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Abstract. We complete the proof that there are no elliptic curves over a
number field K of degree ≤ 4 that have a K-rational point of prime order > 17.

1. Introduction

For an integer d ≥ 1, we let S(d) be the set of primes p such there exists an elliptic
curve E over a number field K of degree ≤ d with a K-rational point of order p
in E(K). Mazur has famously proved that

S(1) = {2, 3, 5, 7}.

Kamienny and Mazur showed that

S(2) = {2, 3, 5, 7, 11, 13},

and Parent, building on earlier work by Kamienny, proved that

S(3) = {2, 3, 5, 7, 11, 13}.

Our main result is the following.

Theorem 1.

S(4) = {2, 3, 5, 7, 11, 13, 17}.

Proof. Kamienny and Stein [4] show that S(4) does not contain any p > 31.
Theorem 10 below shows that 19, 23 /∈ S(4). Theorem 8 below shows that 31 /∈
S(4). Finally, Theorem 9 below shows that 29 /∈ S(4). �

Should be extended and proper references added.
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2. The result

We first state a general results on points of degree ≤ d on a curve over Q. All
curves will be assumed to be smooth, projective and geometrically integral. We
will use C(d) to denote the dth symmetric power of C.

Proposition 2. Let C/Q be a curve with Jacobian J , let d ≥ 1 be an integer, and
let ` be a prime of good reduction for C. Let P0 ∈ C(Q) be chosen as base-point
for an embedding ι : C → J . We make the following assumptions.

(1) J(Q) is finite.
(2) ` > 2 or J(Q)[2] injects into J(F`) (for example, #J(Q) is odd).
(3) There is no rational function in Q(C)× of degree ≤ d.
(4) The reduction map C(Q)→ C(F`) is surjective.
(5) If P ∈ C(F̄`)\C(F`) is a point of degree d′ ≤ d, then TrF

`d′ /F`
ι(P ) ∈ J(F`)

is not in the image of J(Q).

Then the only points of degree ≤ d on C are the rational points on C.

Proof. We will use ρX to denote the reduction map X(Q)→ X(F`), where X is a
smooth projective variety over Q with good reduction at `.

From assumptions 1 and 2 (and the fact that ` is a good prime) we can deduce that
ρJ : J(Q) → J(F`) is injective. Assumption 3 implies that the map C(d)(Q) →
J(Q) induced by ι is also injective. Considering the commutative diagram

C(d)(Q)
� � ι //

ρ
C(d)

��

J(Q)
� _

ρJ

��
C(d)(F`)

ι // J(F`),

we conclude that ρC(d) is injective as well.

Assumption 5 tells us that the image of ρC(d) is contained in the image C(d)(F`)split

of C(F`)d in C(d)(F`). We now consider the diagram

C(Q)d //

ρ
Cd

����

C(d)(Q)
� _

ρ
C(d)

��

C(F`)d // // C(d)(F`)split.

The left hand vertical map is surjective by assumption 4, the right hand verti-
cal map is injective by the argument above. We conclude that C(Q)d surjects
onto C(d)(Q). This implies the claim, since a non-rational point of degree ≤ d
on C would induce a point in C(d)(Q) that is not in the image of C(Q)d. �
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We can apply this to torsion points on elliptic curves as follows. We use the cusp
at infinity as a base-point on X1(p). Note that X1(p) has p − 1 cusps, half of
which are rational, the other half being conjugate and defined over the maximal
real subfield of Q(µp). William: Can you confirm this?

Theorem 3. Let p and ` be primes with ` 6= p, and let d ≥ 1. Assume that

(1) J1(p)(Q) is finite.
(2) ` > 2 or #J1(p)(Q) is odd.
(3) The order of ` in F×p /{±1} is > d.

(4) p > (
√
`+ 1)2.

(5) If E/F`e is an elliptic curve that has an F`e-rational point of order p and
e ≤ d, then the trace of its image in J1(p) is not in the image of J1(p)(Q).

Then there are no elliptic curves E/K with [K : Q] ≤ d that have a K-rational
point of order p, or else there are infinitely many.

Proof. If p ≤ 7, then there are even infinitely many elliptic curves over Q with a
rational point of order p. So in the remainder of the proof, we can assume that
p ≥ 11.

We use Prop. 2. The first two assumptions in the theorem imply the first two
assumptions of the proposition. We will deal with Assumption 3 in the proposition
later.

Assumption 3 of the theorem implies that the only cusps of degree≤ d on X1(p)/F`
are the images of the rational cusps (the order of ` in F×p /{±1} gives the length
of the Frobenius-orbits on the images of the non-rational cusps). Assumption 4
of the theorem shows that there all points in X1(p)(F`) are cusps. Together with
the fact that X1(p)(Q) consists of cusps (since p ≥ 11), this implies assumption 4
of the proposition. Assumption 5 of the theorem then implies assumption 5 of the
proposition, since there are no other F`e-rational points except for the F`-rational
cusps.

Now we consider assumption 3 of the proposition. If it holds, we can apply the
proposition, and we find that there are no non-rational points of degree ≤ d
on X1(p). This implies that there are no elliptic curves over a number field K of
degree ≤ d with a K-rational point of order p, since the rational points on X1(p)
are all cusps (by our assumption that p ≥ 11).

If assumption 3 of the proposition does not hold, then X1(p)
(d) → J1(p) is not an

embedding. Let Y be a fiber of positive dimension. If Y contains a rational point,
then Y ∼= Pn for some n ≥ 1, and so Y contains infinitely many rational points.
Since the image of X1(p)(Q)d in X1(p)

(d)(Q) is finite (X1(p)(Q) is finite), the
infinitely many rational points on Y involve infinitely many non-cuspidal points.
Hence there are infinitely many elliptic curves with the required property. If, on
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the other hand, none of the positive-dimensional fibers contains a rational point,
then the proof of Prop. 2 applies, and there are no elliptic curves with the required
properties. �

Corollary 4. Let p be a prime and d ≥ 1 such that

(1) J1(p)(Q) is finite.
(2) #J1(p)(Q)[2] injects into J1(p)(F2) and p > (2d/2 + 1)2, or p > (3d/2 + 1)2.

The either there are infinitely many elliptic curves E/K with [K : Q] ≤ d such
that E(K) contains a point of order p, or else there are none.

Proof. We take ` = 2 or ` = 3 in Thm 3. The first two assumptions in the theorem
are satisfied, and so is assumption 4. Assumption 3 follows from `d < p+ 1, which
is a consequence of assumption 2 in the corollary. Finally, assumption 5 again
follows from the second assumption in the corollary, since by the Hasse bound,
any elliptic curve E/F`e with e ≤ d satisfies #E(F`e) < p. Therefore the theorem
applies. �

We quote Prop. 6.2.1. of [2] (in an equivalent formulation), adding some more
information from Section 6.2 in loc.cit.

Proposition 5. The primes p such that J1(p) has rank zero are the primes p ≤ 31
and 41, 47, 59, and 71.

For all of these except possibly p = 29, the Mordell-Weil group is generated by
differences of rational cusps, and for all except p = 17, 29, 31 and 41, the order of
J1(p)(Q) is odd.

We also quote the main result from [3].

Theorem 6. Exactly the following torsion structures occur infinitely often for
elliptic curves over number fields K of degree ≤ 4.

Z/mZ for m ≤ 18, or m ∈ {20, 21, 22, 24},
Z/2Z× Z/2vZ for v ≤ 9,

Z/3Z× Z/3vZ for v ≤ 3,

Z/4Z× Z/4vZ for v ≤ 2,

Z/5Z× Z/5Z and

Z/6Z× Z/6Z.
In particular, there are infinitely many such elliptic curves with a K-rational point
of prime order p if and only if p ≤ 17.

Corollary 7. Let p = 29 or p = 31. If J1(p)(Q)[2]→ J1(p)(F2) is injective, then
p /∈ S(4).
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Proof. By Prop. 5, J1(29)(Q) and J1(31)(Q) are both finite. Since (24/2+1)2 < 29,
Cor. 4 applies. By Thm. 6, there are at most finitely many elliptic curves over
a number field K of degree ≤ 4 that have a K-rational point of order > 17.
Corollary 4 therefore shows that there are in fact no such curves with a K-rational
point of order p. �

We can use this to deal with p = 31.

Theorem 8.
31 /∈ S(4).

Proof. From [2], we know that the 2-part of J1(31)(Q) has order 4. We construct
X1(31) and the intermediate curve X3(31) explicitly over F2 (they are cut out
by quadratic relations between the corresponding cusp forms). We find the F2-
rational cusps on X1(31) and their image on X3(31). We then check that their
differences generate a subgroup of J3(31)(F2) of order a multiple of 4. This shows
that the composition

J1(31)(Q)[2] −→ J1(31)(F2) −→ J3(31)(F2)

is injective, whence the first map is also injective. The claim then follows from
Cor. 7. The computations were done using MAGMA [1]. �

We have not been able to show that J1(29)(Q)[2] injects into J1(29)(F2). However,
with a bit more computational work, we can still obtain the desired result.

Theorem 9.
29 /∈ S(4).

Proof. We apply Thm. 3 with ` = 11. Let X = X1(29), and let Y be its genus 8
quotient by the action of the diamond operator 〈12〉 (note that 122 ≡ −1 mod 29,
so we have a double cover). Since (

√
11 + 1)2 < 29, the only F11-points on X

are the images of the rational cusps (11 generates F×29, so the other cusps don’t
split). We find all points on X/F11 of degree 2, 3 and 4. We map them down to Y .
Taking the image of the infinite cusp as base-point, we embed Y ito its Jacobian J .
It is known [2] that the subgroup generated by the differences of rational cusps
on X/Q has index at most 8 in the Mordell-Weil group of J1(29). We find that

J(F11) ∼= (Z/2Z)5 × Z/2 · 7 · 17 · 43 · 1933 Z,
so that the image of Mordell-Weil is included in the subgroup G obtained as
the cuspidal subgroup plus the 2-torsion subgroup. This subgroup G has index
17 · 1933 = 32861 in J(F11), so there is a good chance that our points will miss it.
Indeed, taking the image of each prime divisor on X1(29)/F11 of degree 2 ≤ d ≤ 4
and subtracting d times the base-point, we can check that the class of the resulting
divisor in J(F11) is not contained in G. This implies that the corresponding points
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on X1(29)/F11 have the property that the trace of the image in J1(29) is not in the
image of the Mordell-Weil group. Therefore, assumption 5 in Thm. 3 is satisfied.
The first asumption holds by Prop. 5, and the remaining ones are clearly satisfied.
Using Thm. 6, we obtain the result.

The computations were done with MAGMA again. �

Theorem 10. S(4) does not contain 19 or 23.

Proof. By Prop. 5, J1(19)(Q) and J1(23)(Q) are both finite and of odd order. Tak-
ing p = 19 or 23, d = 4, ` = 2 in Thm. 3, we see that the first four assumptions
are satisfied. We need to check the last assumption. In fact, an exhaustive enu-
meration shows that there are no elliptic curves over F24 with a point of order 19
or 23, so the last assumption is trivially satisfied. (For smaller e, it follows from
the Hasse bound, since (23/2 + 1)2 < 19.) Invoking Thm. 6 again, we see that
Thm. 3 shows that 19 and 23 are both not contained in S(4). �

Remark 11. If E/F2e is an elliptic curve with e ≤ 4 and a point of order p = 19
or 23, then the Hasse bound forces e = 4 and #E(F24) = p. So the number of
points must be odd. This implies that E is supersingular, so E is a twist of an
elliptic curve defined over F22 . All those curves (they are the curves with j = 0)
have #E(F24) ≡ 1 mod 4. Does this follow from some theoretical result? If so, we
can eliminate the computational part from the proof (other than that going into
Prop. 5 and Thm. 6, of course.)
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