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Abstract. In this paper, we study p-divisibility of discriminants of
Hecke algebras associated to spaces of cusp forms of prime level. By
considering cusp forms of weight bigger than 2, we are are led to make a
precise conjecture about indexes of Hecke algebras in their normalisation
which implies (if true) the surprising conjecture that there are no mod p
congruences between non-conjugate newforms in Sz (1o (p)), but there are
almost always many such congruences when the weight is bigger than 2.

1 Basic Definitions

We first recall some commutative algebra related to discriminants, then introduce
Hecke algebras of spaces of cusp forms.

1.1 Commutative Algebra

In this section we recall the definition of discriminant of a finite algebra and note
that the discriminant is nonzero if and only if no base extension of the algebra
contains nilpotents.

Let R be a ring and let A be an R-algebra that is free of finite rank as an R-
module. The trace of x € A is the trace, in the sense of linear algebra, of left
multiplication by x.

Definition 1 (Discriminant). Let wy,... ,w, be an R-basis for A. Then the
discriminant disc(A) of A is the determinant of the n x n matriz (tr(w,w;)).

The discriminant is only well-defined modulo squares of units in R. When R = Z
the discriminant is well defined, since the only units are £1.

We say that A is separable over R if for every extension R’ of R, the ring
A ® R’ contains no nilpotents.
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Proposition 1. Suppose R is a field. Then A has nonzero discriminant if and
only if A is separable over R.

Proof. For the convenience of the reader, we summarize the proof in [Mat86]
§26]. If A contains a nilpotent then that nilpotent is in the kernel of the trace
pairing, so the discriminant is 0. Conversely, if A is separable then we may
assume that R is algebraically closed. Then A is an Artinian reduced ring, hence
isomorphic as a ring to a finite product of copies of R, since R is algebraically
closed. Thus the trace form on A is nondegenerate.

1.2 The Discriminant Valuation

We next introduce Hecke algebras attached to certain spaces of cusp forms of
prime level p, define the discriminant valuation as the exponent of the largest
power of p that divides the discriminant, and observe that there are eigenform
congruences modulo p exactly when the discriminant valuation is positive. We
then present an example to illustrate the definitions.

Let I' be a congruence subgroup of SLa(Z). In this paper, we will only con-
sider I' = Iy(p) for p prime. For any positive integer k, let Si(I") denote the
space of holomorphic weight & cusp forms for I'. Let

T=2...,T,,...] C End(Sp(I"))

be the associated Hecke algebra, which is generated by Hecke operators T, for
all integers n, including n = p (we will sometimes write U, for T,). Then T is
a commutative ring that is free as a module over Z of rank equal to dim Sy ().
We will also sometimes consider the image TV of T in End (S (I")™%).

Definition 2 (Discriminant Valuation). Let p be a prime, k a positive in-
teger, and suppose that I' = Iy(p). Let T be the corresponding Hecke algebra.
Then the discriminant valuation of I" in weight k is

di(I') = ord,(disc(T)).

We expect that di(I") is finite for the following reason. The Hecke operators
T, , with n not divisible by p, are diagonalizable since they are self adjoint with
respect to the Petersson inner product. When & = 2 one knows that U, is
diagonalizable since the level is square free, and when k > 2 one expects this (see
[CEQ]]). If T contains no nilpotents, Proposition [implies that the discriminant
of T is nonzero. Thus di(I") is finite when k& = 2 and conjectured to be finite
when k > 2.

Let p be a prime and suppose that I' = I'y(p). A normalised eigenform is an
element f = > anq" € Sp(I') that is an eigenvector for all Hecke operators Ty,
including those that divide p, normalised so that a; = 1. The quantity dy(I") is of
interest because it measures mod p congruences between normalised eigenforms
in Sk (F)
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Proposition 2. Assume that di(I") is finite. The discriminant valuation dy(I")
is positive (i.e., the discriminant is divisible by p) if and only if there is a con-
gruence in characteristic p between two normalized eigenforms in Si(I"). (The
two congruent eigenforms might be Galois conjugate.)

Proof. 1t follows from Proposition 0l that dy(I") > 0 if and only if T ® F, is not
separable. The Artinian ring T ® F, is not separable if and only if the number
of ring homomorphisms T ® F, — F,, is less than

dimfp T® Fp = dimg Sk(F)

Since di(I") is finite, the number of ring homomorphisms T ® Qp — Qp equals
dime S (I'). The proposition follows from the fact that for any ring R, there
is a bijection between ring homomorphisms T — R and normalised eigenforms
with g-expansion in R.

The same proof also shows that a prime ¢ divides the discriminant of T if and
only if there is a congruence mod £ between two normalized eigenforms in Sy (I)

Ezample 1. If I' = T(389) and k = 2, then dimg S2(I") = 32. Let f be the
characteristic polynomial of T5. One can check that f is square free and 389
exactly divides the discriminant of f. This implies that do(I") = 1 and that T
generates T ® Zssg as an algebra over Zsgg. (If 7o only generated a subring of
T ® Z3gg of finite index > 1, then the discriminant of f would be divisible by
3892.)

Modulo 389 the characteristic polynomial f is congruent to

(x4 2)(z + 56)(z + 135)(z + 158)(z + 175)%(z + 315)(z + 342)(2? + 387)
(2% 4+ 972 + 164) (2% + 231z + 64) (2% + 2862 + 63)(2° + 88z* + 19623+
11322 + 168z + 349) (2! + 276210 + 1822° + 132® + 29827 + 31625+
2132° + 248z 4 10823 + 28322 + = + 101)

The factor (z + 175)? indicates that T ® F3gg is not separable over Fagg since
the image of (f/(z + 175))(T2) in T ® Fagg is nilpotent (it is nonzero but its
square is 0). There are 32 eigenforms over Q2 but only 31 mod 389 eigenforms,
so there must be a congruence. There is a newform F in Sy (17(389), Z3gg) whose
as term is a root of

2% + (=39 + 190 - 389 + 96 - 3897 + - - - ) + (—106 + 43 - 389 + 19 - 389% + - ).

There is a congruence between F and its Gal(Qsg9/Qsso)-conjugate.

2 Computing Discriminants

In this section we sketch the algorithm that we use for computing the discrimi-
nants mentioned in this paper.
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This algorithm was inspired by a discussion of the second author with Hen-
drik Lenstra. We leave the details of converting the description below into stan-
dard matrix operations to the reader. Also, the modular symbols algorithms
needed to compute Hecke operators are quite involved.

Let I' = Iy(p), and let k& > 2 be an integer. The following sketches an
algorithm for computing the discriminant of the Hecke algebra T acting on

Si(I).

1. For any given n, we can explicitly compute a matrix that represents the
action of Hecke operators T, on Si(I') using modular symbols. We use
the second author’s MAGMA [BCP97] packages for computing with mod-
ular symbols, which builds on work of many people (including [Cre97] and
[Mer94]).

2. Using the Sturm bound, as described in the appendix to [LS02], find an
integer b such that Ti,... T} generate T as a Z-module. (The integer b is
[(k/12) - [SLa(Z) : T]].)

3. Find a subset B of the T; that form a Q-basis for T ®z Q. (This uses Gauss
elimination.)

4. View T as a ring of matrices acting on Q¢, where d = dim(Sy(I")) and try
random sparse vectors v € Q% until we find one such that the set of vectors
C ={T(v): T € B} are linearly independent.

5. Write each of T (v), ... , T (v) as Q-linear combinations of the elements of C'.

6. Find a Z-basis D for the Z-span of these Q-linear combinations of elements
of C. (This basis D corresponds to a Z-basis for T, but is much easier to
find that directly looking for a Z-basis in the space of d x d matrices that T
is naturally computed in.)

7. Unwinding what we have done in the previous steps, find the trace pairing
on the elements of D, and deduce the discriminant of T by computing the
determinant of the trace pairing matrix.

A very time-consuming step, at least in our implementation, is computing D
from Ty (v), ... ,Tp(v) expressed in terms of C, and this explains why we embed
T in Q% instead of viewing the elements of T as vectors in Q@*¢.

An implementation by the second author of the above algorithm is included
with the MAGMA computer algebra system. The relevant source code is in the
file Geometry/ModSym/linalg.m in the package directory (or ask the second au-
thor of the apper to send you a copy 1linalg.m). We illustrate the use of MAGMA
to compute discriminants below, which were run under MAGMA V2.10-21 for
Linux on a computer with an Athlon 2800MP processor (2.1Ghz).

> M := ModularSymbols(389,2, +1);

> S := CuspidalSubspace(M);

> time D := DiscriminantOfHeckeAlgebra(S);
Time: 0.750

> D;

629670054720061882880174736321392595498204931550235108311\
04000000
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> Factorisation(D);

[ <2, B3>, <3, 4>, <5, 6>, <31, 2>, <37, 1>, <389, 1>, ...]
> M := ModularSymbols(997,2, +1); S := CuspidalSubspace(M);
> time D := DiscriminantOfHeckeAlgebra(S);

Time: 55.600

The reason for the +1 in the construction of modular symbols is so that we
compute on a space that is isomorphic as a T-module to one copy of Sa(Io(p)),
instead of two copies.

3 Data about Discriminant Valuations

In this section we report on our extensive computations of dy(Io(p)). We first
note that there is only one p < 50000 such that da(Io(p)) > 0. Next we give a
table of values of d4(I(p)), which seems to exhibit a nice pattern.

3.1 Weight Two

Theorem 1. The only prime p < 60000 such that do(IH(p)) > 0 is p = 389,
with the possible exception of 50923 and 51437.

Computations in this direction by the second author have been cited in [Rib99],
IMS01], [OW02], and [MOO02]. For example, Theorem [ is used for p < 1000 in
IMSO01] as a crucial step in proving that if E is an elliptic curve over Q(u,), with

17 < p < 1000, then not all elements of E(Q)[p| are rational over Q(u,).

Proof. This is the result of a large computer computation. The rest of this proof
describes how we did the computation, so the reader has some idea how to repli-
cate or extend the computation. The computation described below took about
one week using a cluster equipped with 10 Athlon 2000MP processors. The com-
putations are nontrivial; we compute spaces of modular symbols, supersingular
points, and Hecke operators on spaces of dimensions up to 5000.

The aim is to determine whether or not p divides the discriminant of the
Hecke algebra of level p for each p < 60000. If T is an operator with integral
characteristic polynomial, we write disc(T") for disc(charpoly(7')), which also
equals disc(Z[T]). We will often use that

disc(T) mod p = disc(charpoly(T) mod p).

We ruled out the possibility that di(Io(p)) > 0 for most levels p < 60000
by computing characteristic polynomials of Hecke operators using an algorithm
that the second author and D. Kohel implemented in MAGMA ([BCP97]), which
is based on the Mestre-Oesterle method of graphs [Mes86] (or contact the sec-
ond author for an English translation). Our implementation is available as the
“Module of Supersingular Points” package that comes with MAGMA. We com-
puted disc(T;) modulo p for several small primes ¢, and in most cases found a
prime ¢ such that this discriminant is nonzero. The following table summarises
how often we used each prime ¢ (note that there are 6057 primes up to 60000):
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number of p < 60000 where ¢ smallest s.t. disc(T,) # 0 mod p
5809 times
161 (largest: 59471)
43 (largest: 57793)
7 |15 (largest: 58699)
11]15 (the smallest is 307; the largest 50971)
13|12 (they are 577 and 5417)
17|3 (they are 17209, 24533, and 47387)
19|1 (it is 15661 )

T W N

The numbers in the right column sum to 6049, so 8 levels are missing. These
are

389, 487, 2341, 7057, 15641, 28279, 50923, and 51437.

(The last two are still being processed. 51437 has the property that disc(T,) =0
for ¢ = 2,3,...,17.) We determined the situation with the remaining 6 levels
using Hecke operators T,, with n composite.

P How we rule level p out, if possible
389 |p does divide discriminant
487 |using charpoly(Ti2)
2341 |using charpoly(7s)
7057 |using charpoly(Tig)
(Ts
(

15641 |using charpoly(T)
28279|using charpoly(T34)

Computing T,, with n composite is very time consuming when p is large,
so it is important to choose the right T, quickly. For p = 28279, here is a
trick we used to quickly find an n such that disc(T},) is not divisible by p. This
trick might be used to speed up the computation for some other levels. The
key idea is to efficiently discover which T;, to compute. Computing 7T, on the
full space of modular symbols is difficult, but using projections we can compute
T, on subspaces of modular symbols with small dimension more quickly (see,
e.g., [Ste00, §3.5.2]). Let M be the space of mod p modular symbols of level
p = 28279, and let f = ged(charpoly(Tz), deriv(charpoly(72))). Let V' be the
kernel of f(T%) (this takes 7 minutes to compute). If V' = 0, we would be done,
since then disc(T>) # 0 € F,. In fact, V has dimension 7. We find the first
few integers n so that the charpoly of T, on V has distinct roots, and they are
n = 34, 47, 53, and 89. We then computed charpoly(734) directly on the whole
space and found that it has distinct roots modulo p.

3.2 Some Data about Weight 4

The following are the valuations d = d4(I5(p)) at p of the discriminant of the
Hecke algebras associated to S4(Io(p)) for p < 500. This data suggests a pattern,
which motivates Conjecture [0 below.
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2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
0o 0o 0o oo 2 2 2 2 4 4 6 6 6 6 8 8
61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139
10 10 10 12 12 12 14 16 16 16 16 18 18 20 20 22 24
149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233
24 24 26 26 26 28 28 30 30 32 32 32 34 36 36 38 38
239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337
38 40 40 42 42 44 44 46 46 46 48 50 50 52 52 54 56
347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439
56 58 H8 58 60 62 62 62 65 66 66 68 68 70 70 T2 72
443 449 457 461 463 467 479 487 491 499

72 74 76 76 76 76 78 80 80 82

AV I AT IATV | ATV AT |

4 Speculations

Motivated by the promise of a pattern suggested by the table in Section[3.2, we
computed di(Ip(p)) for many values of k and p. Our observations led us to the
following results and conjectures.

Theorem 2. Suppose p is a prime and k > 4 is an even integer. Then
di(I'o(p)) > 0 unless

in which case di(IH(p)) = 0.

Proof. From [Rib91], mod p eigenforms on Iy(p) of weight k arise exactly from
mod p eigenforms on I(1) of weight (k/2)(p+1). Moreover, there is an equality
of dimensions of vector spaces:

dim Sy 2) (p+1)(Lo(1)) + dim S(x/2)(p+1)— (p—1) (L0(1)) = dim Sk (Lo (p)).

Thus the dimension of Si(Ip(p)) is bigger than the number of mod p eigen-
forms whenever dim S /2)(p+1)—(p—1)(£0(1)) is non-zero. The cases of dimension
zero correspond exactly to the finite list of exceptions above, for which one can
explicitly calculate that di(Io(p)) = 0.

Note that for k = 2, however, there is a canonical identification of spaces

S(p+1)(F0(1)7 Fy) ~ S:(Lo(p), Fp),

described geometrically in [Gro90]. For k = 4, the data suggests that the dis-
criminants d4 (I (p)) are significantly larger than zero for large p, and the table
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above suggests a formula of the form 2- |p/12] (Not entirely co-incidentally, this
is the difference in dimension of the spaces S4(Io(p)) and Sa(p41)(10(1))). This
exact formula is not correct, however, as evidenced by the case when p = 139.
If we consider the Hecke algebra T4 for p = 139 in more detail, however, we
observe that T4 ® Q139 is ramified at 139, and in particular contains two copies
of the field Q1gg(\/@). Just as in the case when k = 2 and p = 389, there is a
“self congruence” between the associated ramified eigenforms and their Galois
conjugates. For all other p in the range of the table, there is no ramification, and
all congruences take place between distinct eigenforms. Such congruences are
measured by the index of the Hecke algebra, which is defined to be the index of
T in its normalisation T. If we are only interested in mod p congruences (rather
than mod ¢ congruences for £ # p), one can restrict to the index of T® Z,, inside
its normalisation. There is a direct relation between the discriminant and the
index. Suppose that T ® Q, = [] K; for certain fields K;/Q, (We may assume
here that T is not nilpotent, for otherwise both the discriminant and index are
infinite). Then if 4, (I") = ord, ([T, T]), then

dp(I') = 2iy(I) + Z ord, (A(Ki/Qp))-

If we now return to the example &k = 4 and p = 139, we see that the discrepancy
from the discriminant d,(l5(139)) = 24 to the estimate 2|139/12] = 22 is
exactly accounted for by the two eigenforms with coefficients in Q39(v/139),
which contribute 2 to the above formula. This leads us to predict that the index
is exactly given by the formula |p/12]. Note that for primes p this is exactly
the dimension of S,43(Io(1)). Similar computations lead to the following more
general conjecture.

Let k = 2m be an even integer and p a prime. Let T be the Hecke algebra
associated to Sk(Io(p)) and let T be the integral closure of T in T ® Q (which
is a product of number fields).

Conjecture 1. Suppose p > k — 1. Then

ond, (%) = [ F5 ] (5 + atwm),

where
0 ifp=1 (mod 12),
3. fgW ifp=5 (mod 12),
a(p,m) = [m]
2. ; ifp=7 (mod 12),

a(5,m)+a(7,m) ifp=11 (mod 12).

Here @) is the binomial coefficient “z choose y”, and floor and ceiling are as
usual. The conjecture is very false if k > p. B

When k = 2, the conjecture specializes to the assertion that [T : T] is not
divisible by p. A possibly more familiar concrete consequence of the conjecture is
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the following conjecture about elliptic curves. The modular degree of an elliptic
curve F is the smallest degree of a surjective morphism Xo(N) — E, where N
is the conductor of E.

Conjecture 2. Suppose F is an elliptic curve of prime conductor p. Then p does
not divide the modular degree mg of E.

Using the algorithm in [Wat02], M. Watkins has computed modular degrees of
a huge number of elliptic curves of prime conductor p < 107, and not found a
counterexample. Looking at smaller data, there is only one elliptic curve E of
prime conductor p < 20000 such that the modular degree of E is even as big
as the conductor of F, and that is a curve of conductor 13723. This curve has
equation [1,1,1,—10481,408636], modular degree mgr = 16176 = 2% .3 - 337.
The modular degree can be divisible by large primes. For example, there is
a Neumann-Setzer elliptic curve of prime conductor 90687593 whose modular
degree is 1280092043, which is over 14 times as big as 90687593. In general,
for an elliptic curve of conductor N, one has the estimate mg > N7/67¢ (see
[Wat04]).

5 Conjectures Inspired by Conjecture [1]

First, some notation. Let p be an odd prime. Let I" = I'4(p), and let
Sk(R) := Sk(I)"™" ® R.

The spaces Sj, carry an action of the Hecke algebra T},°V, and a Fricke involution
wp. If % € R, the space Sj; can be decomposed into 4+ and — eigenspaces for wy,.
We call the resulting spaces S,:' and S, respectively. Similarly, let M ,j and M,
be the 4+1 and —1 eigenspaces for w, on the full spaces of new modular forms
of weight k for Iy(p).

It follows from [AL70, Lem. 7] (which is an explicit formula for the trace to
lower level) and the fact that U, and w, both preserve the new subspace, that
the action of the Hecke operator U, on Sj, is given by the formula

U, = —p(k’Q)/zwp.
This gives rise to two quotients of the Hecke algebra:
T+ = TneW/(Up + p(k72)/2) and T~ = TneW/(Up . p(k:72)/2).

where T* and T~ act on ST and S, respectively. Recall that T is the normal-
ization (integral closure) of T in T ® Q. Let T"*V denote the integral closure of
Tl’leW in Tnew ® Q.

Lemma 1. There are injections

Y «y TH @ T < TROV,
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We now begin stating some conjectures regarding the rings T+.

Conjecture 3. Let k < p—1. Then TT and T~ are integrally closed. Equivalently,

all congruences between distinct eigenforms in Sy (Z,) take place between + and
— eigenforms.

Note that for k = 2, there cannot be any congruences between + and — forms
because this would force 1 = —1 mod p, which is false, because p is odd. Thus
we recover the conjecture that p 4 [T : T| when k& = 2. Our further conjectures
go on to describe explicitly the congruences between forms in S,j and Sy .

Let E5 be the non-holomorphic Eisenstein series of weight 2. The g-expansion
of F5 is given explicitly by

E2:1—24iq” > d
n=1

dn

Moreover, the function E3 = Es(7) — pEs(pr) is holomorphic of weight 2 and
level I'h(p), and moreover on g-expansions, E5 = E5 mod p.

Lemma 2. Letp > 3. Let f € My(Io(p), Fy) be a Hecke eigenform. Then 0f is
an eigenform inside Sky2(Lo(p), Fp).

Proof. One knows that 0f = 0f — kFEyf/12 is of weight k + 2. On g-expansions,
Es = E5 mod p, and thus for p > 3,

0f =0f +kE3f/12 (mod p)

is the reduction of a weight k + 2 form of level p. It is easy to see that 6f is a
cuspidal Hecke eigenform.

Let us now assume Conjecture [3 and consider the implications for k = 4 in

more detail. The space of modular forms My (Iy(p), F,) consists precisely of So
and the Eisenstein series £5. The map 6 defined above induces maps:

0:S5(F,) — Su(F,),  0: M, (F,) = Su(F,).

The images are distinct, since 6f = 6g implies (with some care about a,) that

=g

Congecture 4. Let f € S2(Z,) and g € Si(Z,) be two eigenforms such that
0f =g mod p. Then the eigenvalue of w, on f and g have opposite signs.

Assuming this, we get inclusions:
0S5 (Fy) = Sy (Fp),  OMy (Fp) — Sf(Fp).

Now we are ready to state our main conjecture:
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Conjecture 5. There is an Hecke equivariant exact sequence:
0— QSJ(FP) — Sy (Fp) - SI(FP) - QME(FP) — 0.

Moreover, the map S; (F,,) — Si (F,) here is the largest such equivariant map
between these spaces. Equivalently, a residual eigenform of weight 4 and level p
occurs in both the + and — spaces if and only if it is not in the image of 6.

Let us give some consequences of our conjectures for the index of T™" inside
its normalisation. Fix a residual representation p : Gal(Q/Q) — GL2(F,) and
consider the associated maximal ideal m inside Ty4. If p lies in the image of 6
then our conjecture implies that it is not congruent to any other eigenform. If p
is not in the image of #, then it should arise exactly from a pair of eigenforms,
one inside S (Qp) and one inside S, (Qp). Suppose that ¢ = p". If there is no
ramification in T ® Q over p (this is often true), then the + and — eigenforms
will both be defined over the ring W (F,) of Witt vectors of F,. Since U, = p on
S; and —p on S, these forms can be at most congruent modulo p. Thus the
completed Hecke algebra (T4)y, is exactly

{(a,b) e W(F,) @ W(F,),la=b mod p}.

One sees that this has index ¢ = p" inside its normalisation. Thus the (log of
the) total index is equal to Y 7; over all eigenforms that occur inside S and
S, , which from our exact sequence we see is equal to

dim S; — dim S5 .
Conjecture [I] when k = 4, would then follow from the equality of dimensions:

dim S (F,) — dim S5 (F,) = {%J .
We expect that something similar, but a little more complicated, should
happen in general. In weight 2k, there are mod p*~" congruences exactly between
forms in the image of #7~! but not of 4.

5.1 Examples

We write small s’s and m’s for dimensions below.

Let p = 101. Then s =1, my =7+ 1 =28, s; =9, s; = 16. We predict
the index should be 9 — 1 = 8 = [101/12]. In the table below, we show the
characteristic polynomials of T on S; and S, and for weight 2, we take the
characteristic polynomial of 875 (or the same, taking F'(x/2) where F(z) is the
characteristic polynomial of T5). Note that we have to add the Eisenstein series,
which has characteristic polynomial z — 1 — 2, which becomes x — 6 = x + 95
mod 101 under 6.
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Factors of the Characteristic Polynomial of 7> for p = 101.

053 (F101)[S5 (F101) Si (Fi01) OM; (F101)
() (z) (x 4 46) (x +95)
(az + 46) (x +95) (22 + 90z + 78)
(22 + 582 + 100) |(22 + 58z + 100) (2 + 962 + 36)
(5 + 224 + 272 |(22 + 90z + 78) (a + 1622
+4922% + Tx + 65)| (2% + 962 + 36) +35z + 72)
(23 + 1622 + 35z + 72)
(2 + 22* + 2723
+492? 4 Tz + 65)

Here are some further conjectures when k > 4.

Conjecture 6. Let p and k be such that 4 < &k < p — 1. There is an Hecke
equivariant exact sequence:

0—— GSI:—Q(FP) - SI:(FP) - S;(Fp) - QSI;—Q(FP) — 0.

Moreover, all forms not in the image of 6 contribute maximally to the index (a
factor of p(*=2)/2). Thus the total index should be equal to
(k—2

T)(dim SF—dimS; ,) + the index at level p and weight k — 2.

This is the sum
k
2n —2) _
Z 32n Son—2)-

When k£ = 4, we need to add the Eisenstein series to S, in our previous
conjecture. Note that s; — Sp_q =8, — sz,r_2 for k > 4 (and with s, replaced
by m5 when k = 2). This follows from our conjectures, but can easily be proved
directly. As an example, when p = 101, we have sj =15, =09, sg = 17,
sg = 26, sfy = 34, s;, = 42, s, = 51, and so we would predict the indexes Ij,
to be as given in the following table:

k |[1x?

210
418=8+0

6 124=244+0
8 1561 =48+ 3
10183 =80 + 3
12|123 =120+ 3
14\177 = 168 + 9

This agrees with our conjectural formula, which says that the index should
be equal in this case to
k/2 [k/6]
8 3 .
() ("

it also agrees with computation.
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