chosen as base-point
for an embedding v : C' — J. We make the following assumptions.

(1) J(Q) is finite.

(2) € > 2 or J(Q)[2] injects into J(Fy) (for example, #J(Q) is odd).

(3) There is no rational function in Q(C)* of degree < d.

(4) The reduction map C(Q) — C(F,) is surjective.

(5) If P € O(FF,)\ C(F,) is a point of degree d’ < d, then Trg , /r, o(P) € J(Fy)
is not in the image of J(Q).

3
4
)

Then the only points of degree < d on C' are the rational points on C.

Proof. We will use px to denote the reduction map X (Q) — X (), where X is a
smooth projective variety over Q with good reduction at /.

From assumptions 1 and 2 (and the fact that ¢ is a good prime) we can deduce that
ps: J(Q) — J(F,) is injective. Assumption 3 implies that the map C(Q) —
J(Q) induced by ¢ is also injective. Considering the commutative diagram

/(@) (Q)CL_> J(Q)
Pe(d) i \[PJ
CO(F;) — J(Fo),

we conclude that pq) is injective as well.

Assumption 5 tells us that the image of py) is contained in the image C@ (Fo)split
of O(F,)% in CY(F,). We now consider the diagram

C(Q)? C9(Q)
ﬂcdi Pe(d)
C(F5>d - C(d) (Ff)split'

The left hand vertical map is surjective by assumption 4, the right hand verti-
cal map is injective by the argument above. We conclude that C(Q)? surjects
onto C'(@ (Q). This implies the claim, since a non-rational point of degree < d
on C would induce a point in C?(Q) that is not in the image of C(Q)%. 0
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We can apply this to torsion points on elliptic curves as follows. We use the cusp
at infinity as a base-point on X;(p). Note that X;(p) has p — 1 cusps, half of
which are rational, the other half being conjugate and defined over the maximal
real subfield of Q(u,). William: Can you confirm this?

Theorem 3. Let p and ¢ be primes with ¢ # p, and let d > 1. Assume that

(1) J1(p)(Q) is finite.

(2) £>2 or #J1(p)(Q) is odd.

(3) The order of £ in F) /{£1} is > d.

(4) p> (VE+1)%

(5) If E/Fye is an elliptic curve that has an Fe-rational point of order p and
e < d, then the trace of its image in Ji(p) is not in the image of J1(p)(Q).

Then there are no elliptic curves E/K with [K : Q] < d that have a K-rational
point of order p, or else there are infinitely many.

Proof. If p < 7, then there are even infinitely many elliptic curves over Q with a
rational point of order p. So in the remainder of the proof, we can assume that
p > 11.

We use Prop. 2. The first two assumptions in the theorem imply the first two
assumptions of the proposition. We will deal with Assumption 3 in the proposition
later.

Assumption 3 of the theorem implies that the only cusps of degree < d on X (p)/F,
are the images of the rational cusps (the order of ¢ in F)/{41} gives the length
of the Frobenius-orbits on the images of the non-rational cusps). Assumption 4
of the theorem shows that there all points in X;(p)(FF,) are cusps. Together with
the fact that X;(p)(Q) consists of cusps (since p > 11), this implies assumption 4
of the proposition. Assumption 5 of the theorem then implies assumption 5 of the
proposition, since there are no other Fe-rational points except for the Fy-rational
Cusps.

Now we consider assumption 3 of the proposition. If it holds, we can apply the
proposition, and we find that there are no non-rational points of degree < d
on X;(p). This implies that there are no elliptic curves over a number field K of
degree < d with a K-rational point of order p, since the rational points on X (p)
are all cusps (by our assumption that p > 11).

If assumption 3 of the proposition does not hold, then X;(p) @ — (p) is not an
embedding. Let Y be a fiber of positive dimension. If Y contains a rational point,
then Y = P" for some n > 1, and so Y contains infinitely many rational points.
Since the image of X;(p)(Q)? in X;(p)@(Q) is finite (X;(p)(Q) is finite), the
infinitely many rational points on Y involve infinitely many non-cuspidal points.
Hence there are infinitely many elliptic curves with the required property. If, on
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the other hand, none of the positive-dimensional fibers contains a rational point,
then the proof of Prop. 2 applies, and there are no elliptic curves with the required
properties. U

Corollary 4. Let p be a prime and d > 1 such that
(1) Ji(p)(Q) is finite.
(2) #J1(p)(Q)[2] injects into Ji(p)(Fs) and p > (242 4+1)2, or p > (3%2 4+ 1)2.

The either there are infinitely many elliptic curves EJK with [K : Q] < d such
that E(K) contains a point of order p, or else there are none.

Proof. We take ¢ = 2 or { = 3 in Thm 3. The first two assumptions in the theorem
are satisfied, and so is assumption 4. Assumption 3 follows from ¢¢ < p+ 1, which
is a consequence of assumption 2 in the corollary. Finally, assumption 5 again
follows from the second assumption in the corollary, since by the Hasse bound,
any elliptic curve E/Fp with e < d satisfies #E(F) < p. Therefore the theorem
applies. O

We quote Prop. 6.2.1. of [2] (in an equivalent formulation), adding some more
information from Section 6.2 in loc.cit.

Proposition 5. The primes p such that Jy(p) has rank zero are the primes p < 31
and 41, 47, 59, and 71.

For all of these except possibly p = 29, the Mordell-Weil group is generated by
differences of rational cusps, and for all except p = 17,29,31 and 41, the order of

J1(p)(Q) is odd.

We also quote the main result from [3].

Theorem 6. Ezactly the following torsion structures occur infinitely often for
elliptic curves over number fields K of degree < 4.

Z/mZ  for m <18, or m € {20,21,22,24},
Z)27 X Z./]2vZ  for v <9,
Z/3Z x Z/3vZ  forv < 3,
LZJAZ X ZJAZ  for v < 2,
Z)57Z x Z/5Z  and
7.]67 x Z./6Z.

In particular, there are infinitely many such elliptic curves with a K-rational point
of prime order p if and only if p < 17.

Corollary 7. Let p =29 orp=31. If Ji(p)(Q)[2] — J1(p)(F2) is injective, then
p&SH).
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Proof. By Prop. 5, J1(29)(Q) and J;(31)(Q) are both finite. Since (24/2+1)% < 29,
Cor. 4 applies. By Thm. 6, there are at most finitely many elliptic curves over
a number field K of degree < 4 that have a K-rational point of order > 17.
Corollary 4 therefore shows that there are in fact no such curves with a K-rational
point of order p. O

We can use this to deal with p = 31.

Theorem 8.

31 ¢ S(4).

Proof. From [2], we know that the 2-part of J;(31)(Q) has order 4. We construct
X1(31) and the intermediate curve X3(31) explicitly over Fy (they are cut out
by quadratic relations between the corresponding cusp forms). We find the Fo-
rational cusps on X;(31) and their image on X3(31). We then check that their
differences generate a subgroup of J3(31)(FFy) of order a multiple of 4. This shows
that the composition

AENQ2] — L (31)(Fz) — J5(31)(F2)

is injective, whence the first map is also injective. The claim then follows from
Cor. 7. The computations were done using MAGMA [1]. O

We have not been able to show that .J;(29)(Q)[2] injects into J;(29)(F2). However,
with a bit more computational work, we can still obtain the desired result.

Theorem 9.

20 ¢ S(4).

Proof. We apply Thm. 3 with ¢ = 11. Let X = X;(29), and let Y be its genus 8
quotient by the action of the diamond operator (12) (note that 122 = —1 mod 29,
so we have a double cover). Since (v/11 4 1)? < 29, the only Fy;-points on X
are the images of the rational cusps (11 generates Fjy, so the other cusps don’t
split). We find all points on X/Fy; of degree 2, 3 and 4. We map them down to Y.
Taking the image of the infinite cusp as base-point, we embed Y ito its Jacobian J.

It is known [2] that the subgroup generated by the differences of rational cusps
on X/Q has index at most 8 in the Mordell-Weil group of .J;(29). We find that

J(F) =2 (Z)2Z)° x Z/2-7-17 - 43 - 1933 Z,

so that the image of Mordell-Weil is included in the subgroup G obtained as
the cuspidal subgroup plus the 2-torsion subgroup. This subgroup G has index
17-1933 = 32861 in J(IFq1), so there is a good chance that our points will miss it.
Indeed, taking the image of each prime divisor on X;(29)/Fy; of degree 2 < d < 4
and subtracting d times the base-point, we can check that the class of the resulting
divisor in J(IFy;) is not contained in G. This implies that the corresponding points
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on X1(29)/F; have the property that the trace of the image in J;(29) is not in the
image of the Mordell-Weil group. Therefore, assumption 5 in Thm. 3 is satisfied.
The first asumption holds by Prop. 5, and the remaining ones are clearly satisfied.
Using Thm. 6, we obtain the result.

The computations were done with MAGMA again. U

Theorem 10. S(4) does not contain 19 or 23.

Proof. By Prop. 5, J;(19)(Q) and J;(23)(Q) are both finite and of odd order. Tak-
ing p=19 or 23, d =4, { = 2 in Thm. 3, we see that the first four assumptions
are satisfied. We need to check the last assumption. In fact, an exhaustive enu-
meration shows that there are no elliptic curves over Fy4 with a point of order 19
or 23, so the last assumption is trivially satisfied. (For smaller e, it follows from
the Hasse bound, since (2%2 + 1)2 < 19.) Invoking Thm. 6 again, we see that
Thm. 3 shows that 19 and 23 are both not contained in S(4). O

Remark 11. If £//Fqe is an elliptic curve with e < 4 and a point of order p = 19
or 23, then the Hasse bound forces e = 4 and #F(F:) = p. So the number of
points must be odd. This implies that E is supersingular, so F is a twist of an
elliptic curve defined over Foz. All those curves (they are the curves with j = 0)
have #FE(Fs4) = 1 mod 4. Does this follow from some theoretical result? If so, we
can eliminate the computational part from the proof (other than that going into
Prop. 5 and Thm. 6, of course.)
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