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Abstract

Let E be an elliptic curve oveQ and ¢ be an odd prime. Also, leK be a number field
and assume thdE has a semi-stable reduction &t Under certain assumptions, we prove the
vanishing of the Galois cohomology groul(Gal(K (E[¢/1)/K), E[¢]) for all i>1. When
K is an imaginary quadratic field with the usual Heegner assumption, this vanishing theorem
enables us to extend a result of Kolyvagin, which finds a bound for the order df-phienary
part of Shafarevich—Tate groups &f over K. This bound is consistent with the prediction of
Birch and Swinnerton—Dyer conjecture.
© 2004 Elsevier Inc. All rights reserved.

Keywords: Galois cohomology; Elliptic curves; Birch and Swinnerton—-Dyer conjecture; Shafarevich-Tate
groups

1. Introduction

Let E be a (modular) elliptic curve ove® whose conductor iN. And let K be a
finite extension ofQ. Fix an odd prime¢. For each natural number=1, E[¢/] will
denote the group ofi-torsion points ofE. We let L; be the smallest Galois extension
of K over which E[¢] is defined, andj; = Gal(L;/K) be its Galois group ovekK.
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In particular, we setl. := L1 = K(E[¢]) and G := G; = Gal(L/K). Also, for a finite
abelian groupA, we will write |A| for its order. And, “ordn” will denote the maximal
integerm such that¢™ divides the natural number. Throughout this article, we will
assume that satisfies the following.

Assumption 1. (a) There is a primes of K over ¢ which is unramified inK/Q, and
E has either good reduction or multiplicative reduction over the completiprof
K atv.

(b) E(K) has no¢-torsion points.

Under this assumption, we prove

Theorem 2 (Main Theoren HY(G;, E[¢']) = 0 for all i>1 unless¢ = 3 and G ~
Gexceps Where Gexcept is defined as

b
Gexcept= {(g 1>

The proof consists of three steps. The first step is to prove the vanishidg (%, E
[¢]) when G contains a nontrivial homothety. I§ does not contain a nontrivial ho-
mothety, we show in Sectio8 that G is isomorphic t0Gexcept © GL2(Z/€Z). Finally,
the exceptional casé >~ Gexceptis studied in Sectiod, where we prove the vanishing
of HY(G;, E[¢']) except the casé = 3.

The motivation of this work is as follows. Tak& = Q(+/D) to be an imaginary
quadratic extension with fundamental discriminddt£ —3, —4 where all prime di-
visors of N split. We also letyx € E(K) be the Heegner point associated with the
maximal order inK. Kolyvagin [6] proves that, wheryx is of infinite order, E(K)
has rank one and the Shafarevich-Tate grdiigf /K ) of E over K is finite. Letm be
the largest integer such thak € ¢ E(K) modulo ¢-torsion points. In[7], Kolyvagin
proves the following.

ae(Z/ez2)* and be Z/ZZ} . 1)

Theorem 3 (Kolyvagin). Suppose thavk is of infinite order. Assume thdtis an odd
prime. If the Galois grougsal(Q(E[¢])/Q) is isomorphic toGL2(Z/¢Z), then we have

ord |ILI(E/K)| < 2m.

This bound for the¢-part of |III(E/K)| is consistent with the conjecture of Birch
and Swinnerton—-Dyer. In fact, Gross and Zad«} obtained a formula for the value
of the derivative of the complex-function of E over K in terms of the height of
yk. This formula, when combined with the conjecture of Birch and Swinnerton—Dyer,
yields the following conjectural formula for the-order of I1I(E/K).



156 B. Cha/Journal of Number Theory 111 (2005) 154-178

Conjecture 4. Suppose thatyx is of infinite order. Thenll(E/K) is finite and its
¢-order is

ord, ILI(E/K)| = 2m + 20rd, (M) ,

¢ Igineq

Here ¢, is the number of connected components of the special fiber of the Néron
model of E at g, andc is the Manin constant of a modular parametrizationeof

In view of Conjectured, it is natural to expect that the assumption thgK) has no
nontrival £-torsion points should be sufficient to yield the same bound® in Theorem
3, even in the case where GAI(E[¢])/Q) is a proper subgroup of GIZ/¢Z). We
are not proving this result in this article. Instead, under the condition that thefmod
Galois representation

po : GallQ/Q) — Aut(E[€]) ~ GL2(Z/tZ)

is irreducible over Z/¢Z, we show that the main theorem of this article allows us to
obtain the same bounds2for ord,|I1I(E/K)| (Theorem21). See Sectiorb for more
detailed discussion in this direction.

2. Vanishing of the cohomology groupsH(G;, E[£])
First, we investigate the natural maps betweehG;, E[¢']) for variousi’s.

Proposition 5. For eachi >1, there is a natural injection
HY(Gi, E[E']) — HY(Gis1, E[CHH). @)
Proof. There are two natural injections
HY(Gi, E[¢') — H'(Gis1, ETC']) €)
and
HY(Git1, ELE]) — HY(Giy1, ELEHH). @
Indeed, the map3] is just the inflation in the exact sequence

Inf Res

0 — HYG:, E[¢']) = HY(Gi41, E[0']) — HYGal(L;y1/Li), E[¢'])Y. (5)
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Also, the map 4) is given as follows. The exact sequence

0 — E[¢'] — E[¢1-5 E[e] — 0
gives theg; 1-cohomology long exact sequence, part of which is

E[019+ —> HY(Givv, E[€]) — H Gira, EI6) S HYGrun, ELED. ()

The groupE[¢]9+1 is zero by Assumptiori, (b). Therefore, the map
HGiy1. EIC')) — HYGiy1. ELEH)
is injective. This is 4).

Finally, the composion of3) and @) gives @). (]

The following lemma tells us how to control the size Bf(G;, E[¢]) inductively.

Lemma 6. If the restriction map
Res: HY(Giy1, E[¢']) — HYGal(Liy1/L;), E[¢'])Y:

in (5) is the zero mapthen
dimz ez (H*(Gi, EIED) © 2/0Z) = dimzyez (HXGisa. ELE ) © 2/02).

In particular, the above equality is true iH#1(Gal(L;,1/L;), E[¢])9 = 0.

Proof. Consider the short exact sequence
0 — E[¢] -5 E[¢ -5 E[¢] — 0
of G;+1-modules. ItsgG;1-cohomology long exact sequence shows that
(0« : HYGiv1, ELED) — HY(Gis1, ELET)

is injective. Therefore, the kernel @#’), in (6) coincides with that of the endomor-
phism of multiplication by¢’ on HY(Gi,1, E[¢/11]).

However, the sequencé)(says thatH1(G;, E[¢']) is isomorphic toHl(giJrl, E[£']).
Now, from 6), H1(Gi+1, E[¢]) is the kernel of the multiplication oW 1(G; 1, E[¢/11])
by ¢!, so the lemma follows. [



158 B. Cha/Journal of Number Theory 111 (2005) 154-178

We study the structure d#*(Gal(L;+1/L;), E[¢'])% = Homg. (Gal(L;;+1/L:), E[£'])
more closely.

Define A to be the additive group/s»(Z/¢Z) of all 2 x 2 matrices with coefficients
in Z/¢Z, and turn it into ag;-module by first projectingi; onto G = G1 and then
letting it act on.A by conjugation. By definition, this action factors through

Fix a basis forE[¢/*1]. Then, we can identify, .1 with a subgroup of Gk(Z /¢i+1Z).
An element of GalL;1/L;) will be of the form I, + ¢/ A for some matrixA with
coefficients inZ/¢/t1Z, where I, is the 2x 2 identity matrix in Glo(Z/¢/*1Z). Note
that A modulo ¢ is uniquely determined, independent of the choiceAphence defines
an element ofA. Therefore the map

Ip + ' A — Amod¢

identifies GalL;1/L;) with a G;-submodule ofA which will be denoted byC;.

Let f be an element in Hog)(Gal(L;11/L;), E[¢]) ~ Homg, (C;, E[¢']). Since(;
is of exponent¢, the image off lies in E[¢] € E[¢']. Moreover, the action ofj;
on C; factors throughG = Gi. Therefore, we have Hogn(Gal(L;y1/L;), E[¢]) ~
Homg (C;, E[£]). In summary, we obtain the isomorphism

HYGallLi11/Ly). EI¢'DY ~ Homg (Ci, ELL). (7

When Hong (C;, E[¢]) = 0, one can control the rank @f*(G;1, E[¢/*1]) inductively.
This is the case whe@i contains ehomothetythat is, a(Z/¢Z)*-multiple of the identity
endomorphism ofE[¢].

Theorem 7. If G contains a nontrivial homothetyhen H1(G;, E[¢]) = 0 for all i >1.

Proof. Let () be the cyclic subgroup off generated by a nontrivial homothety
Then obviouslyE[¢]" = 0. Further the cohomology groufi*((), E[¢]) = O since
the order of(n) is prime to¢. Therefore, by the following Hochschild—Serre spectral
sequence

0 — HYG/m), EIO") — HY(G, E[¢]) — H'((n), E[€]),
we get HY(G, E[¢]) = 0.
Now, assume thaH1(G;, E[¢']) = O for somei. From Lemma6 and (7), we only

need to show that Hog(C;, E[¢]) = 0. Let f € Homg(C;, E[£]). Note that any
homothety acts trivially ond. So, for anyv € C;, we have

f = fh=nf).

But, only the zero element of[¢] can be fixed byy, hence f(v) = 0. Therefore
f=0. O
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3. The structure of G
The main theorem in this section is

Theorem 8. If G does not contain a nontrivial homothetyhen G can be represented

as
b
Gexcept= { (g 1)

with respect to some basis f@f[¢].

ae(Z/t2)* and be Z/ez}

The proof of this theorem will be given throughout this section. The main tool is a
result of Serrg12, Sections 1-2]Serre studies the image of the representation

px : GallK/K) — GL(E[£))

restricted to the local Galois group. Together with a group theoretic argument, Serre’s
result is used to classify all the possible subgroups o0f(@l.¢Z) without homotheties

that can occur as our Galois grogp Our assumption thak(K) has no¢-torsion
points also helps us limit the possibilities.

3.1. Subgroups oGL(V)

The definitions in this subsection are taken frfl2, Sections 1-2]We summarize
what we need for our study df.

Let V be a two-dimensional vector space ovgf¢Z. By GL(V), we mean the
group of all linear automorphisms &f. For a 1-dimensional subspaég of V, define
B(V1) € GL(V) to be the subgroup consisting of alle GL(V) such thatsV; = V3.
Such a subgroupB (V) is called aBorel subgroupof GL(V) defined by V;. The
subspaceVs is the unique 1-dimensional subspaceVofvhich is stable undeB (V7).
By choosing a basis fov appropriately, such a subgroug(V1) can be represented by
2 x 2 matrices

B(V) = {(‘52)

When V1 and V, are two distinct 1-dimensional subspaces\Vpfwe let C(Vy, Vo) C
GL(V) be the set of all the elemenise GL(V) such thatsVy = V1 and sV, = Va.
The subgroupC(V1, Vo) is called thesplit Cartan subgroupof GL(V) defined byVy
and V». In the appropriate basis f&f, C(V1, Vo) takes the form

conva={(52)

a,d e (Z/tZ)* and be Z/ZZ} .

a,ce (Z/EZ)*} )
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ThereforeC (V4, V») is isomorphic to a product of two cyclic groups of order 1. We

also note that; and V» are the only 1-dimensional subspacesVoWhich are stable
under C(Vy, Vo). Let C1 be the subgroup ofC(Vi, Vo), consisting of all elements
whose actions ori/; are trivial. Similarly, one can defin€, to be the subgroup of

C(V1, Vo) which acts trivially onV,. ThenCy and C2 can be represented by matrices

of the form (éf) and (82) Such subgroupg; and C, are calledsemi-split Cartan

subgroupsof GL(V).

Let F,2 be the unique quadratic extension of the figld¢Z. Then one can embed
F. into GL(V), by choosing a basis fof,> over Z/¢Z and by representing, in
GL(V) via the regular representation with respect to the chosen badis:foh nonsplit
Cartan subgroupof GL(V) is, by definition, a subgroup of GI¥) which is conjugate
to the image of~, under this embedding in GIV). Any nonsplit Cartan subgroup is
cyclic of order¢? — 1. Relevant to our study are the facts that the subgr@gz)*
in Fzz maps onto the homotheties of GL) regardless of the choice of a basis for
F,2, and thus that any nonsplit Cartan subgroup of(®) contains all homotheties.

Finally, we define theCartan subgroupsf PGL(V) = GL(V)/(Z/¢Z)* to be the
images in PGLV) of the corresponding Cartan subgroups of (8L Clearly, a split
and a nonsplit Cartan subgroup of PG are both cyclic and are of ordér— 1 and
¢+ 1, respectively.

We state a lemma which will be useful later.

Lemma 9. If s € GL(V) is of order prime to¢, then the cyclic subgroup generated
by s is contained in a Cartan subgroup GL (V).

Proof. The elements is (absolutely) semi-simple since its order is prime‘toSo,
the cyclic group generated by is a commutative semi-simple subgroup of @1).
However, every maximal commutative semi-simple subgroup of VGLis a Cartan
subgroup (Se¢9, Lemma 12.2, Chapter 18]hence the lemma follows. [

3.2. Conditions org

Let v be the prime ofK over ¢ as in Assumption (a) of, that isv is unramified
in K/Q and E does not have an additive reduction oves. We fix a decomposition
group D = D, of vin Gal(K/K), and letl = I, be the inertia group o¥ in D,.

Proposition 10. Assume that; contains no nontrivial homothety. Then

(a) E has either ordinary or multiplicative reduction ovéf,,.

(b) G contains a semi-split Cartan subgroup GL(E[{]). In particular, G contains a
cyclic subgroup of order — 1.

Proof. If E has a supersingular reduction ov&r,, the subgrouppg(I) € G is a
nonsplit Cartan subgroup of GE[¢]) [12, Proposition 12]Jand it would contain all
homotheties, which contradicts our assumptiondrnTherefore, we conclude that the
reduction type ofE over K, is either ordinary or multiplicative. In either case, the
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subgrouppg (I) € G contains a semi-split Cartan subgroup of @IL£]). (See[12,
Corollaire to Proposition 11&nd [12, Corollaire to Proposition 18] O

3.3. The case wheré does not dividgG|

We investigate the case whendoes not divideG|.
As before, letV be a two-dimensional vector space o&t¢Z. The following clas-
sification result is[12, Proposition 16]

Proposition 11. If H is a subgroup ofPGL(V) whose order is not divisible by, then
H is cyclic dihedral or isomorphic to one of the groupd,, S4 and As.

We claim that, if¢ does not dividgG|, thenG must contain a nontrivial homothety.

The rest of this subsection will be devoted to the proof of this claim. From now
on, we work under the assumption that the graighas no nontrivial homotheties.
Propositionsl1 and 10 will lead us into a case by case analysis and yield a contradiction
for all cases.

Since§ is assumed to have no homothety, its imaﬁgm PGL(E[¢£]) is isomorphic
to G. By Propositionll, there are three caseg:is cyclic, dihedral or isomorphic to
one of the groupsd4, S4 and As.

3.3.1. G cyclic

By Lemma9, G is contained in a Cartan subgro@of GL(E[¢]). And, by Proposi-
tion 10, G contains a semi-split Cartan subgroQmf GL(E[¢]), SO we haveC C G C S
as subgroups of GLE[£]).

We consider the case whe®is nonsplit, so the orde8 is ¢ — 1. Recall thatG
maps isomorphically ont@;. Therefore,¢ — 1 divides |G|, hence it also divides the
order of the imageS of Sin PGL(E[¢]), which is just¢ + 1. But, this is impossible
unlesst = 3. When¢ = 3, the groupS is isomorphic toFy, and its subgroup consisting
of all homotheties corresponds ; in Fj. It is easy to check that every nontrivial
subgroup offg containsF3. ThereforeG must also contain a nontrivial homothety.

Next, we assume thd is split. From the inclusiorC € G C §, it follows that G
should be equal t&, otherwiseG would have a nontrivial homothety. Bt = G is
also impossible since it would violate thetorsion freeness of (K).

3.3.2. G dihedral

Next, we deal with the case whefkis isomorphic to a dihedral group, of order
2k for somek.

First, let us assumé > 3. Again we denote byC a semi-split Cartan subgroup
contained inG, which is just a cyclic group of ordef — 1>4. In particular, we have
k>2. But, if k = 2, then¢ must be 5, andC is of order 4. HoweverpD, cannot have
such a subgroup. So, we hawe- 2.
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Lemma 12. Let Dy = (x, y|x2 =1, y* = 1, xy'x~1 =y~ for all i) be the dihedral
group withk > 2, generated by the elements x and y of or@eaind k respectively. If
Dy contains a cyclic group C of order 2, then C is a subgroup ofy).

Proof. Any element of the formvy’ is of order 2, so no such element can generate
C. O

Following the notation in the lemma, we let y € G be the elements of order 2
and k, respectively. Then, the lemma implies thatC (y). Fix a basis forE[£] such

that the subgroult is represented by the matrices of the fo(r‘@‘i). Letx = (ZZ)

Then we have
ab s 0\ s10 ab
cd 01) \ 0 1)\cd
for all s € (Z/¢2)*. Or equivalently

as = s_la, b= s_lb,

cs=c, d=d

for all s € (Z/¢Z)*. Obviously, such(‘;f;) € GL2(Z/¢Z) cannot exist.
Next, let us assume that = 3. Again, we fix a basis for GLE[3]) so that the

subgroupC is represented as( 0110)}. So, in particular,z := (’0110) € G. One can
show that, ifec € GL2(Z/3Z) is neithert nor ((1)(1)) thens andt generates an element
in GL2(Z/3Z), which is either a nontrivial homothety or an element of order 3 (We
omit this easy but long computations). This proves tfat G, which is a contradiction

to the assumption thak (K) has no¢-torsion points.

3.3.3.G is A4, S4 or As

Here ¢ cannot be 3, since 3 divides the ordersAf, S; and As. We again denote
by C the subgroup ofj which is cyclic of order¢ — 1 as in Propositiorl0. Let us first
assume that > 5. Then, one of the groupd,, S4 and As must containC, which is
cyclic of order >6. This is impossible. We also note that 5 divides the ordewof
Therefore we have to do the case tliat 5 and§ is isomorphic to eithetd4 or Sy.
But, the group.A4 does not contain an element of order 4, that is, there is no 4-cycle
in A4. The only case left i€ =5 andG isomorphic toSa.

Choose a basis for GQIE[5]), so thatC is of the form (32) Then, there are two

generators(gcl)) and (gg) of C. Since their traces are different they are not conjugate

to each other. However, the 4-cycles&i form a single conjugacy class, therefasg
cannot be isomorphic tg.
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3.4. The case where divides |G|
Now, we study the case whehdivides |G|

Proposition 13. If ¢ divides the order of the Galois group, theng is either isomor-
phic to the full groupGL(E[£]) or is contained in a Borel subgroup @L(E[£]).

Proof. By [12, Proposition 15] either G contains SIE[¢]) or G is contained in a
Borel subgroup of GLE[£]).

Recall thatv is assumed to be unramified Kki/Q. Therefore the extensioK /Q is
linearly disjoint with the cyclotomic extensioQ(u,)/Q. If G contains SIE[¢]), then
it must be equal to GLE[£]) since the determinant map

det: G — (Z/¢2)*

is surjective due to Weil pairing o&'[¢]. O

We keep the assumption thgt has no homothety, and we further assume that
divides the order ofj. We will finish the proof of Theoren8.

By Proposition10, G contains a semi-split Cartan subgro#p This subgroup deter-
mines two 1-dimensional /¢Z-subspaced; and V, of E[£], which are the common
eigenspaces of all the elements Hf therefore theonly stable subspaces undéf.
Using Propositionl3, we see that; must be contained in the Borel subgroup corre-
sponding to eitheVy or V,. Also, G must contain an element of ordérbecausel is
assumed to divide the order ¢f Now, from the assumption tha[¢] has noG-fixed
points and no homotheties, it follows directly th@tis isomorphic to

b
Gexcept= {(g 1)

The proof of Theoren8 is completed. O

ae(Z/tZ)* and beZ/fzz}.

4. The exceptional case

We prove the vanishing oH1(G;, E[¢']) when G ~ Gexcept and £ # 3. Throughout
this section, we will assume thdt# 3. However, the proof of the vanishing works
well for £ = 3 in some cases as well. See Remaekfor more details.

4.1. Vanishing ofH(G;, E[¢'])

We fix a system of compatible basis f@{¢!] for all i >1, or equivalently, a basis
for the Tate moduleT; (E) of E. This enables us to identifg; with a subgroup of
GL2(Z/¢'Z). In particular, we have the identificatiol = Gexcept at the first level
i=1.
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We recall the following notations from Sectid) we let G; act on A = M»(Z/¢Z)

by conjugation. The group Gdl;;+1/L;) is identified with ag;-submoduleC; of A
via the identification

Ir+ ¢ A —> Amode. (8)
From all this, we have that
HY(Gal(Liy1/L), E[6DY =~ Homg(C;, E[L). )

One can classify all the possibtg-submodules ofdg € A, where Ag is defined by
Ag={A € AITrA =0}. Letw = (8%),;; = (01701) andv = (28) be elements of
Ap. And also letWW = (w) andU/ = (w, u) be subspaces oflg.

Note thatG is generated byt := ((l)i) and g, := (‘(‘)2) for all a € (2/£2)*.

Proposition 14. The subspacefd}, W, U and Ap are the onlyG-submodules of4o.

Proof. One checks easily thaty andi/ are invariant under the action ©f.
Take {w, u, v} as a basis ofdg. Then an elementary computation shows that the

matrix
-2 -1
1 1
0 1

represents the action afe G on Ag. So, the only subspaces invariant under the action
of T are {0}, W, U and Ap. O

[oNeN

Proposition 15. We have the following
(a) Homyg (Ao, E[€]) = 0.

(b) Homg (U, E[£]) ~ Z/¢Z.

(c) HomgOW, E[£]) ~ Z/LZ.

Proof. With respect to the basiéw, u, v}, the action ofg, = (gg) € Gon A is
represented by

/
O O S
o O
Q

[N
N

SN———
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Any map f € Hom(Ap, E[¢]) will be written as the matrix

f= ail aiz ais
a1 azz az3

with coefficients inZ/¢Z. Then,f is G-equivariant if and only if

ail ai2 ais é _12 _11 _ (11 (a1 a2 ai3
a1 azz a3 00 1 0 1)\ az ax az3

and

a0 O

ail aip a3 a 0 (ai1 a2 a13
01 O =

az1 azo a3 00gq-1 0 1)\ a1 az az3

for all a € (Z/£Z)*. Solving these linear conditions an;, we geta;; = 0 for all i
andj, therefore,f = 0. We proved (a).
Similarly, the actions oft and ¢, on U, with respect to the basigv, u}, are repre-

sented by the matrices
1-2 and (¢ 0
01 01)’

respectively. Again, we writef € HomU, E[¢]) as

f= ail aiz
az1 az

In this case, the same computation as above says tkaf-equivariant when

f=6111(é _02)-

In particular, Hong (4, E[£]) is isomorphic taZ/¢Z and is generated by the map which
sendsw andu to P1 and —2Q1, respectively.

For (c), the same argument is used. We omit the details, but we note that a generator
of Homg (W, E[{]) ~ Z/¢Z can be chosen so as to sewdo P;. [

Corollary 16. Let S be a G-submodule ofAg, and let f € Homg(S, E[£]). The
function f is nonzero if and only if w is i§ and f(w) # 0.
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Proof. In the two previous propositions, we computed HgS, E[€]) for any G-
submodulesS of Ag. The corollary now follows from the description of generators of
Homg (S, E[¢]). O

A similar result is needed fofj-submodules ofA, rather than those of4y. Let
H= {(82) € Ala € Z/tZ}. Then,G acts onH trivially and there is a decomposition

A = Ag ® H as G modules. SinceE[¢] has noG-invariant elements we have that
Homg (H, E[{]) = 0.

Proposition 17. Let X be a G-submodule ofA and let f € Homg (X, E[£]). The
function f is nonzero if and only if w is i and f(w) # 0.

Proof. If H € X, thenH occurs as a direct summand & as G-modules, i.e.
X =Xp® H with Xy = X N Ag. Then

Homg (X, E[¢]) = Homg (Xo, E[¢]) & Homg (H, E[{]) = Homg (X0, E[£]),

hence Corollaryl6 gives the desired result.
WhenH & X and X # 0, we note that the map

i X > A— A/H ~ Ag

is injective. Thereforej(X’) is isomorphic toW,U or Ag by Propositionl4. In par-
ticular, X must contain an element of the form= w + k& for someh € H. Then
for anya € (Z/€Z2)*, 6,x —x = (a — Dw € X, or w € X. Since Hong (X, E[{]) =
Homg (i (X), E[£]) the proof again follows from Corollari6. O

We are now ready to prove

Theorem 18. In the exceptional cas§ = Gexceps We haveH1(G;, E[¢']) = O for all
i>1.

Proof. First, we do the case= 1. As before, letr := (éi) ando, = (‘(‘)(1’) be ing
for somea € (Z/¢Z)*. Consider the inflation-restriction sequence

0 — HYG/(1), E[') — HYG, E[¢]) — H((7), E[eDY/ .

The groupH(G/(z), E[€]'") is zero sincelG/(t)| is prime tof. It remains to show
the vanishing ofH((t), E[¢])9/(.

Let P = (é) and Q = (2) be the chosen basis df[¢]. If f : (t) — E[£]
is a cocycle, representing a cohomology clags$ in H((t), E[£]), the association
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[f1+ f(z) defines an isomorphism

(X e E[f]|1+1+---+1"HX = 0)

1 ~
HY((2), E[¢)) = 1—DE[(]

Since 14+ 74+ ---+ 771 = (88) and (1 — 1)E[¢] = (P), we have

HY((v), E[€]) ~ E[£]/({P) ~ (Q).

Now it is sufficient to prove that the cohomology clagsrepresented by the cocycle
f 1+ Q is not fixed by the action of, for somea € (Z/¢Z2)*.

Note that(s,) 116, = 1@ for somea € (Z/¢Z)* with aa = 1. The cohomlogy class
¢% is represented by the cocycl¢’«, which sendst to

o) = 0af (1) = 0L+ 1+ -+ H f(0)
_fa 0 aa(a—1)/2
= (o 1)(0 a )f(f)
_(l@-1/2

a—1 _ _
== P+aQ =aQmod(P).

Therefore,¢p # ¢ if a # 1. This proves tha#1((z), E[¢])9/{" = 0.
Now, leti>1. Consider the restriction map

Res: HY(Gi 1. E[¢']) — HYGal(Li;y1/L;), E[¢'])% ~ Homg(C;, E[£]),

which appeared in the exact sequenBg {We claim that this map is trivial. Once this
claim is verified, the theorem will follow from Lemmé.

Now, let g be a cocycle, representing a cohomology classHih(G; 1, E[¢']) and
let f = Regg) € Homg(C;, E[€]). By Proposition17, we only need to show that
f(w) = 0. Via the identification &), the elemeniv corresponds to the matrix

(65)

Let I; := (ég) be the (multiplicative) identity element in the rinkf2(Z/¢/t1Z) of
2 x 2 matrices with coefficients iZ /¢:*1Z. We will show in Lemmal9 that there
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exists A € G;41 such thatA? = (%‘51) and that

L+A+A%2+. A=y

for someM € M»(Z/¢+1Z). Using this lemma, we compute

e(o%)=e(x)

= (i +A+A24 . AU Dyg(A)
=0 Mg(A).

But, the cocycley takes values in£[¢], so g (%‘Zl) =0, and hencef(w) =0. O

Lemma 19. For eachi >1, there existsA € G; 1 such that

@ A7 = (4)).

(b) Let [; := ((1)2) be in the ringM»(Z/¢*1Z) of 2 x 2 matrices with coefficients in
Z/¢+1Z. Then in M»(Z/¢'*+1Z), we have

L+A+A2Z4.. A 1=y
for someM € M»(Z/0'*1Z).

Proof. Wheni =1, we let

_(1+eépl+ig (11 pPq
A_< Lr 1+Es>_<01)+gl<rs

in G» € GL2(Z/¢2Z) be any lift of t for some integery, ¢, r ands.
We will prove that, for anyn>1,

1n np + "y a,p + bug + car + dys
A" = ¢ s T 10
(O 1) + ( nr —"("2_1)r+ns (10)

where the sequences, b,, ¢, andd, are defined as

ap=nn-121/2, b, =n,
cp=nn—Ln—-2)/6, d,=nn-—1)/2.
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This formula is clear fom = 1. Now, we prove this for > 1. Note that the following
computation is inG», so any multiple of¢? is replaced by O.

noa _ 1n np+”(” Dy ayp + bug + cpr + dys
A A_{(Ol e nr n(nzl)r—i-ns
11 Pq
@)+ (7))
_(1n+1 1n P q
_<0 1 >+€(Ol>(rs>

np—}—”(” D, anp + bug + cpr +dys 11
+¢ nn—1)
-2

nr r+ns 01
_(1n+1 p+nr g+ns
_(0 1 >+€< r s
Lo (P TR p TR+ @np + bag + cur + ds)
nr nr—i—”(” Yy 4 ns

_(1ln+1
—\0 1

n(n 1)

(n+Dp+"r (p+ g + 2y +ns)
+¢ +(anp+b;16]+cnr+d s)
(n+ Dr Mr + (n+ s

So, the Eq. 10) is proved if the sequences,, b,, ¢, andd, satisfy

any1=n-+ay, byr1=1+b,,

nn-—1)
Cn+1=T+Cna dpy1=n+dy.

This is immediate from the definitions, andi0f follows.
In particular, whemnm = ¢, all of a,, by, ¢, andd, are divisible by¢. (We note here
that this is the only place where the assumptiog 3 is needed.) Hence, fromi(),

¢ _(1¢
“=(o1)
in Go. For (b), we use 10) to compute

1 (10 11 1¢-1
Io+A+---+A (01 t(o1)+lg 17 )+em
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(1@ -1)2
_11(0 1 )+£M

for someM € M»(Z/¢?Z). We proved (b) fori = 1.
Assume that >2. Let A € G; be such that

i1 (1t
4 _<0 1

in G;, and such that
Lioa+ A+ 4+ AT =iy

in Mo(Z/0'Z) for someM e M (Z/¢'Z).
Choose any liftA e Giv1 Of A Let T := (A)‘ in Gi+1. Then, the projection o
in G; is equal toAl ™ . Therefore, we have

(1071 i(ra
T_<O 1)+£ <rs

for some integerg, g, r ands. Forn>1, we will prove the following formula induc-

tively.
= (2 pe (P (11)
0 1 rs )’

The casen = 1 is clear. In the following computation, we note that any multiple of
¢%-1 can be replaced by zero, because the computation @_in.

(e GG 2
e ()65 () ()
()b () 22)
(1(n+1)£l l) < )

+0 . (n+1)

The Eq. (1) is proved.
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Now, taken = £. Then, we have

"g"_ ¢ _ 1€i
i rr=(39)

in G;y1. The part (a) is proved.
It remains to prove (b). First, we note that

L+A+ A2+ + @A) t=¢1i

for someM € Mo(Z/¢'+1Z). From (L1), we have

4 2 1 (10 101 1¢—-1e-1 .
Li+T+T?+..-T —<01>+<o 1 )t 1 +¢N

o (1d7 e -2 -
(B

= (N’
for someN, N’ € M»(Z/¢+1Z). Therefore,
L+ A+ A2+ + A= U+ T+ T2+ YU + A+ (A)?
o (AT
= NIV = ¢(N'M).

The lemma is proved. [

Remark 20. The assumptior? # 3 is needed only in the proof of LemmEd. We
investigate the casé = 3 more closely here.
As in the proof, letA € G, be a lift of t with

_ (11 Pq
A_(Ol)w.(r )
When ¢ = 3, we haveas = 3, b3 = 3, c3 =1 andd3z = 3. So, from the Eg.10),

3 _ 13 Or
2=(53)+2(20):

If r =0 mod 3, the proof in the lemma works without any change: # 1 mod 3,
then we can replacA by A—! and the rest of the proof works again. If all the lifts
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A of tin G, are such that = —1 mod 3, then the proof does not wor_k. And, this is
the only case that we do not have a proof of the vanishingd &G;, E[¢']).

4.2. An example

Let A and B be the elliptic curves defined by the equations

A y2+y=x3—x2—10x—20,
B: y>+4y=x3—x?_7820c — 263580

and fix¢ = 5. These curves are denoted by 11A1 and 11A2, respectively, in Cremona’s
table[1]. They are also studied by Vélu ii3].

The group of rational torsion pointd(Q)ors Of the curveA is isomorphic toZ /5Z,
generated by the poinP = (5,5). And, the curveB has no rational torsion. There is
an isogeny oveQ

f:A— B

of degree 5, whose kernel is generated by the pBint
Crucial is the fact that the Galois group GalA[¢])/Q) can be expressed in matrix

form as
10
(0 ) (12)

with respect to the basisP, 9} with somenonrational ¢-torsion pointQ of A [12,
Section 5.5.2] Take R = f(Q) € B[¢] and complete a basis foB[¢] by adding
another pointS € B[¢]. We prove thatG = Gal(Q(B[£])/Q) is isomorphic toGexcept
with respect to the basigr, S}.

The character which fills in the lower right coefficient ib2] is nothing but the mod
¢ cyclotomic character;, because of Weil pairing. Also, note that the poRtspans
a properG-submodule ofB[¢]. Therefore,G will be upper-triangular. With respect to
the basis{R, S}, The groupg is represented as

)

The lower-right 1 is again due to Weil pairing. Furthér,is nontrivial, otherwiseB
would have some rationgh-torsion points. Sog is isomorphic toGexcept
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5. Application

For this section, our elliptic curv& is assumed to have no complex multiplication,
unless stated otherwise.

5.1. Extension of Kolyvagin’s result dihl(E/K)

Let K = Q(+v/D) be an imaginary quadratic extension with fundamental discriminant
D # —3, —4 where all prime divisors oN split. The pointyx € E(K) will denote the
Heegner point associated with the maximal ordeKinVhen yk is of infinite order,m
is defined to be the largest integer such thate ¢ E(K) modulo ¢-torsion points.

By means of our Main Theorem obtained in Sections 2—4, we will prove Theorem
3 under the weaker assumptiopq irreducible”, instead of pg surjective”.

Theorem 21. Suppose thatx is of infinite order. Assume that does not divide D
and that E has a good or multiplicative reduction @tlf the Galois representation

po : GallQ/Q) — Aut(E[(])
is irreducible overzZ/¢Z, then
ord|LLI(E/K)| < 2m.

Proof. The prime¢ is unramified inK/Q. Therefore, a ramification argument shows
that K /Q is linearly disjoint withQ(£1[¢])/Q. Hencepq is irreducible, (resp. surjective)
if and only if pg is irreducible (resp. surjective). Note that the irreducibility @§
implies thatE (K) has no¢-torsion points. So, Assumptichis satisfied with the prime
¢ andK.

In [7], the surjectivity assumption is needed only for the proof of Proposition 2
in loc. cit. Therefore, it suffices to prove Proposition 2 only under the irreducibility
assumption.

We will follow the notations in[7]. For any natural numbaen,

[, 1n: E[€"] < E[L"] — pyn

is the Weil pairing on levek” with values in the grougy, of ¢"-th roots of unity.
The groupE[¢"] admits the decomposition

E[4"] = E[¢"]T ® E[£"]

with respect to the action of a complex conjugation. We may and will choose the
generatore;” ande, of E[¢"]T and E[¢"]~, respectively, in a compatible manner for
all n>1. Thatis,€ - e = e;_l and(-e, =e, ;.
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Fix n’ > n, and letV = K(E[£"]). For anyg € Gal(V/Q), we leta(g) = 1 if g
restricts to the identity ok, and«(g) = —1 otherwise. Note that any acts onE[£"]
via its restriction toQ(E[£"]).

Lemma 22. Let P and Q be inE[¢"]. If [P, ge, 1, = [Q,gej];“(g) for all g e
Gal(V/Q), thenP = Q0 = 0.

Proof. Induction onn. Whenn = 1, we have
[P, ge7 1 =10, gei 1" (13)

for all g € Gal(V/Q). Recall that the extensions/Q and Q(E[¢])/Q are linearly
disjoint. Therefore, each € Gal(Q(E[¢])/Q) can lift to g1 and g> in Gal(K (E[£])/Q)
in such a way thatgy restricts to the identity orK and g» restricts to the unique
nontrivial element in Galkk/Q). Further, g1 and g» can be lifted tog; and g2 in
Gal(V/Q). By construction,z(g1) = 1 anda(gz) = —1. Applying g1 and g2 in (13),
we get

[P,oe;]1=[0Q,0ef 1 =1

By the irreducibility assumption, it follows thdize; }oeccarQ(ele) Q) generateskE((],
henceP = O. Similarly, 0 = O.

Let n > 1. By raising the equatiofP, ge, 1, =[O, ge,‘,"];a(g) to its ¢-th power, we
get [P, g(le;),—1 = [£Q, g(e)] . Equivalently, we have

[P, ge, i1n-1=[£Q, gel ;1%

for all g € Gal(V/Q). By the induction hypothesig,P = ¢Q = O. ThereforeP and
Q are in E[¢] € E[¢"]. From the compatibility of Weil pairing, we haieP, ge, 1, =

[P,ge; 11 and [Q, getln = [Q,gef]l. We are reduced to the cage= 1, hence the
lemma follows. [

We proceed to prove Proposition 2[if], keeping the same notations. The homomor-
phism f : HYX(K, E["]) — H(V, u,) in [7] is defined by, for allz € Gal(Q/ V),
f) 20— 1), e, alh™ (), 617,

whereh = ht +h~ e HY(K, E[¢"]) is the decomposition with respect to the complex
conjugation. In the proof of Proposition 2 in loc. cit., the surjectivity assumption is
needed (and nowhere else) to prove th& injective.

The Eg. (18) in loc. cit. says that

(Wt (), ge; Tn = [h™(2). gef 1, "%
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for all ¢ € Gal(V/Q). From Lemmaz22, it follows that ht(z) = h=(z) = 0 for all
z € Gal(Q/ V). Thereforeh is in the kernel of the restriction map

HYK, E[£"]) — HX(V, E[£").
However, the kernel is equal to the cohomology graddp(G, , E[¢"]). The following

lemma is an easy corollary of our Main Theorem, and it will finish the proof of
Theorem2l [

Lemma 23. H(G,, E[¢"]) = 0 for all n’ > n.

Proof. The short exact sequence
0— E["] — E[¢"125 E[¢""] — 0
yields the long exacg, -cohomology sequence, part of which is
E[¢" ™% — HY(Gy, E[")) — H Gy, E[L"]).

The irreducibility assumption implies th@(K) has no¢-torsion points. Therefore, we
have E[¢"~"19%" = 0. And our Main Theorem tells us th& (G, , E[¢"]) =0. O

Corollary 24. Suppose thavg, D and ¢ are as in Theoren2l. If £ > 37 then
ordg|LLI(E/K)| < 2m.

Proof. It is known by the work of Mazu{10] that, for an elliptic curveE over Q
with no CM, the Galois representatiqr, is always irreducible for alf > 37. [

Remark 25. In [7], Kolyvagin not only finds the bound of orll(E/K)| but also
determines the complete group structure of thpart of III(E/K) in terms of the
(higher) Heegner points d&. This result also carries ovenutatis mutandionly if we
assume the irreducibility opg.

5.2. Irreducible vs surjective

For a fixed elliptic curveE over Q, the set of primes where the mod¢ Galois
representatiorpg is not surjective is usually small, (s¢#2,8]) and, in many cases,
this set is empty2,3]. However, if we varyE, there is nauniversalbound for¢ known
yet for which pg , is surjective for allE. Corollary 24 can therefore be regarded as
an improvement of Theorer from a computational point of view.
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A natural question is then to look for thode and ¢'s such that the associated
representation

pr: GallQ/Q) — GLa(Z/(2)

is irreducible, but not surjective. The rest of the section will be devoted to how one
can hope to find such examples.

52.1.¢=3
Following Serre[12, Section 5.3]we study the casé = 3 closely. Let

y2 + aixy +azy = X3 + a2x2 + asx + ag

be the minimal Weierstrass equation Bf over Z. Define, as usual, the following
constants;

by = a% + 4ao, bg = a1a3z + 2aa, bg = a% + 4ag,

bg = afag — ajagaqs + dazag + a2a§ — ai = (bobg — bi)/4
ca=0b3—24bs,  c = 36bobs — b3 — 216bg,

A = b3 — 27b% + bg(36bs — b3) = (c; — c3)/1728 j=c3/A.

Let x;(i = 1,2,3,4) be the x-coordinates of the nonzero 3-torsion points; (i =
1,2, 3, 4), respectively. They form the zeroes of the polynomial

fx) = 3x4 + b2x3 + 3b4x2 + 3bgx + bg.

Proposition 26. Suppose thatd is a cube inQ*. If f(x) has at most one rational
zerq then pp , is irreducible but not surjective

Proof. One knows (se¢l2, Section 5.3] that the order o0iG3 := pE,g(GaI(Q/Q)) is
not divisible by 3 if and only if4 is a cube inQ*. When this happens, the grodps
is contained in a normalizer of a Cartan subgralipf GL2(Z/3Z). If C is nonsplit,
G3 is necessarily irreducible and not surjective. In the case Ghiat split, G3 is equal
to C or its normalizer. In the former case, we see ttatis isomorphic to one of the

two groups
+1 0 or +10
0 +1 0 1)/

Both of these groups project onto the same image inp(@)37)/{+1} >~ S4. It is a
cyclic group of order 2, leaving two elements fixed and switching the other two. This
implies thatG3 fixes two roots of f(x) = 0. Hence f(x) has two rational zeroes.
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When G3 is equal to a normalizer o€, one can find an element from the normalizer
which exchanges the two subspaces which are stable under the ac@ofil@ Section
2.2] In particular, this shows thaty 5 is irreducible. [

Example 27. The hypothesis in the proposition above can be checked easily. For ex-
ample, take

y2+y=x3—7x+12.

This is the curve 2451 in Cremona’s table. The discriminant= —42875= —5373
and the polynomialf (x) is

f(x) = 3x% 4+ 0x® 4 3(—14)x2 + 3 49x¢ + (—49) = 3x* — 42¢2 + 147x — 49,

One easily sees that(x) is irreducible overQ, so the above proposition applies.

522.£=3o0r5

If one has a single example & with an irreducible, nonsurjective representation
pEge With £ = 3 or 5, we can generate many other examples of such representations
using the parametrization given by Rubin and Silverljédd. The parametrization gives
(isomorphism classes of) elliptic curvg;, indexed by almost all rational numbér
with E;[¢] ~ E[¢] as Ga{Q/Q) modules. Note that a CM curve will always provide
with such an example.

523.£>5

The strategy in the previous paragraph—to start with one exampdad then to
construct other curveg’ with E’[¢] ~ E[¢] as GalQ/Q) modules—fails whert is
larger than 5; indeed it was a question of Mazur (@0, p. 133) to determine all
such E’. See[5] for the casel = 7. Of course, the larget is, the harder to find a
non surjectivepg .
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