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Abstract

In this paper, we consider a special case of Chow-Heegner points that
has a simple concrete description due to Shouwu Zhang. Given a pair E, F
of nonisogenous elliptic curves, and surjective morphisms ϕE : X0(N) →
E and ϕF : X0(N) → F of curves over Q, we associate a rational point
P ∈ E(Q). We describe a numerical approach to computing P , state some
motivating results of Zhang et al. about the height of P , and present a
table of data.

1 Introduction: Zhang’s Construction

Consider a pair E,F of nonisogenous elliptic curves over Q and fix surjective
morphisms from X0(N) to each curve. We do not assume that N is the con-
ductor of either E or F , though N is necessarily a multiple of the conductor.

X0(N)
ϕE

||

ϕF

""
E F

Let (ϕE)∗ : Div(X0(N)) → Div(E) and ϕ∗F : Div(F ) → Div(X0(N)) be the
pushforward and pullback maps on divisors on algebraic curves. Let Q ∈ F (C)
be any point, and let

PϕE ,ϕF ,Q =
∑

(ϕE)∗ϕ
∗
F (Q) ∈ E(C),

where
∑

means the sum of the points in the divisor using the group law on E,
i.e., given a divisor D =

∑
niPi ∈ Div(E), we have (

∑
D)−∞ ∼ D−deg(D)∞,

which uniquely determines
∑
D.

∗Work on this paper was partly supported by National Science Foundation Grant No.
DMS-0821725.
†A modified version of this paper will be published as an appendix to [DDLR11].
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Proposition 1.1. The point PϕE ,ϕF ,Q does not depend on the choice of Q.

Proof. The composition (ϕE)∗ ◦ ϕ∗F induces a homomorphism of elliptic curves

ψ : Pic0(F ) = Jac(F )→ Jac(E) = Pic0(E).

Our hypothesis that E and F are nonisogenous implies that ψ = 0. We denote
by [D] the linear equivalence class of a divisor in the Picard group. If Q′ ∈ F (C)
is another point, then under the above composition of maps,

[Q−Q′] 7→ [(ϕE)∗ϕ
∗
F (Q)− (ϕE)∗ϕ

∗
F (Q′)] = [PQ − PQ′ ].

Thus the divisor PQ − PQ′ is linearly equivalent to 0. But F has genus 1, so
there is no rational function on F of degree 1, hence PQ = PQ′ , as claimed.

We let PϕE ,ϕF
= PϕE ,ϕF ,Q ∈ E(C), for any choice of Q.

Corollary 1.2. We have PϕE ,ϕF
∈ E(Q).

Proof. Taking Q = O ∈ F (Q), we see that the divisor (ϕE)∗ ◦ϕ∗F (Q) is rational,
so its sum is also rational.

In the rest of this paper, we write PE,F = PϕE ,ϕF
when E and F are both

optimal curves of the same conductor N , and ϕE and ϕF are as in Section 5.

1.1 Outline

In Section 2 we discuss an example in which E and F both have conductor 37.
Section 3 is about a formula of Yuan-Zhang-Zhang for the height of PE,F in
terms of the derivative of an L-function, in some cases. In Section 4, we discuss
the connection between this paper and the paper [DDLR11] about computing
Chow-Heegner points using iterated integrals. The heart of the paper is Sec-
tion 5, which describes our numerical approach to approximating PE,F . Finally,
Section 5.2 presents a table of points PE,F .

Acknowledgements: We would like to thank Ralph Greenberg, Ken Ribet,
Barry Mazur, Karl Rubin, Shouwu Zhang, and Jon Bober for helpful conversa-
tions related to this paper, and especially thank Xinyi Yuan for introducing us
to this topic, Henri Darmon for encouraging us to flesh out the details and write
it up for publication, and Victor Rotger for clarifying some issues in Section 3.
We would also like to thank John Cremona for refereeing the corresponding Sage
[S+11] code and Cremona, Bas Edixhoven and Samit Dasgupta for contributions
to Section 5.1.

2 Example: N = 37

The smallest conductor curve of rank 1 is the curve E with Cremona label 37a
(see [Cre]). The paper [MSD74] discusses the modular curve X0(37) in detail.
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It gives the affine equation y2 = −x6−9x4−11x2+37 for X0(37), and describes
how X0(37) is equipped with three independent involutions w, T and S. The
quotient of X0(37) by w is E, the quotient by T is an elliptic curve F with
F (Q) ≈ Z/3Z and Cremona label 37b, and the quotient by S is the projective
line P1.

X0(37)

ϕE

xx
ϕF

�� &&
E = X/w F = X/T P1 = X/S

The maps ϕE and ϕF have degree 2, by virtue of being induced by an involution.
As explained in [MSD74], the fiber over Q = 0 ∈ F (Q) contains 2 points:

1. the cusp [∞] ∈ X0(37)(Q), and

2. the noncuspidal affine rational point (−1,−4) = T (∞) ∈ X0(37)(Q).

We have ϕE([∞]) = 0 ∈ E(Q), and [MSD74, Prop. 3, pg. 30] implies that

ϕF ((−1,−4)) = (6, 14) = −6(0,−1),

where (0,−1) generates E(Q). We conclude that

PE,F = (6, 14) and [E(Q) : ZPE,F ] = 6.

On [MSD74, pg. 31], they remark: “It would be of the utmost interest to link
this index to something else in the theory.”

This remark motivates our desire to compute more examples. Unfortunately,
it is very difficult to generalize the above approach directly, since it involves com-
putations with X0(37) and its quotients that rely on explicit defining equations.
Just as there are multiple approaches to computing Heegner points, there are
several approaches to computing PE,F :

• a Gross-Zagier style formula for the height of PE,F (see Section 3),

• explicit evaluation of iterated integrals (see Section 4), and

• numerical approximation of the fiber in the upper half plane over a point
on F using a polynomial approximation to ϕF (see Section 5).

This paper is mainly about the last approach listed above.

3 The Formula of Yuan-Zhang-Zhang

Consider a special case of the triple product L-function of [GK92]

L(E,F, F, s) = L(E, s) · L(E,Sym2(F ), s), (1)

where E and F are elliptic curves of the same conductor N , and all L-functions
are normalized so that 1/2 is the center of the critical strip. The following
theorem is proved in [YZZ11]:
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Theorem 3.1 (Yuan-Zhang-Zhang). Assume that the local root number of
L(E,F, F, s) at every prime of bad reduction is +1 and that the root number

at infinity is −1. Then ĥ(PE,F ) = (∗) · L′(E,F, F, 12 ), where (∗) is nonzero.

Remark 3.2. The above formula resembles the Gross-Zagier formula

ĥ(PK) = (∗) · (L(E/Q, s) · L(EK/Q, s))′|s= 1
2
,

where K is a quadratic imaginary field satisfying certain hypotheses.

If one could evaluate L′(E,F, F, 12 ), e.g., by applying the algorithm of [Dok04],
along with the factor (∗) in the theorem, this would yield an algorithm to com-
pute ±PE,F (mod E(Q)tor) when the root number hypothesis is satisfied. Un-
fortunately, it appears that nobody has numerically evaluated the formula of
Theorem 3.1 in any interesting cases.

When E and F have the same squarefree conductor N , [GK92, §1] implies
that the local root number of L(E,F, F, s) at p is the same as the local root
number of E at p; computing the local root number when the level is not square
free is more complicated.

Proposition 3.3. Assume that E and F have the same squarefree conductor
N , that the local root numbers of E at primes p | N are all +1 (equivalently,
that we have ap(E) = −1) and that ran(E/Q) = 1. Then L(E,Sym2 F, 12 ) 6= 0

if and only if ĥ(PE,F ) 6= 0.

Proof. By hypothesis, we have L(E, 12 ) = 0 and L′(E, 12 ) 6= 0. Theorem 3.1 and
the factorization (1) imply that

ĥ(PE,F ) = (∗) · L′(E, 1

2
) · L(E,Sym2 F,

1

2
),

from which the result follows.

Section 5.2 contains numerous examples in which E has rank 1, F has rank
0, and yet PE,F is a torsion point. The first example is when E is 91b and
F is 91a. Then PE,F = (1, 0) is a torsion point (of order 3). In this case, we
cannot apply Proposition 3.3 since ε7 = ε13 = −1 for E. Another example is
when E is 99a and F is 99c, where we have PE,F = 0, and ε3 = ε11 = +1, but
Proposition 3.3 does not apply since the level is not square free. Fortunately,
we found an example with squarefree level 158 = 2 · 79: here E is 158b, F is
158d, we have PE,F = 0 and ε2 = ε79 = +1, so Proposition 3.3 implies that
L(E,Sym2 F, 12 ) = 0.

4 Iterated Complex Path Integrals

The paper [DDLR11] contains a general approach using iterated path integrals
to compute certain Chow-Heegner points, of which PE,F is a specific instance.
Comparing our data (Section 5.2) with theirs, we find that if E and F are opti-
mal elliptic curves over Q of the same conductor N ≤ 100, if e, f ∈ S2(Γ0(N))
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are the corresponding newforms, and if Pf,e,1 ∈ E(Q) ⊗Q Q the associated
Chow-Heegner point in the sense of [DDLR11], then 2PE,F = Pf,e,1. This is
(presumably) a consequence of [DRS11].

5 A Numerical Approach to Computing PE,F

The numerical approach to computing P that we describe in this section uses
relatively little abstract theory. It is inspired by work of Delaunay (see [Del02])
on computing the fiber of the map X0(389) → E over rational points on the
rank 2 curve E of conductor 389. We make no guarantee about how many digits
of our approximation to PE,F are correct, instead viewing this as an algorithm
to produce something that is useful for experimental mathematics only.

Let h be the upper half plane, and let Y0(N) = Γ0(N)\h ⊂ X0(N) be the
affine modular curve. Let E and F be nonisogenous optimal elliptic curve quo-
tients of X0(N), with modular parametrization maps ϕE and ϕF , and assume
both Manin constants are 1. Let ΛE and ΛF be the period lattices of E and F ,
so E ∼= C/ΛE and F ∼= C/ΛF . Viewed as a map [τ ] 7→ C/ΛE , we have, using
square brackets to denote equivalence classes, that

ϕE([τ ]) =

[ ∞∑
n=1

an
n
e2πinτ

]
,

and similarly for ϕF , where an = an(E) are the L-series coefficients of E (see
[Cre97, §2.10], which uses the oppositive sign convention). For any positive
integer B, define the polynomial

ϕE,B =

B∑
n=1

an
n
Tn ∈ Q[T ],

and similarly for ϕF,B .
To approximate PE,F , we proceed as follows. First we make some choices,

and after making these choices we run the algorithm, which will either find a
“probable” numerical approximation to PE,F or fail.

• y ∈ R>0 – minimum imaginary part of points in fiber,

• d ∈ Z>0 – degree of the first approximation to ϕF in Step 1 below,

• r ∈ R 6=0 – real number specified to b bits of precision that defines Q ∈ C/Λ,

• b′ – bits of precision when dividing points into Γ0(N) orbits, and

• n – number of trials before we give up and output FAIL.

We compute PE,F,Q using an approach that will always fail if Q is a ram-
ification point. Our algorithm will also fail if any points in the fiber over Q
are cusps. This is why we do not allow r = 0. One can modify the algorithm
to work when Q is an unramified torsion point by using modular symbols and
keeping track of images of cusps.

To increase our confidence that we have computed the right point PE,F , we
often carry out the complete computation with more than one choice of r.
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1. Low precision roots: Compute all complex double precision roots of the
polynomial ϕF,d−r. One way to do this is to use “balanced QR reduction
of the companion matrix”, as implemented in GSL.1 Record the roots that
correspond to τ ∈ h with Im(τ) ≥ y.

2. High precision roots: Compute B such that if Im(τ) ≥ y, then∣∣∣∣∣
∞∑

n=B+1

an(F )

n
τn

∣∣∣∣∣ < 2−b,

where b is the number of bits of precision of r. Summing the tail end of
the series and using that |an| ≤ n (see [GJP+09, Lem. 2.9]), we find that

B =

⌈
log(2−(b+1) · (1− e−2πy1))

−2πy

⌉
works. Next, compute the polynomial ϕF,B ∈ Q[T ], and use Newton
iteration to refine all roots saved in Step 1 to roots α of f = ϕF,B−r ∈ R[T ]
such that |f(α)| < 2−b. Save those roots that correspond to τ ∈ h with
Im(τ) ≥ y.

3. Γ0(N)-orbits: Divide the τ ’s from Step 2 into Γ0(N)-equivalence classes,
testing equivalence to the chosen bit precision b′ ≤ b, as explained in
Section 5.1. It is easy to efficiently compute the modular degree mF =
deg(ϕF ) (see [Wat02]). If we find mF distinct Γ0(N) classes of points,
we suspect that we have found the fiber over [r], so we map each element
of the fiber to E using ϕE and sum, then apply the elliptic exponential
to obtain PE,F to some precision, then output this approximation and
terminate. If we find more than mF distinct classes, there was an error
in the choices of precision in our computation, so we output FAIL (and
suggest either increasing b or decreasing b′).

4. Try again: We did not find enough points in the fiber. Systematically
replace r by r+mΩF , for m = 1,−1, 2,−2, . . ., where ΩF is the least real
period of F , then try again going to Step 1 and including the new points
found. If upon trying n choices r +mΩF in a row we find no new points,
we output FAIL and terminate the algorithm.

5.1 Determining Γ0(N) equivalency

The field of meromorphic functions invariant under Γ0(N) is generated by j(z)
and j(Nz), so if two points z1 and z2 in the upper half plane are equivalent
under Γ0(N), then z1 and z2 are equivalent under SL2(Z) and Nz1 and Nz2 are
also equivalent under SL2(Z). Because of singularities in the affine curve defined

1GSL is the the GNU scientific library, which is part of Sage [S+11]. Rough timings of
GSL for this computation: it takes less than a half second for degree 500, about 5 seconds for
degree 1000, about 45 seconds for degree 2000, and several minutes for degree 3000.
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by j(z) and j(Nz), the converse is not true: for example, z1 = (−2 + i)/5 and
z2 = (2 + i)/5 are equivalent under SL2(Z) as are 5z1 and 5z2, but z1 and z2
are not equivalent under Γ0(5). This is why the algorithm we give below must
take into account singularities.

Suppose we are given arbitrary z1 and z2 in the upper half plane. We first
find g1, g2 ∈ SL2(Z) such that wi = gi(zi) is the canonical representative for zi
in the standard fundamental domain for SL2(Z), as explained in [Cre97, §2.14]
but using interval arithmetic to avoid rounding errors. If w1 6= w2, then z1 and
z2 are not equivalent under SL2(Z), so they cannot be equivalent under Γ0(N).
Thus let w = g1(z1) = g2(z2). The elements of PSL2(Z) that send z1 to z2 are
the finitely many elements g−12 Ag1, for A ∈ Stab(w), so we check whether any
g−12 Ag1 is in Γ0(N). The only elements of the standard fundamental domain
for SL2(Z) with nontrivial stabilizers are w = i, with stabilizer generated by
S ∈ PSL2(Z) of order 2, and w = e2πi/3 with stabilizer generated by ST , where
T corresponds to z 7→ z + 1.

5.2 Data

We implemented the above algorithm in Sage [S+11]2. The columns of the ta-
bles below are as follows. The columns labeled E and F contain Cremona labels
for elliptic curves, and those labeled rE and rF contain the corresponding ranks.
The column labeled E(Q) gives a choice of generators P1, P2, . . . for the Mordell-
Weil group, with rE points of infinite order listed first, then 0, 1 or 2 torsion
points listed with a subscript of their order. The column labeled PE,F contains
a rational point close to the numerically computed Chow-Heegner point, repre-
sented in terms of the generators Pi from the column labeled E(Q), where P1

is the first generator, P2 the second, and so on. The columns labeled mE and
mF give the modular degrees of E and F . The column labeled ε’s contains the
local root numbers of L(E, s) at each bad prime. The notes column refers to
the notes after the table, which give information about the input parameters
needed to compute PE,F .

We believe that the values of PE,F are “likely” to be correct, but we empha-
size again that they are not proven correct. In the table we give an exact point,
but the algorithm computes a numerical approximation P̃E,F to PE,F ∈ E(Q).
We find what we call PE,F in the table by running through several hundred

low height points in E(Q) and find the one closest to P̃E,F ; in all cases, the

coordinates of the point we list are within 10−5 of the coordinates of P̃E,F .
The table contains every pair E,F of nonisogenous optimal elliptic curves of

the same conductor N ≤ 184 with rE = 1, and most (but not all) with N ≤ 250.
It also contains a few additional miscellaneous examples, e.g., with rE = 0 and
some of larger conductor with rF = 2. Most rows took only a few seconds
to compute, though ones with mF large in some cases took much longer; the
total CPU time to compute the entire table was about 8 hours. Unless otherwise
noted, we used y = 10−4, d = 500, b′ = 20, and r = 0.1 with 53 bits of precision,

2See http://trac.sagemath.org/sage_trac/ticket/11975.
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as in Section 5. We also repeated all computations with at least one additional
value of r 6= 0.1, and in every case got the same result (usually we used r = 0.2).

5.3 Discussion

In the table we always have 2 | [E(Q)/ tor : ZPE,F ]. In may be possible to
prove this in some cases by using that when ran(E) = 1 then the sign in the
functional equation for L(E, s) is −1, so at least one nontrivial Atkin-Lehner
involution wq acts as +1 on E, which means that the map X0(N)→ E factors
through X0(N) → X0(N)/wq. Also, there are four cases in which the index
[E(Q)/tor : ZPE,F ] is divisible by a prime ` ≥ 5. They are (106b, 106c, ` = 11),
(118a, 118d, ` = 7), (121b, 121d, ` = 7), and (158b, 158c, ` = 7). These prime
divisors do not appear to have anything to do with the invariants of E and F ,
individually.
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E εp’s rE E(Q) mE F rF mF PE,F Notes

37a + 1 (0,−1) 2 37b 0 2 −6P1

37b − 0 (8, 18)3 2 37a 1 2 P1

57a ++ 1 (2, 1) 4 57c 0 12 8P1

57a ++ 1 (2, 1) 4 57b 0 3 −8P1

57b −+ 0 (7/4,−11/8)2, (1,−1)2 3 57a 1 4 0

57b −+ 0 (7/4,−11/8)2, (1,−1)2 3 57c 0 12 0

57c −+ 0 (2, 4)5 12 57a 1 4 3P1

57c −+ 0 (2, 4)5 12 57b 0 3 P1

58a ++ 1 (0,−1) 4 58b 0 4 8P1

58b −+ 0 (−1, 2)5 4 58a 1 4 3P1

77a ++ 1 (2, 3) 4 77b 0 20 24P1 (1)

77a ++ 1 (2, 3) 4 77c 0 6 −4P1

89a + 1 (0,−1) 2 89b 0 5 4P1

91a ++ 1 (0, 0) 4 91b 1 4 4P1

91b −− 1 (−1, 3), (1, 0)3 4 91a 1 4 P2

92b −− 1 (1, 1) 6 92a 0 2 0

99a ++ 1 (2, 0), (−1, 0)2 4 99b 0 12 −4P1

99a ++ 1 (2, 0), (−1, 0)2 4 99c 0 12 0

99a ++ 1 (2, 0), (−1, 0)2 4 99d 0 6 2P1

102a + ++ 1 (2,−4), (0, 0)2 8 102b 0 16 −8P1 (1)

102a + + + 1 (2,−4), (0, 0)2 8 102c 0 24 32P1

106b ++ 1 (2, 1) 8 106a 0 6 −4P1

106b ++ 1 (2, 1) 8 106c 0 48 −88P1

106b ++ 1 (2, 1) 8 106d 0 10 12P1

112a ++ 1 (0,−2), (−2, 0)2 8 112b 0 4 0

112a ++ 1 (0,−2), (−2, 0)2 8 112c 0 8 0

118a ++ 1 (0,−1) 4 118b 0 12 −8P1 (1)

118a ++ 1 (0,−1) 4 118c 0 6 4P1

118a ++ 1 (0,−1) 4 118d 0 38 −28P1

121b + 1 (4, 5) 4 121a 0 6 4P1

121b + 1 (4, 5) 4 121c 0 6 4P1

121b + 1 (4, 5) 4 121d 0 24 −28P1 (2)

123a −− 1 (−4, 1), (−1, 4)5 20 123b 1 4 0

123b ++ 1 (1, 0) 4 123a 1 20 4P1

124a −− 1 (−2, 1), (0, 1)3 6 124b 0 6 0

128a + 1 (0, 1), (−1, 0)2 4 128b 0 8 0

128a + 1 (0, 1), (−1, 0)2 4 128c 0 4 0

128a + 1 (0, 1), (−1, 0)2 4 128d 0 8 0

129a ++ 1 (1,−5) 8 129b 0 15 −8P1

130a +−− 1 (−6, 10), (−1, 10)6 24 130b 0 8 0

130a +−− 1 (−6, 10), (−1, 10)6 24 130c 0 80 0

135a ++ 1 (4,−8) 12 135b 0 36 0 (1)

136a −− 1 (−2, 2), (0, 0)2 8 136b 0 8 0

138a + ++ 1 (1,−2), (−2, 1)2 8 138b 0 16 −16P1 (1)

138a + + + 1 (1,−2), (−2, 1)2 8 138c 0 8 −8P1

141a −− 1 (−3,−5) 28 141b 0 12 0

141a −− 1 (−3,−5) 28 141c 0 6 0

141a −− 1 (−3,−5) 28 141d 1 4 0
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E εp’s rE E(Q) mE F rF mF PE,F Notes

141a - - 1 (−3,−5) 28 141e 0 12 0

141d ++ 1 (0,−1) 4 141a 1 28 −12P1

141d ++ 1 (0,−1) 4 141b 0 12 4P1

141d ++ 1 (0,−1) 4 141c 0 6 4P1

141d ++ 1 (0,−1) 4 141e 0 12 4P1

142a - - 1 (1, 1) 36 142b 1 4 0

142a - - 1 (1, 1) 36 142c 0 9 0

142a −− 1 (1, 1) 36 142d 0 4 0

142a −− 1 (1, 1) 36 142e 0 324 0 (2)

142b ++ 1 (−1, 0) 4 142a 1 36 4P1 (1)

142b ++ 1 (−1, 0) 4 142c 0 9 −4P1

142b ++ 1 (−1, 0) 4 142d 0 4 4P1

142b ++ 1 (−1, 0) 4 142e 0 324 8P1 (2)

152a ++ 1 (−1,−2) 8 152b 0 8 0

153a ++ 1 (0, 1) 8 153b 1 16 8P1

153a ++ 1 (0, 1) 8 153c 0 8 8P1

153a ++ 1 (0, 1) 8 153d 0 24 0

153b −− 1 (5,−14) 16 153a 1 8 0

153b −− 1 (5,−14) 16 153d 0 24 0

154a + ++ 1 (5, 3), (−6, 3)2 24 154b 0 24 −24P1

154a + ++ 1 (5, 3), (−6, 3)2 24 154c 0 16 16P1

155a −− 1 (5/4, 31/8), (0, 2)5 20 155b 0 8 0

155a −− 1 (5/4, 31/8), (0, 2)5 20 155c 1 4 0

155c ++ 1 (1,−1) 4 155a 1 20 −12P1

155c ++ 1 (1,−1) 4 155b 0 8 4P1

156a −+− 1 (1, 1), (2, 0)2 12 156b 0 12 0 (1)

158a −− 1 (−1,−4) 32 158b 1 8 0

158a −− 1 (−1,−4) 32 158c 0 48 0 (1)

158a −− 1 (−1,−4) 32 158d 0 40 0

158a −− 1 (−1,−4) 32 158e 0 6 0

158b ++ 1 (0,−1) 8 158a 1 32 −8P1

158b ++ 1 (0,−1) 8 158c 0 48 −56P1 (1)

158b ++ 1 (0,−1) 8 158d 0 40 0

158b ++ 1 (0,−1) 8 158e 0 6 −8P1

160a ++ 1 (2,−2), (1, 0)2 8 160b 0 8 0

162a ++ 1 (−2, 4), (1, 1)3 12 162b 0 6 0

162a ++ 1 (−2, 4), (1, 1)3 12 162c 0 6 0

162a ++ 1 (−2, 4), (1, 1)3 12 162d 0 12 0

170a +−− 1 (0, 2), (1,−1)2 16 170d 0 12 0

170a +−− 1 (0, 2), (1,−1)2 16 170e 0 20 0

171b −− 1 (2,−5) 8 171a 0 12 0

171b −− 1 (2,−5) 8 171c 0 96 0 (1)

171b −− 1 (2,−5) 8 171d 0 32 0

175a −− 1 (2,−3) 8 175b 1 16 0 (1)

175a −− 1 (2,−3) 8 175c 0 40 0 (1)

175b ++ 1 (−3, 12) 16 175a 1 8 16P1

175b ++ 1 (−3, 12) 16 175c 0 40 16P1 (1)

176c −− 1 (1,−2) 8 176b 0 8 0 (1)
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E εp’s rE E(Q) mE F rF mF PE,F Notes

176c −− 1 (1,−2) 8 176a 0 16 0

176c −− 1 (1,−2) 8 176b 0 8 0 (1)

184a −− 1 (0, 1) 8 184c 0 12 0

184a −− 1 (0, 1) 8 184d 0 24 0

184b ++ 1 (2,−1) 8 184a 1 8 0

184b ++ 1 (2,−1) 8 184c 0 12 0

184b ++ 1 (2,−1) 8 184d 0 24 0

185a ++ 1 (4,−13) 48 185b 1 8 8P1

185a ++ 1 (4,−13) 48 185c 1 6 24P1

185b −− 1 (0, 2) 8 185c 1 6 0

185c ++ 1 (−5/4, 3/8), (−1, 0)2 6 185b 1 8 2P1

189a ++ 1 (−1,−2) 12 189b 1 12 −12P1

189a ++ 1 (−1,−2) 12 189c 0 12 12P1

189b −− 1 (−3, 9), (3, 0)3 12 189a 1 12 0

189b −− 1 (−3, 9), (3, 0)3 12 189c 0 12 0

190a −+− 1 (13,−47) 88 190b 1 8 0

190a −+− 1 (13,−47) 88 190c 0 24 0 (1)

190b + ++ 1 (1, 2) 8 190c 0 24 16P1 (1)

192a ++ 1 (3, 2), (−1, 0)2 8 192b 0 8 0

192a ++ 1 (3, 2), (−1, 0)2 8 192c 0 8 0

192a ++ 1 (3, 2), (−1, 0)2 8 192d 0 8 0

196a −− 1 (0,−1) 6 196b 0 42 0 (1)

198a +−− 1 (−1,−4), (−4, 2)2 32 198b 0 32 0 (1)

198a +−− 1 (−1,−4), (−4, 2)2 32 198c 0 32 0

198a +−− 1 (−1,−4), (−4, 2)2 32 198d 0 32 0 (1)

198a +−− 1 (−1,−4), (−4, 2)2 32 198e 0 160 0 (1)

200b −− 1 (−1, 1), (−2, 0)2 8 200c 0 24 0

200b −− 1 (−1, 1), (−2, 0)2 8 200d 0 40 0 (1)

200b −− 1 (−1, 1), (−2, 0)2 8 200e 0 24 0

201a ++ 1 (1,−2) 12 201b 1 12 4P1

201b −− 1 (−1, 2) 12 201a 1 12 0

201c ++ 1 (16,−7) 60 201a 1 12 −24P1

201c ++ 1 (16,−7) 60 201b 1 12 8P1

203b −− 1 (2,−5) 8 203a 0 48 0

203b −− 1 (2,−5) 8 203c 0 12 0

205a −− 1 (−1, 8), (2, 1)4 12 205b 0 16 0

205a −− 1 (−1, 8), (2, 1)4 12 205c 0 8 0

208a −− 1 (4,−8) 16 208c 0 12 0

208a −− 1 (4,−8) 16 208d 0 48 0 (1)

208b ++ 1 (4, 4) 16 208a 1 16 0 (1)

208b ++ 1 (4, 4) 16 208c 0 12 0

208b ++ 1 (4, 4) 16 208d 0 48 0 (1)

212a −− 1 (2, 2) 12 212b 0 21 0

214a −− 1 (0,−4) 28 214b 1 12 0 (1)

214a −− 1 (0,−4) 28 214d 0 12 0

214b ++ 1 (0, 0) 12 214a 1 28 −8P1 (1)

214b ++ 1 (0, 0) 12 214d 0 12 −4P1
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214c ++ 1 (11, 10) 60 214a 1 28 −4P1 (1)

214c ++ 1 (11, 10) 60 214d 0 12 16P1

214c ++ 1 (11, 10) 60 214b 1 12 12P1 (1)

216a ++ 1 (−2,−6) 24 216b 0 24 0

219a ++ 1 (2,−1) 12 219c 1 60 −12P1 (1)

219a ++ 1 (2,−1) 12 219b 1 12 −4P1

216a ++ 1 (−2,−6) 24 216d 0 72 0

219b −− 1 (−3/4,−1/8), (0, 1)3 12 219a 1 12 0

219b −− 1 (−3/4,−1/8), (0, 1)3 12 219c 1 60 0 (1)

219c ++ 1 (−6, 7), (10,−5)2 60 219a 1 12 −12P1

219c ++ 1 (−6, 7), (10,−5)2 60 219b 1 12 4P1

220a −−+ 1 (−7, 11), (15, 55)6 36 220b 0 12 0

224a ++ 1 (1, 2), (0, 0)2 8 224b 0 8 0

225a ++ 1 (1, 1) 8 225b 0 40 0 (1)

225e −− 1 (−5, 22) 48 225a 1 8 0 (1)

225e −− 1 (−5, 22) 48 225b 0 40 0 (1)

228b −+− 1 (3, 6) 24 228a 0 18 0

232a ++ 1 (2,−4) 16 232b 0 16 0

234c + + + 1 (1,−2), (−2, 1)2 16 234b 0 48 0 (1)

234c + + + 1 (1,−2), (−2, 1)2 16 234e 0 20 0 (1)

235a −− 1 (−2, 3) 12 235c 0 18 0 (1)

236a −− 1 (1,−1) 6 236b 0 14 0

238a −−+ 1 (24, 100), (−8, 4)2 112 238b 1 8 0 (1)

238a −−+ 1 (24, 100), (−8, 4)2 112 238c 0 16 0 (1)

238a −−+ 1 (24, 100), (−8, 4)2 112 238d 0 16 0 (1)

238b + ++ 1 (1, 1), (0, 0)2 8 238a 1 112 12P1 (1)

238b + ++ 1 (1, 1), (0, 0)2 8 238c 0 16 −4P1 (1)

238b + ++ 1 (1, 1), (0, 0)2 8 238d 0 16 4P1 (1)

240c + + + 1 (1, 2), (0, 0)2 16 240a 0 16 0

240c + + + 1 (1, 2), (0, 0)2 16 240d 0 16 0 (1)

243a + 1 (1, 0) 6 243b 0 9 0 (1)

245a −− 1 (7, 17) 48 245c 1 32 0

246d + ++ 1 (3,−6), (4,−2)2 48 246a 0 84 24P1 (1)

446a ++ 1 (4,−6) 24 446d 2 88 0 (2)

446b −− 1 (5,−10) 56 446d 2 88 0 (2)

446d +− 2 - 88 446a 1 12 0 (1)

446d +− 2 - 88 446b 1 56 0 (1)

681a ++ 1 (4, 4) 32 681c 2 96 −24P1 (2)

Notes:

(1) We used y = 10−5 and d = 1500, which takes a few minutes.

(2) We used y = 1
2 · 10−5 and d = 3000, which takes over an hour.
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