
Kamienny Notebook

William Stein

Contents

1 September 24, 2009 1

2 January 7, 2010 4
2.1 Ideas for a stupid (but correct) algorithm to do the above computation . 4

3 February 10, 2010 5

1 September 24, 2009

From Sheldon:
For each prime N between 19 and 97 (inclusive) we need to choose a p-Eisenstein

quotient A of J1(N) (with p odd), and find 4 weight two newforms attached to A such
that the vectors consisting of their first four Fourier coefficients are linearly independent
over Z[D] in characteristic 2 (or possibly in char 3 if the search in char 2 fails), where
D is the group of diamond operators at level N . Also, if possible, I’d like to know if
the p-Eisenstein prime is unramified in the Hecke algebra. Finally, I don’t really need
to know the above for N = 19, 23, 29, 31, 41, or 59. I have a direct geometric proof of
the non-existence of degree 4-torsion points of order N in these cases. However, if it’s
not very difficult it would be nice to know the answer in these case too.

Anyway, barring more of my stupid mistakes here’s a list of levels N , primes p, and
n=order of the character through which a generator of the diamond operators acts on
the p-Eisenstein quotient. The levels marked with an asterisk aren’t really necessary,
but would be nice if it’s not extra work for you. If the calculation doesn’t produce
independence in some case, then we can probably just try a different p.

19*, 487, 9
23*, 37181, 11
29*, 43, 7
31*, 2302381, 15
37, 19, 9
41*, 431, 5
43, 463, 7
47, 139, 23
53, 96331, 13
59*, 9988553613691393812358794271, 29
61, 2801, 5
67, 661, 11
71, 211, 5
73, 241, 6
79, 199, 3
83, 17210653, 41
89, 37, 4
97, 367, 3

From William:
I wrote some relevant code and ran it. Here is the code.

data = [(19, 487, 9), (23, 37181, 11), (29, 43, 7), (31, 2302381, 15),
(37, 19, 9), (41, 431, 5), (43, 463, 7), (47, 139, 23), (53, 96331, 13),
(59, 9988553613691393812358794271, 29), (61, 2801, 5), (67, 661, 11),
(71, 211, 5), (73, 241, 6), (79, 199, 3), (83, 17210653, 41),
(89, 37, 4), (97, 367, 3)]

def char(N, p, d):

1



G = DirichletGroup(N,CyclotomicField(d))
return [eps[0] for eps in G.galois_orbits() if

eps[0].order()==d][0].minimize_base_ring()

def ms(N,p,d):
return ModularSymbols(char(N,p,d), 2, +1).cuspidal_subspace()

def modp_reductions(f,p):
# compute mod-p reductions of a newform
K = f.parent().base_ring()
fac = K.factor(p)
v = []
F0 = None
for P, e in K.factor(p):

F = K.residue_field(P)
if F0 is None:

F0 = F
phi = lambda x: x

else:
# fix map F --> F0
phi = F.hom([F.polynomial().roots(F0)[0][0]])

R = F0[[’q’]]
for i in range(F.degree()):

v.append(R([phi(F(a)^(p^i)) for a in f.list()]))
return v

Then I ran the following:

for N,p,d in data:
print N,p,d
M = ms(N,p,d)
for A in M.decomposition():

f = A.q_eigenform(5,’a’)
G = [g.list()[1:5] for g in modp_reductions(f, 2)]
K = G[0][0].parent()
V = K**4
z = [V(x) for x in G]
S = V.span(z)
print S.rank()

which output

19 487 9
4
23 37181 11
4
29 43 7
4
31 2302381 15
4
37 19 9
4
4
41 431 5
4
43 463 7
4
4
47 139 23
...

This computation means the following.

Proposition 1.1. Let A be any simple abelian variety factor of J1(N) with character
(N, p, d) in the list above (with N < 47, since that is all I’ve done so far) and A having
character of order d. Let f1, . . . , fr be the newforms associated to A, so r = dim(A).

2



Let f1, . . . , fr be the images of these newforms in F2[[q]] under reduction modulo primes
over 2. For each, let vi be the vector in F4

2 of the coefficients of q, q2, q3, q4 of f i. Then
the span of the vi’s has dimension 4.

Is that equivalent to what we need or not? It may take hours for the data to run
up to 100. Let me know if this is headed in the right direction, if I’m completely
misunderstanding everything, if something is unclear, if you want to see things more
explicitly, etc.

3



2 January 7, 2010

Is the following what you want to compute?
For each prime N between 19 and 97 (inclusive) choose a p-Eisenstein quotient A

of J1(N) (with p odd). This abelian variety A is defined over Q. Suppose we have 4
weight two newforms (not just cusp forms?!) attached to A, say f1, . . . , f4. For each of
the fi, consider the corresponding vector vi = (a1(fi), a2(fi), a3(fi), a4(fi)) of the first
four coefficients. Let O be the ring generated by all the coordinates of the vectors vi,
for i = 1, 2, 3, 4. Let

R = Z[〈a〉 : a ∈ (Z/NZ)∗] ⊂ O
be the subring generated by the diamond bracket operators. Let M be the module
generated over O by the vi (is this right?). Then M is a module over both R and O.

Let ` be a prime, typically 2, but maybe 3. Consider the R = R⊗Z F`-module

M = M ⊗Z F`

Let vi be the image of vi in M . We say the vi are “linearly independent in characteristic
` over R” if whenever

4∑
i=1

αivi = 0 ∈M,

with all αi ∈ R, then all αi = 0.
Our goal is to decide whether there are fi such that the corresponding vi are linearly

independent.

2.1 Ideas for a stupid (but correct) algorithm to do the above
computation

For starters we’ll try to come up with some non-clever way to do this computation.
Once that is nailed down we can try to come up with something much faster.

First, explicitly compute a number field K that contains the coefficients of the fi by
taking Galois closures and composite fields, etc. We may thus assume the coefficients
of the fi are all given explicitly as elements of a common number field. Let O be the
ring spanned by these coefficients, where we can compute O by taking all coefficients
up to the Sturm bound, say, and taking their Z-span. Explicitly, we will represent O
by given by a list b1, . . . , br of Z-independent elements of K.

Write the vectors vi as explicit elements of the vector space V = K4. Compute the
rank(O) · 4 elements bivj ∈ V for 1 ≤ i ≤ r and 1 ≤ j ≤ 4. Then, using Hermite normal
form, compute a Z-basis c1, . . . , ct for the Z-span M of all the bivj .

Let 〈d〉 be a generator of the diamond bracket operators group (which is cyclic since
N is prime). We will have 〈d〉(fi) = zifi for each i, where zi ∈ O is a root of unity.
Somehow compute these zi explicitly as elements of O. We can use the relationship
between diamond operators and Hecke operators: for d prime we have 〈d〉 = (Td)2−Td2 ,
so 〈d〉 acts on fi via ad(fi)2 − ad2(fi).

Let a1, . . . , as be a Z-basis for R ⊂ O. Of course we can take the ai to be successive
powers of a root of unity, but it is important that we represent them as elements of
R ⊂ O ⊂ K. Note that because R is integrally closed (being the ring of integers of Z[ζ],
we have that O/R is torsion free, so the map R ⊗ F` → O ⊗ F` is injective. For x ∈ R
let x be the image of x in O = O ⊗ F`. The injectivity remark above tells us that the
ai are linearly independent as elements of the F`-vector space O.

In the expression
4∑

i=1

αivi = 0 ∈M,

write αi =
∑s

j=1 wijaj with wij ∈ F`. Expanding out we have

4∑
i=1

s∑
j=1

wijajvi = 0.

We can explicitly compute the multiplication ajvi ∈M by lifting, using the embeddings
R ⊂ O ⊂ K that we fixed above (i.e., the zi), and reducing. Finally, the αi are all 0 if
and only if the wij are all 0.

Conclusion: The vi are linearly independent over R in characteristic ` if and only
if the 4s elements ajvi of the F` vector space M are linearly independent over F`. The
latter can be determined by linear algebra over F` (computing a determinant).

4



3 February 10, 2010

I worked on trying to do the first example. It is worrisome, regarding our entire approach
to this problem!

Hi,

Take N=19 and eps the character of order 9. There is one newform f in
S_2(eps), and it’s

f = q + (-zeta18^2 + zeta18 - 1)*q^2 + (-zeta18^4 + zeta18^3 +
zeta18^2 - 1)*q^3 + (zeta18^4 - 2*zeta18^3 + zeta18^2 - 2*zeta18 +
1)*q^4 + O(q^5)

The Galois group of Q(zeta18)/Q is cyclic of order 6, with some
generator phi. I think I’ve carried out the computation we discussed
using f, phi(f), phi^2(f), and phi^3(f). I get that these 4 are
linearly independent in characteristic p over Z[zeta18] for all primes
p *except* p=3 and p=37.

Does this make any sense to you?

The calculation we discussed before is much simpler in case that the
newform f is defined over the field Q(zeta_n), where n is the order of
the character, as we have above. In this case, we just compute the
4*phi(n) q-expansions

g_{i,j} = phi^i(zeta^j * f)
0 <= i < phi(n) and 0 <= j < 4,

then take the coefficients a_m(g_{i,j}) for m=1,2,3,4, and by viewing
each a_m as a vector over Z (in terms of a basis for Z[zeta_n], we get
4*phi(n) vectors over Z each of degree 4*phi(n). We then form the
4*phi(n) x 4*phi(n) integer matrix A with these vectors as rows, and
compute its integers determinant. The primes p that divide the
determinant are precisely the primes where the newforms {phi^i(f) : i
=0,1,2,3} are linearly dependent over Z[zeta] in characteristic p.
Anyway, this is the computation I just did. The matrix A that I got
in case N=19 has rank 14 for p=3, rank 23 for p=37, and rank 24 for
all other p (including p=2).

-- William

Here’s the Sage worksheet:

{{{id=1|
N=19
J1(N)
///
Abelian variety J1(19) of dimension 7
}}}

{{{id=2|
G = DirichletGroup(N)
///
}}}

{{{id=3|
G.0.order()
///
18
}}}

{{{id=4|
eps = G.0^2; eps.order()

5



///
9
}}}

{{{id=5|
S = CuspForms(eps, 2); S
///
Cuspidal subspace of dimension 1 of Modular Forms space of dimension 3, character [zeta18^2] and weight 2 over Cyclotomic Field of order 18 and degree 6
}}}

{{{id=11|
len(S.newforms())show(A)
///
1
}}}

{{{id=9|
f = S.newforms()[0].qexp(5); f
///
q + (-zeta18^2 + zeta18 - 1)*q^2 + (-zeta18^4 + zeta18^3 + zeta18^2 - 1)*q^3 + (zeta18^4 - 2*zeta18^3 + zeta18^2 - 2*zeta18 + 1)*q^4 + O(q^5)
}}}

{{{id=7|
f.base_ring().degree()
///
6
}}}

{{{id=6|
d = primitive_root(N); d
///
2
}}}

{{{id=12|
eps(d)
///
zeta18^2
}}}

{{{id=13|
K = f.base_ring()
print K
zeta = K.gen()
///
Cyclotomic Field of order 18 and degree 6
}}}

<p>A generator of the Galois group:</p>

{{{id=16|
phi = K.automorphisms()[-1]; phi
///
Ring endomorphism of Cyclotomic Field of order 18 and degree 6
Defn: zeta18 |--> zeta18^5

}}}

{{{id=14|
z = zeta
for i in range(6):

print z
z = phi(z)

///
zeta18

6



zeta18^5
zeta18^4 - zeta18
-zeta18^5 + zeta18^2
-zeta18^4
-zeta18^2
}}}

{{{id=21|
def apply(f, phi):

R = f.parent()
return R([phi(f[i]) for i in range(5)],prec=5)

///
}}}

{{{id=19|
fv = [f]
for i in range(3):

fv.append(apply(fv[-1],phi))
///
}}}

{{{id=18|
for g in fv: print g
///
q + (-zeta18^2 + zeta18 - 1)*q^2 + (-zeta18^4 + zeta18^3 + zeta18^2 - 1)*q^3 + (zeta18^4 - 2*zeta18^3 + zeta18^2 - 2*zeta18 + 1)*q^4 + O(q^5)
q + (zeta18^5 + zeta18 - 1)*q^2 + (-zeta18^3 - zeta18^2 - zeta18)*q^3 + (-2*zeta18^5 + 2*zeta18^3 + zeta18^2 - zeta18 - 1)*q^4 + O(q^5)
q + (zeta18^5 + zeta18^4 - zeta18 - 1)*q^2 + (-zeta18^5 + zeta18^3 + zeta18 - 1)*q^3 + (-zeta18^5 - 2*zeta18^4 - 2*zeta18^3 + zeta18 + 1)*q^4 + O(q^5)
q + (-zeta18^5 + zeta18^4 + zeta18^2 - zeta18 - 1)*q^2 + (zeta18^5 - zeta18^4 - zeta18^3 + zeta18)*q^3 + (zeta18^5 - zeta18^4 + 2*zeta18^3 - 2*zeta18^2 + zeta18 - 1)*q^4 + O(q^5)
}}}

{{{id=26|
f[1].list()
///
[1, 0, 0, 0, 0, 0]
}}}

{{{id=25|
def qexp_to_integral_vector(g):

return vector(ZZ,sum([g[i].list() for i in [1..4]], []))
///
}}}

{{{id=24|
for g in fv:

print qexp_to_integral_vector(g)
///
[1, 0, 0, 0, 0, 0, -1, 1, -1, 0, 0, 0, -1, 0, 1, 1, -1, 0, 1, -2, 1, -2, 1, 0]
[1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 1, 0, -1, -1, -1, 0, 0, -1, -1, 1, 2, 0, -2]
[1, 0, 0, 0, 0, 0, -1, -1, 0, 0, 1, 1, -1, 1, 0, 1, 0, -1, 1, 1, 0, -2, -2, -1]
[1, 0, 0, 0, 0, 0, -1, -1, 1, 0, 1, -1, 0, 1, 0, -1, -1, 1, -1, 1, -2, 2, -1, 1]
}}}

<p>Compute the integer vectors corresponding to the 24 modular forms $\varphi^i(\zeta^j \cdot f)$ for $i=0,1,2,3$ and $j=0,1,2,3,4,5$.</p>

{{{id=23|
# first compute zeta^j*f for j =0,1,..,5.
w = [zeta^j*f for j in [0..5]]
# next compute images under powers of phi
z = [w] # copy of w
for i in [0..2]:

z.append([apply(z[-1][j], phi) for j in [0..5]])
z = sum(z, [])
///
}}}

7



{{{id=28|
def qexp_to_vector(g, ell):

return vector(GF(ell), sum([g[i].list() for i in [1..4]], []))
///
}}}

{{{id=17|
zmod = [qexp_to_vector(g,3) for g in z]
span(zmod).dimension()
///
14
}}}

{{{id=27|
def qexps_to_matrix(z, ell):

k = GF(ell) if ell else ZZ
return matrix(k, [sum([g[i].list() for i in [1..4]],[]) for g in z])

///
}}}

{{{id=31|
len(z)
///
24
}}}

{{{id=29|
A = qexps_to_matrix(z,0); A
///
24 x 24 dense matrix over Integer Ring (type ’print A.str()’ to see all of the entries)
}}}

{{{id=30|
factor(A.determinant())
///
3^10 * 37
}}}

I also tried with all 6 conjugates of f :

{{{id=23|
# first compute zeta^j*f for j =0,1,..,5.
w = [zeta^j*f for j in [0..5]]
# next compute images under powers of phi
z = [w] # copy of w
for i in [0..5]:

z.append([apply(z[-1][j], phi) for j in [0..5]])
z = sum(z, [])
///
}}}

{{{id=28|
def qexp_to_vector(g, ell):

return vector(GF(ell), sum([g[i].list() for i in [1..4]], []))
///
}}}

{{{id=17|
zmod = [qexp_to_vector(g,37) for g in z]
span(zmod).dimension()
///
24
}}}

8



{{{id=27|
def qexps_to_matrix(z, ell):

k = GF(ell) if ell else ZZ
return matrix(k, [sum([g[i].list() for i in [1..4]],[]) for g in z])

///
}}}

{{{id=31|
len(z)
///
42
}}}

{{{id=29|
A = qexps_to_matrix(z,0); A
///
42 x 24 dense matrix over Integer Ring (type ’print A.str()’ to see all of the entries)
}}}

{{{id=30|
factor(A.hermite_form(include_zero_rows=False).determinant())
///
3^10
}}}

9


	September 24, 2009
	January 7, 2010
	Ideas for a stupid (but correct) algorithm to do the above computation

	February 10, 2010

