CHAPTER 5

Heegner Points on X (N)

- Benedict H. Gross

In his work on the class-number problem for imaginary quadratic fields,
Heegner [7] introduced a remarkable collection of points on certain modular
curves. These points always form a subset of the singular moduli; on the curve
X o(N) they correspond to the moduli of N-isogenous elliptic curves with the
same ring of complex multiplication. Birch [1] was the first to recognize the
significance of the divisor classes supported on these points in the arithmetic of
the Jacobian J(N). Using them, he was able to construct points of infinite
order in certain elliptic quotients of J,(N) possessing a cuspidal group of even
order [2]. Mazur [11] later found an interesting method to construct points of
infinite order in Eisenstein quotients of J,(N), when N is prime.

In this paper, I would like to show how to obtain some of the above results
via the theory of modular, elliptic, and circular units. This method will be
exposed in Section 11, after a review of the basic material on Heegner points in
Section 1. These theoretical results, although fragmentary, fit in nicely with the
extensive computations which Birch and Stephens have made on this subject
[3]. On the basis of this evidence, I was led to conjecture a simple identity
relating the height of a Heegner divisor class to the first derivative at s = 1 of
the L-series of an automorphic form on PGL(2) x GL(2). Zagier and 1 have
obtained a proof of this identity in many cases: I will discuss this work briefly
in Section I11. In Section IV I will present a general program of work on other
modular curves.

I would like to thank Joe Buhler for helping me with some computation of
Heegner points, as well as John Tate for his constant support. Finally, [ would
like to dedicate this paper to Bryan Birch, whose work in this field has been a
great source of inspiration to me.

[. HEEGNER POINTS AND DIVISORS

1. Let N =1beaninteger,andlet Y = Y,(N)be the open modular curve over
Q which classifies ordered pairs (E, E’} of elliptic curves together with a cyclic
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88 Heegner Points on X, (V) [Ch. 5

isogeny ¢:E — E’ of degree N. The complex points of ¥ have the structure ofa
Riemann surface, which is analytically isomorphic to the quotient space
X [T o(N). Here ) is the upper hall-plane and I'y(N) is the subgroup of

cd
and J#/T,(N) is affected as follows.

To each point y =(E, E’) in Y(C) we associate a pair of N-isogenous tori
¢:C/M —»C/M’. Changing M by a homothety, we may assume McM and
the isogeny ¢ is given by the identity map on the covering spaces. Since M'/M
is cyclic of order N, there is an oriented basis {w,,w,) of M such that M’ =
{w,, @,/N) and 1 =w,/w, is in K. The I',(N)-orbit of t is well determined
by the point y. To see that the map is surjective, to each orbit 7 in /T ((N) we
associate the lattices M = ¢z.1>and M’ = {1, 1/N ). The tori E(C) = C/M and
E'(C) = C/M’ are then related by the obvious cyclic N-isogeny.

Let X = X,(N) be the natural compactification of Y; this is the modular
curve which classifies N-isogenous generalized elliptic curves. The complex
points X(C) may be identified with the quotient J#*/T"((N), where #* =
# uPYQ). The finite set P}(Q)/To(N) = X(C) - Y({) consists of the ‘cusps’
of X.

matrices (a b) in SL,(Z) with ¢ = 0(mod N). The isomorphism between Y(C)

2. The Heegner points of Y(C) = X(C),as defined by Birch [2), correspond to
pairs (E,E") of N-isogenous curves with the same ring O of complex
multiplications. The ring @ = End E = End E’ is an order in an imaginary
quadratic field K, and our first task will be to determine which orders can
occur.

Orders in quadratic fields are somewhat special, as they are completely
determined by their discriminants. The discriminant D of @ has the form
D = d-c?, where dis the discriminant of K and cis the conductor of @ (itsindex in
the ring of integers Ox of K). The integer ¢* is the largest square factor of Dsuch
that D/c? =0, 1 (mod 4).

If y = (E, E') is a complex Heegner point with endomorphism ring 0, then
the associated lattices M and M’ are both projective @-modules of rank 1.
Modifying by a homothety, we may assume that M = a and M’ = b are both
invertible @-submodules of K with acb. The module i =ab"! is then a
proper ( = invertible) @-ideal with quotient @/n cyclic of order N. Such an ideal
will exist if and only if there is a primitive binary quadratic form of
discriminant D which properly represents N, or equivalently - if and only if
the equation D = B? — 4NC can be solved in integers with gcd(N, B,C) = 1.

If such ideals n exist in @, we can construct Heegner points with ¢ =
End E = End E’ as follows. Let a be an invertible @-submodule of K, and
let [a] denote the class of a in the group Pic(@). Let n be a proper
¢-ideal with cyclic quotient of order N, and put E(C) = C/a, E(C)=C/an”~ I
These curves are related by the obvious isogeny, with kernel isomorphic to
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an” Yja = a/an ~ Z/N, so determine a point y =(E, E') in Y(C). We describe
this point by the data y = (@, n,[a]), as the curves E and E’ depend only on the
class of a in Pic{@). By our previous remarks, all Heegner points in Y(C) can be
described in this manner.

To find the image of y=(@,n,[a]) in ¥, choose an oriented basis
{w,,w, ) of asuchthatan™' = {w,,w,/N>. Then y corresponds to the orbit
of 1 =w,/w, in H/I(N). Since 7 is in K, it satisfies a quadratic equation
A2 + Bt + C=0 over Z with gcd(4,B,C)=1. It is easy to check that
D=B*-4AC, A=NA’, and gcd(4',B,NC) = |.

3. We define the conductor of the Heegner point y = (@, n,[a]) to be the
integer ¢ = [@:0x]. Henceforth in this paper, we shall restrict our attention to
Heegner points of conductor ¢ prime to N. This condition, which is fairly
natural from the point of view of L-series (§20), is automatic whenever N is
square-free.

With this assumption on the conductor, the invertible ideal N¢ has a
factorization which mirrors the factorization of (N) in K. An invertible ideal
n € @ with cyclic quotient of order N will exist if and only if every prime p
dividing N in split or ramified in K, and every prime p with p? dividing N is
split in K.

Thus, every prime p which divides ged(D, N) is relatively prime to ¢,
ramifies in K, and exactly divides N (which we write p||N). If p # 2, then p | d
also.

4. The Heegner points of conductor ¢ for K are stable under the action of
Aut(C) on X(C). This group is the semi-direct product of its normal subgroup
Aut,(C) with the group Autg(C) of order 2 generated by complex conjugation
7. Since t is a continuous automorphism of C we have the formula

(@,n,[a]) = (O,n",[a]). 4.1)

We remark that [a*] =[a] ! in Pic(®).

The action of the non-continuous automorphisms o of Autk(C) lies
somewhat deeper, although one clearly has the formula (O,n,[a]) =
(@,n,[a’]) for some [a’] in Pic(@) - depending on both [a] and a. The exact
formula for [a’] is given by the theory of complex multiplication. This asserts
that the points of level ¢ are all rational over the subfield H = K(j(®)) of C; this
is an abelian extension of K — the ring class-field of conductor ¢ - with Galois
group G = Gal(H/K) canonically isomorphic to Pic(€) by class-field theory. If
bis an ideal of @ not dividing ¢, and o[b] denotes the Artin symbol of [b] in G,
we have the formula [13]

(O,n,[a])™V =(O,n,[ab™ ']). (4.2)

Finally, we remark that H is a normal extension of Q, with Galois group a
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generalized dihedral group. Its irreducible representations over C have degree
1or2

5. The Heegner points of conductor ¢ for K are also stable under the action of
the Atkin-Lehner involutions w, of X, for those primes p dividing N. Write
N = p*m with (m,p)= 1. If p is the unique factor of p in @ which divides the
ideal n, we have a similar factorization n= p*.m with (m,p)=1.

Let n’ be the ideal (p)*.m of @; this is invertible with cyclic quotient of
order N, and we have the formula

w{0,n,[a]) = (O, ", [ap~*]). (5.1)

In particular, the canonical involution wy = [Iw, of X acts on Heegner
points via the formula #lN

wy(O,n,[a]) =(O,n",[an" ']). (5.2)

6. '.I‘.he Heckg cprrespondences T, of X, for those primes I not dividing N, also
stabilize the divisors supported on the Heegner points of K with conductor
prime to N. We have the formula

T{O,n,[a])= bz (@4, Wy, [b])s 6.1
afb=211

where the sum is taken over the ([ + 1) sub-lattices b of index lina, O, = End(b)

and vy =n, OyN 0O,

7. Let J = Jo(N) be the Jacobian of X over Q. This is an abelian variety of
dimension g = genus(X); over the number field H its group of points J(H) is
finitely generated, by the Mordell-Weil theorem.

The points of J in H can be described as follows. Let Div denote the group
of divisors on X which are rational over H, and let P denote the subgroup of
principal divisors - those of the form Div(/), wherefis a non-zero function on
X over H. Then P is actually a subgroup of D, the divisors of degree zero,
and we have an isomorphism of G = Gal(H /K)-modules: J(H) = Dy/P.

Let y:G — C* be a complex character of the Galois group, andlet R = Z[x]
be the cyclotomic ring generated by its values. If M is a Z[G]-module, we
define

M* = {meM® R:m’ = y(o).m for all 6eG};

this eigenspace is a sub R-module of M ® R. The sequence of R-modules
O—on—»D{,—;J(H)“ .1

is then exact, and coker « is a finite R-module annihilated by the order of x.
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8. We now use Heegner points to define classes in J(H)X. Let x = (0, n, [a]) be
a point rational over H, and let x, denote the cusp 0 on X o(N) — which is
rational over Q. The divisor y = (x) — (x,) has degree zero over H;if y:G— C*
is a ring class character we define

yx=Zi(o)y" in Dj. (8.1
G

We will also use the symbol p, for the image of this divisor in J(H)*. By (4.2) we
have the identity

yo= 2 AB)(@.n, [ab])= > xlb).(x,). (8.2)
Pic® Pice
so this divisor is supported on the Heegner points and the cusp ~0; it is entirely
supported on the Heegner points when y # 1.

9. Let W= HY%X(C), Q') denote the complex cotangent space of X, which
may be identified with the vector space of holomorphic cusp forms of weight 2
for [4(N). Since W is a sub-space of H (X, C), cup-product gives a Hermitian
pairing: .

(wnwz)=j W, A lw;. 9.1)
Xy

By Hodge theory, this is positive definite.

Let T be the commutative sub-algebra of End (J) generated overZ by the
Hecke correspondences T;, for I prime to N, and by the involutions w,, for p
dividing N. Since W may also be identified with the cotangent space of J, the
algebra T acts as linear endomorphisms of W. This action is faithful and self-
adjoint with respect to the above inner product. We thus obtain a spectral
decomposition

Ww=@Ww 9.2)

where /:T—R rafnges over all characters of T and W/ is the corresponding
eigenspace.

An important subset of the characters occurring is given by the newforms
of level N. In this case W/ is one-dimensional, with normalized basis the
differential w, = 2nif(z)dz=q~ f(g)dq. Here f= Y, a,q" is a newform, with
normalization a, = 1. The corresponding character of T is given by /(T)) = g,
for ,N)=1 and f(w,)= —q, for pl| N.

10. Let V = J(H)® C; this finite-dimensional complex vector space also has a
Hermitian inner product, which is given by the formula

(e,®z,,6,82,)=2,7,.{e,,¢e3),. (10.1)
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Here e, and ¢, are elements of J(H), and (, ), is the normalized height pairing
on the Mordell- Weil group.

The algebra T < End(J) acts as linear endomorphisms on V, and this
action is self-adjoint with respect to the above inner product. Since the
endomorphismsin T are defined over @, they commute with the action of G on
¥V, and we obtain a spectral decomposition for each eigenspace:

Vi=@ Vv*/, (10.2)
!

We let v, , denote the projection of y, into the subspace V*/.

Henceforth in this paper, we will only consider the elements y,when yisa
primitive character of G (i.e. the conductor of x is equal to c). We will only
consider the elements v, , when y is primitive and /'is a newform of level N.

11. When gcd(N, D) # 1, there are certain cases where the element v,y I8
forced to be equal to zero. We want to identify these cases here, and exclude
them from what follows.
Suppose p divides gcd(N, D). Since (N, c) = 1 we must have p{d, and so pis
ramified in K. Write p0 = p?; the value b, = y([p]) is then equal to + I.
Since p is ramified in K, p exactly divides N. Hence w,|f= — a,f with
L=+ 1

Lemma 11.1 Ifa,=b, then v, ,=0.

Proof Putv=v, ,;since vliesin ¥/ we have w,(v) = — a,v. But formula
(5.1) shows that we also have the formula w,{v) = b If a,= bp this implies that
= —y, hence v=0.,

Henceforth we will only consider the elements v, , if for every prime p
dividing gcd(N, D) we have a,b, = — 1. With these restrictions, we present our
first conjecture - which was motivated by some computations of Birch and
Stephens [3].

Conjecture 11.2  The element v, , is non-zero in V*/ if and only
if dim V*f = 1.

We note that if « is any automorphism of C, we have dim V*/ =
dim V*/* and v,  #0 if and only if v,. ;. # 0. Therefore this conjecture is
compatible with the action of Aut(C) on pairs (x,f).

II. HEEGNER DIVISORS AND MODULAR UNITS

12.  In this Section, we will study the classes ¥, in J(H)¥, when the ring class
character y satisfies y =y~ '. These are precisely the ring class characters
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which arise from the restriction of characters of Q. We let L denote the fixed
field of ker y = G on H.If y =1, then L = K; if ¢ is quadratic, the field L is a
biquadratic extension of Q. In all cases, y, lies in the subgroup J(LY* of J(L); we
will see that it frequently has infinite order in the Jacobian.

The quadratic ring class characters of K of conductor ¢ correspond
bijectively to factorings of D=dyc? into the product of two quadratic
discriminants:

D=d.d with d>0. (12.1)

If k and k' are the associated quadratic fields, with discriminants d and d’ and
Dirchlet characters  and ', we have

L=Kk=KK, «=Resy =Resy’.

Since d > 0, the field k is real and k' is imaginary. We let & and h’ denote the
class-numbers of these fields, w’ denote the order of the unit group of &', and
0 < u < | be a fundamental unit for k when d > 1.

13. We begin with the case where N is prime. Let m = ged(N — 1, 12) and put
n = (N — 1)/m. The function f(z) = {A(z)/AMN2)}'"™ is a modular unit in the
rational function field of X = X,(N). Its divisor is given by div(f) =
n{(0)—(c)}.

Let F be a subfield of C, and let D}, denote the divisors of degree 0 on X over
F, relatively prime to the cusps (0) and (). Define the homomorphism

8:Dy— F* (13.1)
by the formula
(Y afx)) =1/ 0™

On principal divisors we find 8((g)) = g((/ )) = (g(0)/g(=c))" by reciprocity.
Hence & induces a homomorphism

0:J(F)—= F*/F*"=F*® Z/nZ, (13.2)

which commutes with the action of Aut(F).

Recall that T is the commutative sub-algebra of End ,(J) generated by the
Hecke operators T, for [+ N and the involution wy. Let [ denote the
Eisenstein ideal of T [10]; this may be defined as the annihilator of the divisor
class (0)-(<0), or equivalently, as the ideal generated by T, — I — 1 for I+ Nand
1 + wy. The quotient T// is isomorphic to Z/nZ; with this identification it is
easy to check that themap din(13.2)isa homomorphism of Hecke modules. In
particular, § is trivial on the subgroup IJ(F).

Let p be a prime divisor of n, and let § =(p, I) denote the corresponding
Eisenstein prime of T. Let Ty denote the completion of T at *B, and let Jw
denote the pth-Eisenstein factor of J = Jy(N) over Q. The map ¢ induces a
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homomorphism
8, J(F)®, Ty/ITy—F*®Z /nZ,, (13.3)

and the following result will be useful in the study of the Heegner divisors.

Lemma 13.4 Assume that e is a point of J(F) with d,(e) #0. Then e 0
in J(F)® {Tg. If e is not ‘B-primary torsion, its pro;ecuon e!? to J)F) has
infinite order.

Proof The first statement is clear. Let kg = Ty ® Q,; this is a product of
local fields, and projection induces an isomorphism: J(F)® kg
JR® ‘k,, If e is not P-primary torsion, then e®1+0 in J(F)@ &y,
so its projection has infinite order on J',

14. We now treat the case y = |, for which there is some precedent [11]. Let
K be an imaginary quadratic field in which the prime (N) = n-n® is split. Let
= (01, [04]) and let y, denote the class of the divisor Zx —h-(c) in
J(K)
This divisor class has some cuspidal support, which makes it awkward to
study using the map 8. To avoid this minor nuisance, we let

Ve~ Yy= (Zx’ - Zx"').
G G

This lies in the minus space for the action of complex conjugation on J(K); on
JP(K) we find the identity e” = 2y'? using (5.2).

Let 4 = O¢[N '] and let h, denote the order of Pic(4). Then hy = h ;- O(n),
where O(n) is the order of [n] in Pic(®).

Proposition 14.1 Assume that p is odd and (p, wg) = 1. Then 5,(e) # 0 if and
only if ord (h,) < ord (n). In this case, y'? has infinite order in JPK).

Proof From the definition of 4, we find that

o 4(a) A(wa®
Onle)= {,,ll:(lm 4(na) 4(a°)

It is well known that 4(a)/A(na) is an integer of H which generates the ideal

n'2 of K. Hence § (e) is congruent to an element of K* which generates the
|deal (n/nr)! 2hxim and is in the minus space for complex conjugation. Thus
d,(e) = a'*m where { is a root of unity in K* and « is a generator of the
prmc1pal ideal (n/n%)°™. Since [w*] =[n]""' and p # 2, « is not a pth-power
in K*.

I/m
} (mod K*").
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If p> 3, then { is a pth-power, so that J,(e) is a p*-power if and only if
h,=0 (mod p*). If p=3 divides n, then 3(im and ord,(12h,/m) = ord,(h,).
Since { is a cube by the assumption (3, wg) = |, we see that the same argument
applies. Hence d,(e) # 0 if and only if ord (k) < ord (n).

Finally we must show that e is not ‘B-primary torsion. If it were, we could
find a non-trivial element p*e in J(K)i~ ~'. This is impossible by Mazur’s
determination of the group scheme Jg = Z/p® u, [10].

15. We now turn to the case where y is quadratic, retaining the assumption
that N is prime. Let K be an imaginary quadratic field in which N has a factor
of degree |, let x be a quadratic ring class character of K of conductor ¢, let @ be
the order of index ¢ in @, and n an ideal of @ with O/n=Z/N. We further
assume that x([n])= - 1.

Recall that  corresponds to a pair (k, k') of quadratic fields and has class-
field L = Kk = Kk'. Let y, denote the Heegner class in J(L)".

Proposition 15.1 Assume that p is odd. Then 6,(y,)#0 if and only if
ord (hi') < ord (n). In this case, y'P has infinite order in JPYL)*,

Proof In thiscase, we have d,(y, )=E, (mod L*"), where E, is the elliptic

unit
A(a) 1(0)}1/m
E = —_— . 15.1
* {Pil:([au (A(““)) ( )

Since #(n) = — 1, Kronecker’s first limit formula yields [14]

-24
log|E,|= —m—l!(x, 0), (15.2)

where L(y, s) is the abelian L-function of the character .
This L-function factors as a product L{y, s) = L(y, s)L(y', s), and we have
the formulae

L'(y,0)= —hlogu, L(y’,0) = 2h'/w". (15.3)

Combining (15.2) and (15.3) gives the relation log|E, | = (48hh’/mw’)logu.
But E, and u are both units in L*, where the rank of the unit group is 1.

Hence Ex=§'u“""'/""”', where { is a root of unity in (L*)*. Since L is

biquadratic, {2* = 1. Also u is not a pth-power in L* for any odd prime p.
If p>3, ( is a pth-power and Jfe) is a p*-power if and only if hh' =
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0 (mod p*). If p = 3 divides N then 3|mand N = 1 (mod 9). Since N is inert or
ramified in k' — by the hypothesis z(n) = — | - we have (3, w')= 1. Thus {isa
cube and ord,(48hh'/mw’) = ord y(hk’). The argument then proceeds as above.

Again, there is no P-torsion in J(L) by Mazur’s result: Jo~Z/p® u,.
This, combined with Lemma 13.4, completes the proof.

16. Let us restate the results of the last two sections in a common way, which
will generalize to composite N. The integer n is the order of the cuspidal group
C of J,(N). The integers h, and hh’ are, up to powers of 2, the orders of the
cigenspaces D*, where D is the class group of the Dedekind domain O, [N~ 1.
Both C and D* are finite Z ,-modules, and we have shown that for odd primes p

5,y #0 if and only if lengthy D* < length, C. (16.1)

We note that certain parts of the proof can also be made to work for p = 2.
If 2 divides n then m = 4(mod 8) and N = 1(mod 8). Since N is ramified or inert
in k' when y # 1, w' =2 (mod 4). Hence

ord,(12h,/m) = ord,(h,), ord ,(48hh’/mw’) = ord ,(2hh’).

In particular, 8,(e) # 0 whenever ord,(2h,) < ord,(n), and 8,(y,) #0for x # 1
whenever ord,(4hh’) < ord,(n). If we know that u is not a square in L*, the last
condition may be relaxed to ord,(2hh’) < ord ,(n). The first condition can also
be improved, if we work with the original divisor y, and not the modified class
e.

The above results can be combined with a first p-descent on J' to give
evidence for conjecture (11.2) We will treat this in greater detail elsewhere; here
we merely state the result.

Proposition 16.2 Let p be an odd prime with p|| n, and assume that D% = 0.
Then the rank of J®L)* is equal to the dimension of J®. Furthermore
W(J®/L)E = 0 and the point y'?' is not divisible by ‘B in JP(L).

For a discussion of this descent in the first non-trivial case, where N = 11
and p =35, see [5].

17. We now treat the case where N = m?, with m > 1. The method is similar,
but the cuspidal group of X o(N) is no longer rational over Q, and we have an
Eisenstein series and an Eisenstein ideal for each Galois eigenspace. We will
only study the primitive components; this explains our restriction to N = m?
or N a prime. We shall also restrict our attention in this section to primes p
> 3; the primes p =2, 3 can be similarly treated, but this requires more care.

We let R denote the ring of integers in an unramified extension of Q,, and
«:(Z/m)* —» R* be a primitive Dirichlet character. Let M denote the cyclic
extension of @ corresponding to a by class field theory. The degree of M is then
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prime to p; if A is an abelian group on which Gal (M/Q) acts, we will write A(a)
for the eigenspace (4 ® R)".

Let a and b be integers relatively prime to m, and define the Siegel unit
ola/m,b/m, 2) as in Stark [ 14]. This is a modular function in the function field
of X(12N) over Q(u,). The product

f(2)= ﬁ ﬁ ¢(a/m, bfm,mz)t22" "1a0) (17.1)

a=1b=1

then lies in #(«), where F is the function field of X = X (N) over M, provided
that a #+ w the Teichmuller character. We will assume this in all that follows.

The divisor of f is supported at the cusps [¢/m] of X with (c,m) = 1. In fact,
one has the formula

div(f)=n ¥ o '@Le/m] (17.2)
with ”

n=mjy ¥ cz"(ab)iBi(a +b) in R-0.
a=1b=1 m

The cuspidal group C(a) in J(M)(a) is isomorphic to thecyclic R-module R/nR;

we will assume n = 0(mod p), so that C(a) is non-trivial. For a determination of

the p-adic valuation of n, we refer readers to a forthcoming paper by G.

Stevens.

Let D; denote the divisors of degree 0 on X over the field F which are
relatively prime to div(/). Define a homomorphism &:Dg — (FM)*(x) by the
formula &Y afx))=[]/(x)* By arguments similar to those in §13, this
induces a homomorphism of points in the Jacobian i

S HF)—=(FM)*® R/nR (). (17.3)

Let I=1Ia) be the ideal of T @R which annihilates the class of the
divisor Y™ 2" '(c)[c/m] in J(M)@R. This ideal contains the elements
T, — la(l) — a(l) for (I,m)=1 and wy — o — 1), and has quotient T @ R/I ~
C(a) = R/nR. Let ‘B = (p, I) be the corresponding Eisenstein prime, and let T
be the completion of T®R at B. Then & induces a homomorphism of
Ty-modules:

3,:J(F)® To/ITy—~(FM)* ® R/nR (). (17.4)

18. Let K be an imaginary quadratic field in which all primes dividing m are
split and let y = x ! be a ring class character of K of conductor ¢ prime to m.
Then y corresponds to a pair (, ) of Dirichlet characters; we order these so
that ay is even.

The class field L of y is abelian over @ and disjoint from M. Let
N = LM, and let D and U denote the class group and unit group of the abelian



98 Heegner Points on X, (N) [Ch. 5
N.
/
L\ M
$~r \
(2 X K N o /

Let 0 be the order of K of conductor ¢, and let n be an ideal with
nn‘=N and (n,n°) = . Let y, be the corresponding Heegner divisor in J(L)*,
so d,(y,) lies in the eigenspace N*® R/nR (ya).

field N:

Proposition 18.1  5,(y)#0 if and only if length,D(xa) < ord (n) =
lengthg C(«).

Proof By Kronecker’s second limit formula [14], we have the relation
log|é(y,)| = £+ 24L'(3%,0). This abelian L-series factors as the product
L{ya, s) = L{y'a, s)L(y'x, 5), and we have

L@a,00= —tloglc|,  L(y's,0)=8, 7

where ¢ =) 7 ya(a)®(1 — {9 is a circular unit in U(ya) = U(ya). Since this
unit space has rank [ over R and no p-torsion, we have 8,(y,) # 0if and only if
B, 4., c lies in the subspace nU(ya).

But by Gras's conjecture (now a corollary of some work of Greenberg,
Mazur, and Wiles [4], [12]) we have the equality

length, U(ya)/cU(pa) = length, D(yra).

Similarly, one has ord (B, 3= = length,D(y'x). The proposition then follows
from the direct sum decomposition D(ya)® D(y'x) = D(x2).

If the conditions of (25.1) are met, and ¥, is not ‘B-primary torsion in J(L)*,
its projection to the (p, «)-Eisenstein factor has infinite order. Of course, the
points y, can be ‘B-torsion for at most a finite number of characters y. They are
never B-torsion if the Eisenstein ideal IT, is principal in T,

As in §16, we can combine the results on Heegner points with a first p-
descent on the (p, «)-Eisenstein factor to obtain interesting results. I will treat
this matter in a forthcoming paper with J. Lubin.

IIl. THE L-SERIES OF MODULAR FORMS

19, We retain the notation of Section [. Thus f=Y, . ,a,¢" is a normalized
newform of weight 2 for I'y(N)and y is a ring class character of K of conductor
¢ prime to N. The two-dimensional representation Ind9y has conductor
D=dy-c? and the equation D = B2-4NC can be solved in integers with
ged(N,B,C)=1.
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By Hecke’s theory, the L-series of Ind y is equal to the L-series of a modular
formg, =Y, b,4" of weight 1 for I,(D). For every prime p dividing gcd(N, D)
we have the further condition: ¢ b = — 1.

The form g, is actually a modular form for I"(D) with odd character ¢ =
det(Ind ). This character is just the quadratic character associated to the
extension K/Q: since y is a ring class character, Vergy = 1. We remark that g,
vanishesat o ifand onlyif y # 1,and that g, isa cuspformifand only if 5 # 1
Itis always an eigenform for the entire Hecke algebra, and has level equal to D.

The Dirichlet series for fand g, both have Euler products:

Lfs)= ) an =101 —a,p™ N1 —a,p™3)"",
I

nal

(19.1)
Lig,s)= Y bn™*=[T(1 = B,p™*N1 = B,p~)"".
n21l P

We have a,2,8,8,=p-ep) if p does not divide ND; otherwise this product is
equal to zero.

20. The modular forms f and g, each correspond to infinite-dimensional
representations of the adélic group GL(2,A,). Define the L-series for the
‘tensor product representation’ f® g, of PGL(2) x GL(2) by the formula

L(f®g,s)=[10 —,B,p™ W —2,,p7%)
4

— 2 B N — ) (20.1)

This Euler product converges, and is non-zero, in the half-planc Re(s) > 3.

By the assumptions made on N and D, the naive Euler factors in (20.1)
actually equal the local L-factors for the representation f ® g,. The degree of
each factorisequal to 0, I, 2, or 4: it is equal to 4 if and only if p does not divide
ND. When p divides ND, we have the following situation:

pleor p*IN,  L9)=1 degree 0;
pIN and pld. Ls)=(l—a,p™9)" 2 degree 2:
pid and pINe. LS =(l=abyp e pt=®)t s, (202)
piged(D,N),  Ls)=(1—abp™" l
=(lL+p )1, degree 1.

The conductor A of the representation /® g, is equal to N*D?/gcd(N, D).
Notice that the assumption that (N,¢)=1 implies that the local repre-
sentations associated to f'and g, are not simultaneous supercuspidal. This
seems a natural one in view of the computations of the next section.

21. The infinite Euler factor associated to the representation f® g, is given
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by L'n(f® 9y s)= rc(s)z . 4(27:)_2"[‘(5)2. Put

AS® g, )= AL (f® g, YU D g.5) (LY

This function is defined in the half-plane Re(s) > 3/2; Rankin’s method,
suitably modified by Jacquet, can be used to show

Proposition 21.2  A( /®g,,s) has an analytic continuation to the entire
complex plane, and satisfies the functional equation

S ®dy2 —5)= — Af ®Fy:3) (21.2)

The proof of (21.2) is fairly standard. It reduces to showing that
AF®3,)=AU® g, $), and that the global root number wf®g,) in the
functional equation is equal to —1. The first statement can be checked
directly, using the identity x(p) = i(p)- In fact, Ind y is an orthogonal Galois
representation. The root number will be computed in the next paragraph.

An immediate corollary to (21.2) is the following:

Corollary 21.3 The order of L{f ®g,.s)ats= 1 is non-negative and odd.
In particular, L(f®g,,1)=0.

Similar results were obtained by Kuréanov [9].

22. We begin with a computation of local root numbers. Let v denote a place
of @; the automorphic representations, fand g =g,0f GL(2,Q,) correspond to
two-dimensional representations g . and g, of the Weil-Deligne group of Q,,
and we have the formulas

w(f)=wJa,), w(g) = wo)h w([®g)=w/io ®a)) (22.1)

The last is due to Jacquet [8], and permits the calculation of w(/® g)from the
two quantities w,(f) and w,(g).

Since fis on ['o(N), we have w,(/ )? = 1. Since g, is an orthogonal Galois

representation with determinant ¢, we have wyg)*=¢(—1). Thus
w(f)Pwlgl =el—1) for all v; we shall prove

Proposition 22.2 w (/®g)=1, w(/®g)=¢(— 1) for all finite p, and

wWf®g=e—-1)=-1

Proof At the infinite place o,®0d,= Ind®z ! ®Ind®1 =~ 2Indgz""
This has sign (= 1)>=1.

At finite primes p not dividing ND, we havew (f@g)=¢(— 1= 1,as the
representation is unramified at p. If p divides N but not D, we have

w (f® g) = w (/12w (g e, (N) = £( — Lg(N).
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But ¢ — 1)=,(N) =L, as every prime p dividing N but not D is split in K.
Similarly, if p divides D but not N, we have the formula w(/®g)=
w,(f)?w,(g)* as f has trivial determinant.

If p divides ged(N,D) then plN and f corresponds to a twisted
form of the special representation. A short calculation yields the formula
w(/®g = w,,(./')zw,,(g)z( —ayb,). Butap,= - 1. by assumption.

The formula w{/® g) follows from the decomposition [8]

w/®g)=[[w/®y)
and our local formulas.

23. Let M = H'(X) = H'(J) be the 1-motive of rank 2g over Q associated to
the cohomology of the curve X = X o(N). The theorems of Eichler-and Deligne
can be combined with the Artin formalism to yield the identity

L(M/H,s)= ﬂ L/ ®y,,s) for Rels)>3/2. (23.1)
S

Here the product is taken over all characters f of the Hecke algebra on the
cotangent space W and over all characters y of G = Gal(H/K).

By Rankin's method (21.2), this function has an analytic continuation to
the entire complex plane, and satisfies a suitable functional equation when s is
replaced by 2 —s.

Recall that ¥V = J(H)® C, and that ¥*/ is the subspace where G acts via the
primitive character y and T acts via the newform /. The equality dim V' =
ord,.,L(M/H,s) is predicted by the conjecture of Birch and Swinnerton-
Dyer. A natural refinement of that conjecture, in the light of (23.1), is the
following:

Conjecture 23.2 dim ¥*/ =ord,_, L(/®g,.)

By (21.3), this conjecture would imply that the dimension of V&7 is odd. In
particular, [ would always expect that ¥*/ is non-trivial.

24. The conjectures (11.2) and (23.2) seem difficult to me, as they make
reference to the entire subspace V*/ (about which one knows nothing...). But
they can be combined into a statement which refers only to the Heegner divisor
v, ; and the relevant L-series.

Theorem 24.1[6] Assume that D is a fundamental discriminant which is
relatively prime to N, and let 2u={0*|. Then

LU® g, 1) = i 20,007, 24.1)

In particular, L'(/® g, )= Oifand only if v, , =0 in JH)® C.
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In the proof that Zagicr and 1 found for (24.1), the lefi-hand side is
calculated by using a variant of Rankin’s method, and the right-hand side by
using Néron's theory of local heights. This method should yicld an analogous
formula for arbitrary D: however. in the general case the right-hand side
should be divided by 2, where r is the number of primes dividing ged(.V, D).

IV. THE DERIVATIVES OF AUTOMORPHIC L-FUNCTIONS
AND THE ARITHMETIC OF MODULAR CURVES

25. The approach to Heegner points via the L-series of a representation for
PGL{2) x GL{2) which was developed in Scction HI suggests the following
generalization,

Let & be a global ficld, and let © - @z, be an irreducible representation of
PGLI(2, A,) which occurs in the space of cusp forms. If v is an archimedean
place of k, we will assume z,, is square-integrable when k, = &, or a base change
lifting of a square-integrable representation of PGL(2, R) when k, =~ C. Let «(n)
denote the conductor of &, which is an effective divisor of k.

Let K be a separable quadratic extension of k, and let y: A%/K* — C* be an
idéle class character of finite order, We will assume that the restriction of y to
A¥ is trivial, and that the conductor () of y is prime to dzr). Let p be the Wil
representation of GL(2, 2,) which corresponds to z: this has central character
a, the quadratic character associated to the extension K/k. The corresponding
Galois representation Ind(y) is orthogonal, of determinant 2.

By Rankin's method, the Leseries of the representation 2@ p of PGL2) x
GL(2) cxtends to an cntire function on the complex pline. and can
be normalized to satisfy the functional cquation: Ua&p,s) -
dn®p, L@ p,2 — s). Furthermore, the global root number wiz @ p)
dAn @p, 1) admits a product decomposition: W@ p) - [ Tw iz ® p) with all

p

local terms wir @ p) - £ 1. Deline
S @@y friwm@p) /o= D (25.1)

This is a finite set of places of k; if ¢ is contained in 2 then the representation z,
in squarc-integrable and the algebra K@k, K, isaficld. Write () = Ny - N,
where N, is divisible by the non-archimedean places in 2, and N is prime to
N,

If Wz ®p) = 1, the set X has even cardinality. Let B be the quaternion
algebra over k which is ramificd at £, and G the algebraic group over k which
represents the functor on k-algebras: k' — (k" BY*/k’*. Since K embeds as a
subficld of B, the group T = K*/k* gives a maximal torus in G. For y = 1,
Waldspurger [15] has studied the value L{r@ p, 1) = Lix, DLrO «, 1) using
the integrals of arithmetic automorphic forms for G over the torus 7.
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Now assume that wW(a® p)= — 1, so L(z® p, 1)=0. We wish to study
L'(n® p, 1) using the height of special points on modular curves. To do this, we
must assume that

Z contains all archimedean places of k. (25.2)

Since w,(n® p) =1 for all archimedean v, this means that whenever k is a
number field, it is totally real and K is a totally complex quadratic extension of
it.

Let A4 denote the ring of Z-integers of k. Since X is non-empty
and contains all archimedean places of k, 4 is a Dedekind domain. Every
non-zero ideal m < A has finite index; let A =lim A/m denote the profinite
completion of A. Let k' denote the class ficld of k with norm group
k*[Toask® + [Toes AX AE'/k* in A/k*, where k¥, is the set of positive real
numbers when v is archimedean and k?* . =k? if v is non-archimedean. Let »
= [k':k]; this is the order of the narrow class group of 4 modulo squares.

The data (Z, N) determines a curve X over &, which is projective and non-
singular. The ncomponents of X over k are rational over k’, and, for each place
veZ, there is an analytic description of the set of K -valued points on X.
Namely, let Q, = K, — k,; then @, is a rigid analytic space of dimension | over
K, which admits a left action of PGL(2,k,) by fractional linear transfor-
mations. Let B be the quaternion algebra over k which is ramified at £ — {v}
and let R be an Eichler 4-order of level N in B. Let G be the group functor on
A-algebras: 4'—(4' @ R)*/4"*. Then X(K,) contains the double coset space

X(K,) = Gk\2, x G(A ®@k)/G(A) (25.3)

as a dense open subset. We note that G(A® k) ~ PGL(2, A® k) and that
- a b . -
G(A)z{(c d)ePGL(Z.A):csO(mod NA)}.

Let J denote the Jacobian of X over k, representing divisor classes of degree
zero. If k=@ and £ = {c}, X is the curve X y(N) studied in Section I, and
J = Jo(N).

Let 0y denote the integral closure of 4 in K, and @ = 4 + ¢@, the unique
order of conductor ¢ =c(y) in @ which contains 4. We now assume the
following:

If ord (N) 2 2, then v splits in K. (25.4)

Then ¢ admits optimal embeddings into any Eichler order R of level N in B.
This situation gives rise to a collection of Heegner points x on X, which are
rational over the class field H of K, with norm group
K*[ 1o K¥[1.c: @ A/K*. Since y may be viewed as a character of Gal(H/K)
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by class field theory, we may form the divisors ¢~ Y(o)x* in Div(X/HY*. Using
certain canonical classes in Pic(X)® Q of degree = deg(x) we may obtain
classes y,e(J(H)®C) as in §3.

For simplicity, we shall finally assume that

x, is isomorphic to the special (or Steinberg) representation of
PGL(2,k, on the non-constant functions on P'(k), for allveZ.

(25.5)

If k is a number field, this implies that = corresponds to a holomorphic Hilbert
modular form f of weight (2,2,...,2) with Fourier coefficients a, =1 for all
v| Ny. In general, (25.5) implies that the eigenvalues of a new vector /! for x occur
in the regular representation of the Hecke algebra of X in End(J). Hence we
may form theclass v, ,in J(H)® C as in §10. (To treat the general case, where
7, is square-integrable for all ve £, one must introduce certain sheaves # on X
corresponding to representations of the compact group [T, D*/k*, where D,
is the quaternion division algebra over k,.)

In analogy with (24.1), it is reasonable to conjecture that Lz®p.1)is
given by an explicit formula of the shape [Toespum)- v 45 0f, - Where p(x) is
a positive constant which arises from a period integral on X(K .)- Zagier and I
are confident that the methods used in treating (24.1) will extend to handle the
general case. The cases when k = Q or k is a function field are easier to work
with, as X represents a simple moduli problem. But perhaps the case when k is
a number field of degree greater than one is more interesting: here the
analogous limit formulae for GL(1) have not yet been found.
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