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Good reduction of abelian varieties
By JEAN-PIERRE SERRE and JOHN TATE*

As Ogg has shown, the fact that an elliptic curve has good reduction can
be seen from the unramifiedness of its points of finite order (Woods Hole, 1964;
see also [15]). It is easy to extend this criterion to abelian varieties, using
the powerful tool provided by Néron’s minimum models, cf. § 1 and § 2 below.
More precisely, we consider both good reduction over a given ground field, or
over some finite extension of it (we call the latter “potential good reduction’).
The second case has an application (as in Ogg [15]) to conductor questions,
cf. § 3. In the rest of the paper we give applications to abelian varieties with
complex multiplication. Such a variety has potential good reduction every-
where (§ 5), it has good reduction outside the support of a corresponding
Grossencharakter (§ 7) and, under suitable conditions, it can be twisted so as
to have good reduction at a given finite set of places (§ 5). These facts gene-
ralize results of Deuring [7] relative to the elliptic case.

1. The criterion of Néron-Ogg-Safarevic

Let K be a field, v a discrete valuation of K, and O, the valuation ring
of v; the residue field O,/m, of v will be denoted by k,, or simply by k. Let
K, be a separable closure of K and ¥ an extension of v to K,. We denote the
inertia group and decomposition group of ¥ by I(7) and D(7), respectively.
They are subgroups of the Galois group Gal(K,/K) and we have a canonical
isomorphism

D®)/I(%) = Gal (k/k)
where k, the residue field of 7, is an algebraic closure of k.

A Galois extension L of K contained in K, is unramified at v if and only
if L is fixed by I(7). More generally, if Gal (K,/K) acts on a set T, one says
that T is unramsified at v if I(7) acts trivially on it; this does not depend on
the choice of ¥ because the inertia groups of two such choices are conjugate
in Gal (K,/K). In other words, T is unramified at v if and only if the decom-
position group D(¥) acts on T through its homomorphic image Gal (k/k).

Let A be an abelian variety over K. One says that 4 has good reduction
at v if there exists an abelian scheme A, over Spec (0,)(cf. [13, Ch. 6]) such

* Work on this paper was partially supported by the National Science Foundation and
the Institut des Hautes Etudes Scientifiques.
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that A ~ A, X,, K; this is equivalent to saying that there exists on A a
“structure of v-variety” with respect to which A has “no defect for v”” in the
sense of Shimura-Taniyama [18, p. 94].

If m e Z is prime to the characteristic of K, we put

A, = Hom (Z/mZ, A(K,)) .

Hence A,, is the group of points of order dividing m in the group A(K,) of

K,-points of A; it is known (cf. for instance [12, Ch. VII]) that A,, is a free

Z/mZ-module of rank 2 dim(A4) on which Gal (K,/K) acts continuously.
Similarly, if ! is a prime number, [ +char (K), we put

T,(4) = invlim A;» = Hom (Q,/Z,, A(K,)) .

This is a free module of rank 2 dim(A4) over the ring Z, of l-adic integers;
the group Gal (K,/K) acts continuously on T,(A).

THEOREM 1. Let A be an abelian variety over K. Suppose that the residue
Jfield k of v is perfect', and let | be a prime number different from char (k).
The following properties are equivalent:

(a) A has good reduction at v.

(b) A, is unramified at v for all m prime to char (k).

(b') There exist infinitely many integers m, prime to char (k), such that
A, is unramified at v.

(¢) Ty (A) is unramified at v.

Before proving this theorem, we give some immediate corollaries and
remarks.

COROLLARY 1. If T,(A) is unramified at v for one l different from the
residue characteristic, it is so for all such 1.
Indeed, (a) does not depend on I.

COROLLARY 2. Let A’ be an abelian variety over K and f:A— A’ a
surjective homomorphism. If A has good reduction at v, then so does A’.
In particular, two K-isogenous abelian varieties, and especially two K-dual
abelian varieties, either both have, or both have not, good reduction at v.

Indeed, f maps T,(A) onto a subgroup of finite index of T,(4’) and, if I(7)
acts trivially on the former, it does also on the latter.

COROLLARY 3. Let 0— A’'— A — A” — 0 be an exact sequence of abelian
varieties over K. Then A has good reduction at v i1f and only if both A’ and
A" do.

1 We assume k perfect because Néron does (cf.[14]), but this assumption is not neces-.
sary according to results announced by Raynaud (C. R. Acad. Sci., 262 (1966), 413-416).
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Indeed, A is K-isogenous to 4’ x A",

COROLLARY 4. Let K’ be an extension field of K and v' an extension of
v to K’ such that the map I(¥') — I(¥) of the corresponding inertia groups
is surjective (for instance, K’ = K, or K’ finite extension of K unramified at
v)., Let A’ = A X K'. If A" has good reduction at v', then A has good
reduction at v.

Indeed, T,(A) = T,(A’) is unramified at v if it is so at v'.

Remarks (1). Condition (¢) of Theorem 1 gives a criterion® for good
reduction which we call the “criterion of Néron-Ogg-éafarevié”. Indeed,
it follows easily (see below) from Néron’s theory of minimum models
[14, Ch. II]; on the other hand, Ogg [15] used a closely related criterion for
elliptic curves (see remark 1 in § 2), which seems also to have been known
to Safarevié.

(2) The fact that (a) implies (b), (b’) and (c) is well known (see for in-
stance [18, p. 150, Prop. 18]). Corollary 2 is also known, and due to Koizumi-
Shimura [11, Th. 4].

ProoF oF THEOREM 1. We note first that (c) is equivalent to saying that
A,, is unramified at v for all ». Hence (b) = (c) = (b’), and it remains to prove
that (a) = (b) and (b’) = (a).

Let A, be the Néron minimum model of A relative to v (cf. [14, Ch. II]);
thus, A, is a smooth group scheme of finite type over O,, together with an
isomorphism A4, X, K =~ A, which represents the functor

Y +—— Hom, (Y x,, K, A)

on the category of schemes Y smooth over O,. The abelian variety A has
good reduction at v if and only if A, is proper over O,, i.e., is an abelian
scheme over O, (cf. [13, loc. cit.]).

Let A, = A, X o,k be the special fiber of A,. Itisacommutative algebraic
group over the residue field k. If m is prime to char (k), we define 4,, as
above, by

A, = Hom (Z/mZ, A(k)) .

It is known (cf. [5], [17]) that the connected component A° of A is an exten-
sion of an abelian variety B by a linear group H, and that H =S x U, where
S is a torus and U is unipotent.

LEMMA 1. Let c be the index of A’ in A. The Z/mZ-module A, is an
extension of a group of order dividing ¢ by a free Z/mZ-module of rank

2 Grothendieck, to whom one of us pointed out this criterion in 1964, has generalized
it considerably: see [10, Cor. 4.2].
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equal to dim(S) + 2 dim(B).
The index of A°, in 4, divides ¢ = (4 : 4,). On the other hand, the fact
that H(k) is m-divisible shows that the sequence

0 H, A B, 0

is exact. Since H, and B, are free Z/mZ-modules of rank dim(S) and
2 dim (B) respectively, A%, is free of rank dim(S) + 2 dim(B). This proves
the lemma.

Let us now denote by AZ the set of elements of A4, invariant under the
action of the inertia group I = I(?).

LEMMA 2. The reduction map defines an isomorphism of AL onto A,,.
This 1somorphism commutes with the action of D(7).
More precisely, let L be the fixed field of the inertia group I. We have

Hom (Z/mZ, A(L)) = Hom, (Z/mZ, A(K,)) = AL .

On the other hand, let O, be the ring of 7-integers of L; its residue field is %.
Since O, is a union of étale extensions of O,, the group A4,(0,) of the O,-points
of A, is equal to A(L), by the universal property of the Néron model A4,.
The reduction map O, — k defines a homomorphism

r: A(L) = A,(0,) — A(k) .

Since O, is henselian, and A, is smooth, 7 is surjective. Moreover, since m is
prime to char (k), multiplication by m is an étale endomorphism of A,; using
again the fact that O, is henselian, this shows that the kernel of r is uniquely
divisible by m. Hence r defines a homomorphism

Hom (Z/mZ, A(L)) = AL, — Hom(Z/mZ, A(k)) = A, ;
this isomorphism commutes with the action of D(7) by transport de struc-
ture; this proves Lemma 2.

Now, if A has good reduction at v, A is an abelian variety and A, is free
of rank 2 dim (4) = 2dim (A). By Lemma 2, the same is true for AZ, hence
A, = AL; this shows that (a) implies (b).

Conversely, assume that (b’) holds, i.e., that there exist arbitrarily large
integers m, prime to char (k), such that A4, = A%. Taking m > ¢ = (4: A",
and applying Lemmas 1 and 2 we see that

dim(S) + 2 dim(B) = 2 dim(4) ,
and, since dim(4) = dim (U) + dim(S) + dim(B), this means that U =S =0,
i.e., that A is proper over k. To prove (a), it remains to show that A, itself
is proper over O,. This follows from:

LEMMA 3. Let X, be a smooth scheme over O, whose general fiber
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X=X, X,, Kis geometrically connected and whose special fiber X is proper.
Then X, is proper over O, and X is geometrically connected.

We may assume O, is complete, since geometrical connectedness (of X)
ascends and properness (of X,) descends, cf.[9, IV, Prop. 2.7.1]. By [9, III,
Cor. 5.5.2], there exist open disjoint subschemes Z and Z’ of X, with
X,=Z U Z', Z proper and X c Z. Since X is connected, this implies Z’' =@,
hence X, = Z is proper over O,. The fact that X is geometrically connected
then follows from Zariski’s connectedness theorem (loc. cit.).

2. Potential good reduction

The assumptions being as in § 1 and Theorem 1, we say that A has poten-
tial good reduction at v if there exists a finite extension K’ of K and a pro-
longation v’ of v to K’ such that A x , K’ has good reduction at v'. Another
possible terminology for this property would be to say that A is of integral
modulus at v. Indeed, if A is an elliptic curve, then A has potential good
reduction at v if and only if its modular invariant j is integral at v
(cf. Deuring [6, p. 225]); one can prove an analogous result in higher dimension
by using, instead of the j-line, the moduli schemes for polarized abelian vari-
eties constructed by Mumford [13].

Let ! be a prime number different from the residue characteristic, and let

0.: Gal (K,/K) — Aut (T))
denote the l-adic representation corresponding to the Galois module 7', = T,(4).

THEOREM 2. (i) The abelian variety A has potential good reduction
at v if and only if the image by p, of the imertia group I(v) is finite.

(ii) When this is the case, the restriction of p, to I(7) is independent of |
in the following semse: its kernel is the same for all 1, and its character
has values 1n Z independent of L.

Assertion (i) is a trivial consequence of Theorem 1. Since (ii) is concerned
only with the inertia group, we may assume that K is henselian with algebra-
ically closed residue field (replacing it, if necessary, by the field L introduced
in the proof of Theorem 1); the group Gal (K,/K) is now equal to its inertia
subgroup I(7). Let K be an algebraic closure of K, and K’ a finite subexten-
sion of K; let G, = Gal(K/K’) = Gal(K,/K, N K')) be the corresponding sub-
group. Theorem 1 shows that the abelian variety A’ = A x , K’ has good
reduction at v if and only if Gy, is contained in the kernel of p,; hence this
kernel is independent of I. Choose now a finite Galois extension K'/K having
this property, and let A, be the Néron model of A’; it is an abelian scheme
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over the ring O, of integral elements of K'. The Galois group G = Gal(K'/K)
actson A’ = A X x K’ via its action on K’; the functoriality of the Néron
model implies that this action extends uniquely to an action of G on the
scheme A; the map

A, —— Spec (0))

is compatible with the action of G on both schemes. Since G acts trivially on
the residue field %, it acts on the special fiber A’, which is an abelian variety
over k, by k-automorphisms (i.e. by “algebraic” automorphisms). Hence, by
a theorem of Weil ([21, n° 68] or [12, Ch. VII]), the action of G on T,(A’) has an
integral character, which is independent of . Assertion (ii) follows now from
the canonical isomorphisms

T(A) ~ T(4') ~ T(A) .

COROLLARY 1. Suppose thatthe residue field k is finite of characteristic p,
and that, for some | += p, the image of Gal (K,/K) in Aut (T, is abelian.
Then A has potential good reduction at v.

By Corollary 4 of Theorem 1, we can assume that K is complete; local
class field theory then shows that the image of the inertia group I in Aut (7))
is a quotient of the group Uy of units of K. But Uy is the product of a finite
group and a pro-p-group P. Since I # p, the image of P in Aut (T,) intersects
the pro-l-group 1 + [ - End (7)) only in the neutral element, so the image of P
maps injectively into the finite group Aut (7T,/lT,) and is finite. Hence the
image of I in Aut (T)) is finite.

COROLLARY 2. Suppose A has potential good reduction atv. Let m be
an integer =3 and prime to p = char (k); let K(A,) be the smallest subex-
tenston of K, over which the elements of A,, are rational. Then

(a) The inertia group (relative to ©) of the extension K(A,)/K is inde-
pendent of m; this extension is tamely ramified if p > 2d + 1, where
d = dim(A).

(b) The extension K(A,)/K is unramified if and only if A has good
reduction at v.

For each prime [ = p, let I’ =1 for ] = 3 and I’ = 4 if | = 2. The kernel
of Aut(T,)— Aut(T,/l'T,) = Aut (A,) has no element of finite order except 1,
and therefore meets the finite group po,(I(7)) only in the neutral element.
Since m is divisible by I’ for some [, it follows that the inertia group of the
Galois extension K(A,)/K is I(¥)/N, where N is the common kernel of the
restrictions of the o, to I(7); this proves the first part of (a). By Theorem 1,
this inertia group is trivial if and only if A has good reduction at v, hence (b).
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Assume now that K(4,)/K is wildly ramified, i.e., that the order of I(¥)/N
is divisible by p. Then, for every odd prime ! = p, the number

Card (Aut (4)) = I 50 (@ — 1)
is divisible by p, and consequently the exponent of [ mod p is <2d. Taking

! to be a primitive root mod p (by Dirichlet’s theorem) we conclude that
p — 1 < 2d; this proves the second part of (a).

COROLLARY 3. Suppose O, is henselian with algebraically closed residue
field, and A has potential good reduction at v. There is a minimal sub-
extension L/K of K/K over which A acquires good reduction; it is a Galois
extension, equal to K(A,) for all m = 3 prime to char (k); the Galois group
Gal (K,/L) is equal to Ker (0,) for all  + char (k).

This follows from Corollary 2 and the fact that Gal (K,/K) = I(¥).

Remarks. (1) Part (b) of Corollary 2 is due to Ogg [15] in the elliptic
case. In the general case, there is an alternate proof for it, independent of
Theorem 1, based on the “fine” moduli schemes of polarized abelian varieties
constructed by Mumford [13,Ch.7,§2]. Indeed, the abelian variety A,
equipped with any polarization, defines a K-point of such a moduli scheme
which “becomes integral” after extension of the ground field and is therefore
integral to begin with.

(2) Part (a) of Corollary 2 suggests that, for abelian varieties of dimen-
sion d (hence also for curves of genus d), it is the primes p < 2d + 1 which can
play an especially nasty role. This is well known for elliptic curves (p = 2, 3),
~ and the same set of bad primes seems to arise in other connections. For in-
stance, a function field of one variable of genus d is “conservative” if the
characteristic p is > 2d + 1 (cf. [19]).

The case of a finite residue field. We assume here that k is finite, and
we denote by F, the Frobenius generator of Gal (k/k). Let o be an element of
D(7) whose image in Gal (k/k) is F,, and let A be an abelian variety over K
which has potential good reduction at v. We want to give some properties of
0.(0) € Aut (T,(A)), when I 5 char (k). We may assume, as above, that the
Galois group G = Gal (K,/K) is equal to the decomposition group D(7). Let
I, denote the closure of the subgroup of G generated by o; the projection
map G— Gal (k/k) defines an isomorphism of I', onto Gal(k/k); in particular, G
is the semi-direct product of I', and I(¥). Let now H be the kernel of the
restriction of o, to I(¥); this is a closed invariant subgroup of G, which is
open in I(7)(cf. Theorem 2). Hence H-T, is an open subgroup of G. Let K’
be the subextension of K corresponding to H-I',; the residue field of K’ is k.
On the other hand, A’ = A x . K’ has good reduction, hence its special fiber
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A’ is an abelian variety defined over k. The reduction map »: T,(4’) — T,(4’)
is then an isomorphism (cf. Lemma 2); hence H-I', = Gal(K,/K’) acts on T,(A’)
via its quotient Gal (k/k). Since the image of ¢ in the latter group is F,, we
then see that the action of ¢ on T,(A’) = T\,(A4) is transformed by » into the
action of the F'robenius endomorphism of the k-abelian variety A’. Hence,
using Weil’s results:

THEOREM 3. The characteristic polynomial of 0,(0) has integral coeffi-
cients independent of l. The absolute values of its roots are equal to (Nv)'2,
where Nv = Card (k).

Moreover:

COROLLARY. Let s be an element of D(7) whose image in Gal (k/k) is an
integral power Fr, meZ, of the Frobenius element F,. The characteristic
polynomial of p,(s) has rational coefficients independent of 1. The absolute
values of its roots are equal to (Nv)"2,

When n = 0, one has s € I(7) and the assertion follows from Theorem 2.
If n -+ 0, we may suppose that n > 0; replacing K by its unramified extension
of degree n, we are reduced to the case » = 1, hence to Theorem 3.

3. Local invariants of abelian varieties with potential good reduction

We assume here that O, is henselian (for instance complete) and that its
residue field k is algebraically closed. Let A be an abelian variety over K,
and [ be a prime number different from char (k). The Galois module A4, is a
finite dimensional vector space over the field Z/IZ. Let 6, = d(K, A,) be its
“measure of wild ramification” (we follow here the notations of Ogg [15]; see
also Raynaud’s exposé [16]). When A is of dimension 1, Ogg (loc. cit.) has
proved that 9, is independent of ! and it has been conjectured that the same
is true in higher dimension as well’. We prove here that this is the case when
A has potential good reduction.

More precisely, let L/K be a finite Galois extension of K, contained in K,
such that 4 X L has good reduction; such an extension exists since A4 is
supposed to have potential good reduction, c¢f. Corollary 3 to Theorem 2. Let
G = Gal(L/K), and let a, (resp. b;) denote the Artin character (resp. the Swan
character) of G (cf. Ogg, loc. cit., §1). Let ¢, be the character of the repre-

8 Grothendieck has told us that he can prove this conjecture. His proof will be in-
cluded in a forthcoming seminar (SGA 7). He also shows the existence of a finite extension
L/K having the following property:

The connected component of the special fiber of the Néron model of A Xx L is an
extension of an abelian variety by a torus.

Another proof of the existence of such a ‘‘semi-stable reduction’” has been given by
Mumford, under the assumption that char(k) + 2.
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sentation of G in T,(A); by Theorem 2, ¢, takes values in Z and is indepen-
dent of . If fand g are functions on G, define their scalar product {f, g)> as
usual by

{fo= % 2 e f(8Ma(s) where n = Card (G) = [L: K] .

THEOREM 4. Assume A has potential good reduction. Then

0, = <bg, . .

In particular, 6, is independent of 1.
Let P, be a Z,[G]-projective module whose character is b;, so that

0, = dimZ/lZ'HomG(Ply A),
(cf. Ogg, loc. cit.). Since A, = T,/lT, and P, is projective, we have
Homy(P,, A)) =~ Z|IZ @ Homy(P,, T)) ,
hence
0, = rankz;, Hom(P,, T,) = dimq, Hom:(Q, ® P, Q: Q T))
= <bG! SDA> ’ q.e.d.

COROLLARY. Let ¢ be the codimension of the invariants of Gal (K/K) in

QR T,.. Then
&+ 0, = ag, P) -

Indeed, ¢ = 2d — <1, »,>, where d = dim (4). Hence, if r; denotes the

character of the regular representation of G, we have

e=<r; — 1, p>
and
e+0,=<bg+1e — 1, p,>.

The corollary follows now from the fact that a; = b, + 7, — 1 (cf. [15]).

Remarks. (1) Let A be the special fiber of the Néron model of A.
Using Lemmas 1 and 2 of § 1, one can show that the connected component of
A is an extension of an abelian variety by a unipotent group U, and that
e = 2dim (U).

(2) The integer € + d, is called the exponent of the conductor of A at v.
It is 0 if and only if A has good reduction at v. It is equal to ¢ if and only if
the Galois module 4, is tame (i.e., if and only if A acquires good reduction
over a Galois extension of K of degree prime to p = char(k)), and in particular
if p > 2d + 1 (cf. Corollary 2 of Theorem 2). A similar definition can be given
for an arbitrary abelian variety once one knows that o, is independent of [
(cf. footnote® above).



GOOD REDUCTION OF ABELIAN VARIETIES 501

4. Abelian varieties with complex multiplication (preliminaries)

As is the preceding paragraphs, A is an abelian variety over a field K.
We denote by End.(A), or End (4), the ring of K-endomorphisms of A4; if K’
is an extension of K, we write Endk.(4) instead of Endi (A X K’). Let
d = dim (4), let F be an algebraic number field of degree 2d, and let

i: F— Q ® Endg(4)

be a ring homomorphism. We call the pair (4, 7) an abelian variety with
complex multiplication by F over the field K. When K is a number field,
this is essentially the same thing as a “variety of cMm-type” in the sense of
Shimura-Taniyama [18, § 5], except that the cM-type specifies in addition the
action of F on the tangent space of A at the origin.

In what follows, we usually identify F' with its image under ¢, that is,
we view i as an inclusion. Let R = F N Endg(A); this is an “order” of F,
i.e., a subring of F which is free of rank 2d over Z; its integral closure is
the ring of integers of F. Notice that R is invariant with respect to a
ground field extension K'/K; that is, R is equal to F' N End,.(4). Since F/R
is a torsion group, this follows from a general fact on abelian varieties,
namely that End.(4)/Endg(A) is torsion-free. Indeed, if ¢ € Endy.(A4) and
me € Endg(A) for some integer m = 1, then me vanishes on the kernel 4,
of multiplication by m in A, viewed as a finite subgroup scheme of A. Since
A/A, ~ A, this implies the existence of ¢, c Endg(A4) such that mp = mep,.
Hence ¢ = @, and ¢ belongs to the ring End.(4)".

Now let I be a prime number different from char (K). We put

T, = T\(4) and Vi=Vi(4)=Q Rz T, .

As usual, we identify T, with a sublattice of V, via the map ¢t — 1 & t.
The ring R operates on T, and, by linearity, this makes T, an R,-module
and V, an F,-module, where B, =Z, Q Rand F, = Q QR =Q, Q F.

THEOREM 5. (i) The F,-module V, is free of rank 1.

(ii) An element of F, carries T, into itself if and only if it belongs
to R,.

These facts are well known. We recall a proof:

Since the map Q, ® End(A4)— End(V)) is injective (Weil [21, p. 139]), the
semi-simple Q,-algebra F, acts faithfully on V,. Since V, and F, have the
same dimension 2d over Q,, it follows that V, is free of rank 1 over F3.

¢ An alternate proof can be given, using Galois theory together with the fact that
every endomorphism of A Xx K comes from ome of A Xk Ks (for this, consider the graph
of the endomorphism, and use [12, p. 26, Th. 5]).
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On the other hand, let ¢ be an element of F', such that T, — T,. There
exists an integer N = 0 such that ["p € R,, and an element + € R such that
¥ = "o (mod I"R,). Since I"¢T,CI”T,, we have v+ T, I”T,, i.e., 4 vanishes
on the kernel of multiplication by {” in A. This implies that ¥ = [¥¢p,, with
@, € Endg(4) N F = R. But then ¢ = ¢, (mod R,) hence ¢ € R,, as was to be
shown.

From now on, we view R,, F', and End (T,) as subrings of End (V).

COROLLARY 1. The commutant of R in End (V)), resp. End (T)), resp.
Q ® End,(A), resp. Endg(A) is F,, resp. R,, resp. F, resp. R.

The assertion relative to End (V) follows from part (i) of Theorem 5, since
any element of End (V,) which commutes with R also commutes with the ring
F, = Q,® R. The assertion relative to End (T,) follows from part (ii) of
Theorem 5, i.e., from the fact that R, is equal to F, N End (T,). Since the
map

Q; @ Endx(4) — End (V)

is injective (Weil, loc. cit.), the dimension over Q of the commutant of R in
Q ® Endg(A4) is at most [F: Q,] = [F: Q]; hence that commutant is F. The
last assertion follows from the previous one and the definition of R as
F N Endg(4).

Now consider the representation
0.: Gal (K,/K) — Aut (T))
defined by the Galois module T,. If se Gal (K,/K), it is clear that p,(s) com-

mutes with the elements of R, and, by Corollary 1, this means that p,(s) is
contained in R,. Hence:

COROLLARY 2. The representation o, attached to T, is a homomorphism
of Gal (K,/K) into the group U,(R) of invertible elementsof R, =Z, Q R. In
particular, Im (0,) is a commutative group.

Remark. It is not true in general that T, is a free R,-module. However,
this is the case if R, is a product of discrete valuation rings (that is, if [ does
not divide the index of R in its integral closure), or, more generally (cf. Bass
[3, Th. 6.2 and Prop. 7.2]) if R, is a “Gorenstein ring”, for example, if
dim (4) = 1.

5. Abelian varieties with complex multiplication
(properties of good reduction)

We preserve the notations and hypotheses of § 4. If v is a discrete valu-
ation of K, we denote by p, the characteristic of the residue field %, (cf. § 1).
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Let # denote the group of roots of unity contained in the field of complex
multiplication F'.

THEOREM 6. Let v be a discrete valuation of K with finite residue
Jfield k,. Then:

(a) The abelian variety A has potential good reduction at v in the sense
of §2.

(b) If 1+ p,, the tmage of the imertia group I(v) under the homomor-
phism o,: Gal (K,/K)— Uy(R) (cf. Corollary 2 of Theorem 5) is contained in
the subgroup p N Rip;*'] of p; the homomorphism

P L(V) —
obtained in this way is independent of 1.

(¢) Let n, be the smallest integer n = 0 such that @, is trivial on the
n® ramification group I(T)™ in the upper numbering (cf. Artin-Tate [1, Ch.
11, § 2]). Then the exponent (at v) of the conductor of A (cf. § 3) is equal to
2dn,.

Statement (a) follows from Corollary 1 to Theorem 2 since Im (o) is
commutative (by Corollary 2 to Theorem 5).

Hence there exists a finite Galois extension K’ of K such that the abelian
variety A’ = A X K’ has good reduction at v’, where v’ is the restriction of
7 to K'. Let &’ be the residue field of v' and A’ the reduction of A’ at v’ (i.e.,
the special fiber of the Néron model of A’). If we identify as before V,(4)
with V,(4’) and V,(4’), we know (cf. proof of Theorem 2) that I(¥) acts on
Vi(A") through a group of k'-automorphisms of A’. Let @, be this group; it
is finite, and independent of I by construction (loc. cit.). On the other hand,
every endomorphism of an abelian variety extends to its Néron model and to
its special fiber (this is a special case of the universal property of the Néron
model). Therefore R operates on A’ i.e. we get an embedding

_ 1: R — End,.(4") ,
which is obviously compatible with the action of R on Vy(A') = V(4.
Tensoring by Q, this gives a homomorphism
7: F— Q® End,(4") .

Thus (4’, 7) is an abelian variety with complex multiplication by F’; since the
elements of ®, commute with R, Corollary 1 to Theorem 5, applied to A’, shows
that they belong to F. We have therefore ®,c F'*, and since &, is finite,
&, p. The fact that @, is contained in the subgroup 2 N E[p;"] of /¢ results
simply from the fact that ®, acts on V, through R, = Z, Q R for all [ = p,.
This finishes the proof of (b).
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For (c), notice first that ®, can be identified with a quotient of the
inertia group I(7). The filtration of I(¥) by its ramification subgroups (in the
upper numbering) defines a filtration ®{* of ®, whose “jumps” are integers
(cf. Artin-Tate [1, Ch. 11, § 4, Th. 11]). The integer n, defined in (c) is the
smallest integer n = 0 such that ®" = {1}. Now, let Tr denote the character
of the natural representation of ®, in V;; by what has been said in § 3, the
exponent of the conductor of 4 at v is equal to <a,, Tr)>, where a, denotes the
Artin character of ®,, considered as a Galois group. But we have

Tr(w) = Try (o) for w e @,

(cf. Theorem 5). If oy, ---, 0, are the different embeddings of F in C, this
can be written Tr(w) = Y. 5,(w), hence

=1
{a,, Tr) = Eij" {a,, 0.
Each o; is a faithful representation of degree 1 of ®,, and this implies (cf.
Artin-Tate[1, loc. cit.]) that <a,,o,>=n,. Hence we havea,, Tr)>=2dn,, q.e.d.

COROLLARY. The abelian variety A has good reduction at v if and only
if the homomorphism @, of Theorem 6 is trivial, i.e., if the image ®, of @,
s {1}.

This follows from Theorem 1 and the definition of @,.

Remarks. (1) The fact that A has potential good reduction generalizes
the well known fact that the modular invariant of an elliptic curve with
complex multiplication is integral.

(2) Suppose that ®, = {1}, so that A has bad reduction at v. Let [ be a
prime number, distinct from p,. Then no element of V,(A4), except 0, is in-
variant by ®, (or, what is the same, by the inertia group I(7)). Let A be
the special fiber of the Néron model of A at v. Using Lemma 2 of § 1, one
then sees that the connected component of A is unipotent; with the notations
of § 3, this means that ¢ = 2d, and hence ¢, = 2d(n, — 1).

(3) Local class field theory allows us to identify the homomorphism

P, [(T) — ¢
with a homomorphism U,(K)— p, where U,(K) denotes the group of units of
the completion K, of K with respect to v. The integer n, of (¢) is the small-
est positive integer such that ¢ (x) = 1 for v(z — 1) = n,.

The case of global fields. From now on we assume, in addition to the
preceding hypotheses, that the ground field K is a global field, i.e., either an
algebraic number field of finite degree, or a function field of one variable over
a finite field.

Let S be a finite set of valuations of K. By the remark above we have,
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for each v € S, a homomorphism ¢,: U,(K) — ¢, with image ®,. Let m = mg
be the least common multiple of the orders of the groups ®, for ve S, and
let /¢, (resp. ft,,) be the group of m™ (resp. of 2m™) roots of unity in an
algebraic closure of F. Then ®,C p, C p for each v e S, and ,, is the small-
est subgroup of # containing the ®,, for ve S.

Let C be the group of idéle classes of K. Since the character ¢, of U,(K)
can be extended to a character of K* ~ Z x U,(K), it follows from the theo-
rem of Grunwald-Hasse-Wang (cf. [1, Ch. 10]) that there exists a continuous
homomorphism @: Cy — [, such that @oi, = @, for each ve S, where
i,: U(K)— Cy is the canonical injection. If there exists such a ¢ with values
in p,, (instead of merely in p,,), we shall say that the set S is ordinary for
A; otherwise, we call S exceptional. One knows (cf. [1, loc. c¢it.]) that, for S
to be exceptional, it is necessary that K be a number field, and that S contain
a valuation v such that, if m = 2‘m,, with m, odd, the extension of K, ob-
tained adjoining the 2¢ ™ roots of unity is not cyclic, and such that 2‘ divides
the order of ®,. In particular, S is ordinary if K is a function field, or 1f
m %= 0 (mod 4), or if K contains the m™ roots of unity, or if S contains no v
with p, = 2.

We are now ready to prove:

THEOREM 7. Let S, be the set of valuations v of K where A does not have
good reduction (i.e., suchth at ®,+ {1}), and let m be the least common multi-
ple of the orders of the ®, for ve S,. There exists a cyclic extension K' of
K of degree m or 2m over which A acquires good reduction everywhere; if
S, is ordinary for A (see above), there exists such a K’ of degree m.

Let @: Cx — % be a continuous homomorphism of minimal order such
that @i, = @, for each v e S,. Let K’ be the abelian extension of K corre-
sponding, by class field theory, to the kernel of . The extension K'/K is
cyclic; its degree is m if S, is ordinary, 2m if S, is exceptional. The abelian
variety A’ = A X x K’ has good reduction at each valuation v’ of K’. This is
clear if v does not divide any v € S,; if v’ divides v € S,, it follows from the
construction of K’ and the translation theorem of class field theory that
@, = 1, so that A’ has good reduction at v’ by the corollary of Theorem 6.

Remarks. (1) Even when S, is exceptional, one might be able to choose
K’ of degree m over K, because all that is needed in the above argument is
that Ker(p,) D Ker (g i,), that is, that ¢, is a power of @i, not necessarily
equal to it.

(2) On the other hand, Theorem 7 is almost “the best possible” in the
following sense: if L/K is a finite extension such that A x L has good
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reduction everywhere, then [L: K] is divisible by m, and, ¢f L/K is abelian

of degree m, it is necessarily cyclic. We leave the proofs of these facts to the
reader.

The method we have just followed can also be used to solve a problem
considered by Deuring in the case of elliptic curves ([7]—see also § 6 below).

THEOREM 8. Let S be an arbitrary finite set of valuations of K, and let
‘m = mg be the least common multiple of the orders of the ®, for ve S. Sup-
pose S satisfies the following condition:

(a) Either ,,C Ror S is ordinary and p, C R.

Then there exists an abelian variety B over K with the following two
properties:

(1) B has good reduction at each v e S.

(2) B x4 K, is isomorphic to A X K, (in other words, B is a K-form
of A, cf. [4, p. 129]).

The condition (a) is equivalent to the existence of a continuous homo-
morphism a: Cx— ¢ N R such that, for each ve S, its local component
«, = aot, coincides on U,(K) with the reciprocal of ¢,: U,(K)— p. Choose
such an «; one has

a,(uw)p,(u) =1 forve S,uec U/(K).
Since ¢ N R is a subgroup of the group of automorphisms of A, one can view
« as a l-cocycle of the group Gal (K,/K) with values in Aut, (4). Let B= A,
be the abelian variety over K obtained by twisting A by the cocycle a (cf. [4,
loc. cit.]). One sees immediately that the Galois module V,(B) can be identi-
fied with the module V,(A), obtained by twisting V,(4) by «. Since a,p, =1

for v e S, the corollary of Theorem 6 shows that B has good reduction in S,
q.e.d.

Remarks. (1) If we choose a polarization 6 of A invariant by the finite
group 1N R (this is always possible), then we can furnish B = A, with a polar-
ization 6, and a homomorphism

15: F'—— Q @ Endy(B) ,
in such a way that (B, i, 05) is a K-form of (A4, 7, §). In particular, B is a
K-form of A as abelian variety with complex multiplication by F', and B has
the same modular invariant as A (i.e., the same image in the variety of
moduli of polarized abelian varieties (cf. Mumford [13, Ch. 7]).

(2) The proof above shows also that condition (a) is necessary (as well
as sufficient) for the existence of a K-form of A as abelian variety with
complex multiplication by F having good reduction in S. In particular, when
R = End, (A), condition (a) is necessary and sufficient for the existence of a
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K-form of A with good reduction in S.

(3) Suppose S is ordinary. Then, by Theorem 6 (b), the condition (a) is
satisfied if £ N R[p;'] = 1 N R for all v € S, hence in particular if #c R, and
especially if R is integrally closed, or if ¢ = {1},

6. Example: good reduction of elliptic curves with complex multiplication

In addition to the hypotheses of § 5, we now suppose that dim (4) =1
and that K is a number field. Then F' is an imaginary quadratic field, and
R = End (4). The action of R on the tangent space to A at the origin gives
an embedding F'— K, by which we identify F with a subfield of K. Note that
2 is contained in K, hence every finite set of valuations of K is ordinary in
the sense of § 5.

In order to apply Theorem 8, we will have to consider separately the
following case: F' = Q(1/—1) or Q(V/—38), i.e., &t = p, or s and F = Q(p);
moreover, the conductor of the order R = Endy (A) is a prime power p*, v >1.

This case will be referred to as the special case.

THEOREM 9. Let S be a finite set of valuations of K.

(1) Euxcept in the special case, S satisfies condition (a) of Theorem 8.

(2) In the special case, condition (a) holds if and only if, for each
ve S with p, = p, we have Ny 7, (U(K)) C Uy(R), where w is the valuation
of F induced by v, and where U,(R) is the group of invertible elements of
R, =7, R R, viewed as a subgroup of przp U.(F).

(The prime p referred to in (2) is the one which divides the conductor
of R.)

Part (1) of Theorem 9, combined with Theorem 8, gives

COROLLARY 1. Except possibly in the special case, there is a K-form of
A which has good reduction in S.

This result is due to Deuring [7, III, Satz 3] except that he did not point
out the necessity of excluding the special case. That this exclusion is neces-
sary is shown by:

COROLLARY 2. In the special case, assume that K = F(j,), where j, is
the modular invariant of A (cf. Deuring [6]). Then every K-form of A has
bad reduction at all places of K dividing p.

Before deriving Corollary 2, we prove Theorem 9. If ¢ = {+1}, S satis-
fies condition (a) by the last remark of § 5. If ¢ % {+1}, one has ¢t = g, or
M=t and F = Q(¢). Let z be a generator of u, and let R, = Z + Zz be the
ring of integers of F'. For each integer f =1, the order of F' with conductor

fis
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R(f)=Z+ fR,=7Z + ZLfz,

and every order is of this form. Note that ¢ N R(f) = {%1} for f > 1, and
that, for each prime p, we have R N R(f)[p~'] = R(f’), where f = p*f’ with
(p, f') = 1. Hence, applying again the last remark of § 5, we see that S satis-
fies (a) except possibly if the conductor f of R is a prime power p*, v =1. This
proves part (1) of Theorem 9.

In the special case, we see that S satisfies (a) if and only if

P(ULK)) C {1}

for each v e S such that p, = p. Let I, denote the idéle group of K, and by
means of the global reciprocity law homomorphism I, — C, — Gal (K**/K),
let us interpret the representation p, discussed in Corollary 2 of Theorem 5
as a homomorphism

‘OL: IK—)UZ(R)CFI* .

By the theory of complex multiplication (see § 7 below), there is a continuous
homomorphism ¢: I, — F'* such that ¢ | K* = Ng,r, and such that, for each
prime number [, we have

oa) = 8(a)NKl/Fl(a’Tl) ) aely,
where a, denotes the component of the idéle a in the group

Kr = (Q®K) =TI, ., K=

Let v be a valuation of K with p, = p. Taking ! # p, the above formula
shows that the restriction of ¢ to U,(K) is ¢,. Taking I = p, and u ¢ U,(K),
we have
0p(w) = e(U)Ng,r, (W) ;

since p,(u)e U,(R) and &(u) = ¢p,(u), this shows that ¢,(u) belongs to
Ny, 7, (0) Uy (R). But U,(R) intersects the image of x in F} only at 1 and
—1; it follows that ¢, (U,(K)) C{£1} if and only if Nk, (U(K)) C U(R).
This proves Theorem 9.

We now prove Corollary 2. It is well known (cf. for instance Deuring [8,
§ 9], where this is expressed in the language of ideal classes) that the field
F(j,) referred to in the corollary is the abelian extension of F' corresponding
to the group of idéle-classes XF'*/F'* where X is the following group of idéles:

X =C* x [[,UAR) = C* x II, ., UF) x Uy(R).

Hence, if v is a valuation of K and w its restriction to F, we have, by class
field theory,
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NiyrULK)) = U(F) N XF* .

To derive the corollary, we must therefore show that, for each valuation
w of F lying over p, we have

UJF)NXF*Z UyR) .

In fact, we have canonical isomorphisms

UJ(F)n XF* __ UF)NnXF* :(UW(F)DXF*)X
U )N XF*0 U,R) U E)NXF*NX X _
_(FNXULFNX _pX o _ v
X X  pnX

The only non-obvious step in this chain is the equality
F*NXU(F)=p.

It holds because XU,(F) is the group of idéles of F' whose components at
the finite places are units. This is clear in case w is the only valuation above
p; when p splits into two valuations w and w’, it follows from the fact that
U,(R) contains U,(Z) which is a subgroup of U,(F) x U,.(F) whose projec-
tion on either factor is bijective.

Modular invariants. Before giving some numerical examples, we recall
a few facts about the modular invariant 5 = j, of an elliptic curve A (with or
without complex multiplication) over a field K (cf. for instance Deuring [6],
[7]). Two such curves A and B (with a rational point taken as origin) are
K-forms of each other if and only if j, = j,. Therefore, the existence of a
K-form of A with good reduction at a discrete valuation v of K is a property
of j,, relative to v; thus it is natural to consider the set J(v) of elements j € K
such that there exists an A with good reduction at v with 5, = j. Asis well
known, we have the implication:

jeJw)=2(4) =0, v(j) = 0 (mod 3) and v(j — 2°3°) = 0 (mod 2),

with the convention that « = 0 (mod 2) and (mod 3), in case 7 = 0 or j = 2°3%,
Moreover, the converse implication holds if p, # 2 or 3. Thus, for such
a v, the set J(v) has a simple description. It would be of interest to describe
it explicty in the remaining cases p, = 2 and p, = 3. Note that, for any v,
the set J(v) contains the elements j € K such that v(j) = 0 = v(j —2%°), as
the equation

2 232 1
VoY =0 - ——= 0 — - ;
J — 2% j — 2%

shows. On the other hand, if p, = 2 and v(j) > 0, then
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e v(j) =9, if v(2) =1
TeJ0) =1,y =12, it @) >1,

and if p, = 3 and v(j) > 0, then
jeJw)=—v(j — 2°3°) = 6.

Numerical examples. We now return to elliptic curves with complex
multiplication, and we give a few examples of the special case, in which the
bad reduction predicted by Corollary 2 above can be seen from the value of j.
We list the field F, the conductor f of the order R in F', the corresponding
value of j, the page in Weber [20] from which this value is taken®, and finally

the property of j which implies the bad reduction at a place v of K = F(j)
dividing f:

F f J page bad property
Que) | 2 24.33.53 474 | v(J) =4 %0 (mod 3)
Que) | 3 — 3-215.53 462 | v(j) =2 =0 (mod 3)
Q(us) | 2 23.33.118 477 0<vy)=6<12
Q(us) | 3 24(x8 — 4)3x 8 479 v(j — 2638) =3 = 0 (mod 2)
Qps) | 3 20(422¢ — 1)32— 24 479 | v(fj —283%) =1 =0 (mod 2)

In the first three examples, one has K = F'. In the fourth,
K=QWv—-1,vV3)and x =1+V"3 .
In the fifth, K = Qv —1,v 5)and z = (1 =+ V' 5)/2.

~

7. Complex multiplication over number fields

We now assume that K is a number field (of finite degree over Q) and A
an abelian variety with complex multiplication by F' over K; the notations of
§ 4 and § 5 are still in force. Let t =t, denote the tangent space to A at the
origin. It is a K-vector space of dimension d = dim (4). On the other hand,
R acts K-linearly on ¢, so that ¢ is a module over R Q K = F Qq K; in other
words, t is an (F, K)-bimodule over Q. Let d’ be the dimension of ¢ as an
F-vector space. Then [K: Q] = 2d’, because

d[K: Q] = dimg (t) = [F: Qld’ = 2dd’ .

For each commutative Q-algebra A, the tensor product ¢t ®q A is an

5 Weber usually gives, instead of j, some modular function of higher level. For
instance, if F = Q(us) and the conductor is 2, one has R = Z + Zv/ =3, j = (V" —3) and one
finds in Weber, p. 474, f("—3)) = V"2, where f is such that j(0) = (f(w)2 — 16)/f(»)?; hence
JOV/7B) = 24.38.58.
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(F QqA, K ®qA)-bimodule over A. If u e K ®qA, we denote by det, (u) the
determinant of the corresponding endomorphism of ¢ ®q A (viewed as a free
module of rank d’ over F ®q A); if u is invertible in K Qq A, so is det, (u) in
F ®qA. Hence the map det, gives a homomorphism

V¥a: (K Qg A)* — (F Qq A)*
which is functorial in A. In the language of algebraic groups, this means
that + is a morphism T, — T, where Ty and T are the tori corresponding
to K and F, i.e., the affine algebraic groups over Q which represent the fune-
tors

A— (K RQqA)* and A— (FQRqA)*,

respectively. When A is Q (resp. Q,, resp. R) we write v, (resp. v, resp. ¥..)
ingtead of 4r,. These are homomorphisms

Vo K¥ — F*,
’l,t’f[:Kl*—’Fl*, WhereKl:Q[®KandFl:Ql®F,
V! K& —— FX where K. =R@Kand F.=RQ F'.

If v is a valuation of K at which A has good reduction, we let k,, A4, and
7, denote respectively the residue field of v, the reduction of A at v, and the
Frobenius endomorphism of A, relative to k,. We have seen in the proof of
Theorem 6 that the reduction map End (4) — End (4,) defines an injection

1:F— Q®End(4) — Q® End (4,) .

Since 7, commutes with every k,-endomorphism of A,, Corollary 1 of Theorem 5
shows that # eIm (7). Thus there is a unique element 7,e F such that
i(m,) = %,; we call 7, the Frobenius element attached to v.

Let I, denote the idéle group of K. For each finite set S of places of K,
let IS denote the group of idéles a = (a,) such that a, = 1 for ve S.

The next two theorems are a reformulation of results of Shimura-Tani-
yama [18] and Weil [22]:

THEOREM 10. There exists a unique homomorphism

e ly— F*

satisfying the following three conditions:

(a) The restriction of € to K* is the map ¥,: K* — F'* defined above.

(b) The homomorphism ¢ 1s continuous, in the sense that its kernel s
open in Iy.

(¢) There is a finite set S of places of K, including the infinite ones
and those where A has bad reduction, such that
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(%) e(a) = I, @ foracelf.

(The last condition means that, for v¢ S, the image under ¢ of any
uniformizing element at v is the Frobenius element 7, attached to v.)

Let S be any finite set of places of K containing the infinite ones and
those where A has bad reduction, and let ¢: I, — F'* be a homomorphism.
Then it is clear that ¢ satisfies conditions (b) and (c)(relative to S) if and only
if (x) holds not only for a € I, but for all @ in some open subgroup N of Iy
containing I§. For any such N, we have I, = K*N by the weak approxima-
tion theorem. This shows the unicity of an ¢ satisfying all three conditions,
and shows also that the existence of such an ¢ for the set S in question is
equivalent to the existence of an N as above such that

IT.es T = Yro(@) forallae K* NN .

But, except for the notation, this last equation is formula (3) on p. 148 of
Shimura-Taniyama [18] if we take for S the set of infinite places and those
dividing the ideal denoted there by fm, and for N the group of
idéles = 1 (mod fm). Hence the theorem.

The next theorem concerns the relationship between ¢ and the l-adic rep-
resentation p, given by the action of the Galois group on V,(A4). By Corol-
lary 2 of Theorem 5, o, takes its values in U,(R) C F*, and factors through
Gal (K®/K), where K is the maximal abelian extension of K. Class field
theory allows us to interpret o, as a homomorphism

02 Iy — FY*

which is trivial on K*. If w» is a valuation of K at which A has good reduc-
tion, and such that p, # I, then o, is unramified at v (i.e., p, is trivial on
U,(K)) and takes the value 7, at each uniformizing element of K.*.

THEOREM 11. (i) For each prime number I, we have

() o) = e(a)yr(a’) Sforall ae Iy,
where a, denotes the component of a in K* = HM:l K}, and +;: K*¥ — FfF 18
the map defined above.

(ii) For every valuation v of K, the restriction of € to U, (K) 1s the
homomorphism ¢, of § 5 (cf. Remark 3 after Theorem 6).

Let S be a set of places satisfying condition (¢) of Theorem 10, and let
I3 be the group of idéles a whose components are 1 at the places of S and at
the places dividing I. By what has been said above, o, coincides with ¢ on I,
and since a, =1 for a € I}, it follows that (+*) holds for a € I{:*. For a e K*
we have &(@) = v(a) = ¥,(@); hence (x*) holds for the dense subgroup K*I¢"
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of I,. By continuity, (xx) holds for all a € I,. This proves (i).

To prove (ii), let I be some prime number different from p,. Then a, =1
for a € K, and (xx) shows that ¢ coincides with o, on K¥. Hence, on U, (K),
¢ coincides with ¢,, the restriction of p, (cf. Theorem 6).

COROLLARY 1. The abelian variety A has good reduction at v if and
only if € is unramified at v, i.e., e(U(K)) = {1}.

This follows from the equality ®, = ¢(U,(K)), combined with the corol-
lary to Theorem 6.

COROLLARY 2. For each prime number l, the homomorphisms o, and
1/+r, coincide on an open subgroup of U(K) = H,, _, UK); they coincide on
all of U(K) for those primes l such that A has Zood reduction at all the
places v above [.

(More precisely, if v divides [, the maps o, and 1/, coincide on all of U,(K)
if and only if A4 has good reduction at v.)

Indeed, if x ¢ U,(K), one has p,(x) = 1/4,(2) if and only if e(x) = 1.

Remark. Conversely, if for one prime ! one knows® that o, and 1/4,
coincide on some open subgroup of U,(K), then one recovers Theorem 10
immediately by defining ¢ by the formula

&(a) = pa)yi(a) forae Iy .
(A priori, this ¢ has values in F}¥, rather than in F'*, but it is easy to see
that it satisfies the three conditions of Theorem 10 (with S consisting of the

infinite places, those dividing 7, and those where A has bad reduction), and
any such homomorphism has values in F'*, as the proof of Theorem 10 shows.)

In view of Theorem 11, it is natural to define a homomorphism
Oo: Iy — FE = (RQ F)*
by putting 0.(a) = e(a)y.(az!), where a.. is the infinite component of the idéle
a. This homomorphism is obviously characterized by the fact that it is
continuous, trivial on K*, and coincides with ¢ on the group Iz of ideéles

whose infinite component is 1.
Let 0: F — C be a homomorphism. The composition

1o L 2= (R @ Fy 125 ¢

is continuous and trivial on K*; that is, %, is a “Gr'dssencharakter” in the
broad sense (having values in C* rather than in the unit circle); it is essen-

6 Indeed, this can also be proved by focal methods, which give the analogous state-
ments for formal groups (or p-divisible groups) with formal complex multiplication. The
ingredients for such a proof can be found in our Driebergen and McGill lectures (Springer,
1967-Benjamin, 1968).
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tially the same as the Grossencharakter defined in [18, p. 148]. For each
valuation v of K, the restriction of y, to U,(K) is ¢ ¢ ¢,, and, since ¢ is injec-
tive, it follows that the exponent at v of the conductor of ¥, is equal to the
number n, of Theorem 6. Hence:

THEOREM 12. The conductor of the abelian variety A is the 2d™ power
of the conductor of y,; in particular, the support of the conductor of ¥, is
the set of valuations of K where A has bad reduction.

For elliptic curves, the second statement was proved by Deuring [7].

APPENDIX

Some problems on l-adic cohomology

Let K be a field with a discrete valuation v and residue field & (cf. § 1).
Let X be an algebraic variety over K. Let | be a prime number, distinct
from char (k), and let ¢ be a positive integer. Denote by H; the ™ [-adic
cohomology vector space of X, = X x . K,, for the étale topology (cf.[2]).
Assume that char (K) = 0 or that X is proper over K, so that H; is finite
dimensional over Q, (loc. ¢it.). The group Gal (K,/K) acts on H;. This defines
a continuous homomorphism

0.: Gal (K,/K) — Aut (H}) .

Let Tr (0,) be the character of this representation.

Problem 1. Is it true that the restriction of Tr (0,) to the imertia group
I(7) is locally constant, takes values in Z, and is independent of 1?

If so, there is an open subgroup H of I(7) such that o,(s) is unipotent for
all s € H (this has been proved by Grothendieck in a special case, see below).
Moreover, Tr (p,) then defines a character of a finite quotient of I(¥); this
would make possible the definition of a conductor, as in § 3.

Assume moreover that the residue k is finite, with ¢ elements, and let s
be an element of the decomposition group D(7) whose image in Gal (k/k) is an
integral power F'* of the Frobenius element F,.

Problem 2. Is it true that the characteristic polynomial of 0,s) has
rational coefficients independent of 1? If so, is it true that the roots z, of
this polynomial have absolute value g2, where 0 < i, < 217

These problems are suggested by various examples (for instance, abelian
varieties: the case of potential good reduction has been discussed in §§ 2, 3
and the general case is similar, once one has the existence of a “semi-stable
reduction” (cf. footnote®)). One could refine them by asking for the existence
of a filtration of H; with suitable properties, but we do not want to go into.
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that here.
We finish up with a result of Grothendieck, which gives, in a special but
important case, a positive answer to a part of Problem 1.

ProprosiTION (Grothendieck). Let p: D(7) — GL(n, Q,) be a continuous
l-adic linear representation of the decomposition group D(v). Assume that
the residue field k of v has the following property:

(C)) No finite extension of k contains all the roots of unity of order a
power of 1.

Then there exists an open subgroup H of I(v) such that o(s) is unipotent
for all se H.

(Note that (C,) holds if % is finitely generated over the prime field, for instance
if it is finite.)

Proor. First, we may assume that K is complete and (after making a
finite extension) that any matrix x € Im (o) has coefficients in Z, and is con-
gruent to 1 mod I*. This implies in particular that Im (o) is a pro-l-group, i.e.,
a projective limit of finite l-groups. We will show that o(s) is then unipotent
for all s e I(7).

Let K,, be the maximal unramified extension of K contained in its sepa-
rable closure K,; we have

Gal (K,/K,,) = I(D) and Gal (K,,/K) = Gal (k,/k) .

Let K, be the I-part of the maximal tamely ramified extension of K,,, i.e.,
the extension of K,, generated by the I" ** roots of a uniformizing element
(n=1,2, ---). One sees easily that, if L is a finite extension of K, every
element of L is an I™-power. Hence the order of the group Gal (K,/K,), which
is a “supernatural number”, is prime to . Since the order of Im(p) is a power
of 1, as remarked above, it follows that the image by o of Gal (K,/K,) is {1},
i.e., that o may be viewed as a homomorphism of Gal (K,/K) into GL(n, Q).

The group Gal (K,/K) is itself an extension of Gal (k,/k) by Gal (K,/K,,).
This last group is well known to be isomorphic with T,(¢) = invlim g,,
where 2, denotes the group of I* * roots of unity in %, (or in K,,, it does not
matter). Moreover, the isomorphism

Ty(y) = Gal(K/K,,)

is compatible with the action of Gal(k,/k), acting in the natural way on
T.(¢) and acting on Gal (K,/K,,) by inner automorphisms of the extension
Gal (K,/K). Let y:Gal (k,/k)— Z; be the character giving the action of
Gal (k,/k) on T,(z). If s belongs to the pro-l-group Gal (K,/K,,), the compati-
bility mentioned above shows that s and s** are conjugate in Gal(K,/K) for
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every t € Gal (k,/k). Let X = log p(s) be the l-adic logarithm of o(s); since

log p(s)** = x(t) log o(s) = ()X,

we see that X and y(¢)X are conjugate matrices for every ¢ € Gal (k,/k). If
a,(X) is the i symmetric function of the characteristic roots of X, this
shows that

a(X) = a,(x()X) = x(t)alX) .

But the condition (C,) means that the image of y is an infinite subgroup of

¥. Hence we may choose ¢ such that y(f) is not a root of unity, and the
equation above shows that a;(X) = 0 for all 7 > 0, i.e., that X is nilpotent.
Since o(s) = 1 mod-[?, we have

0(s) = exp (log o(s)) = exp (X) ,
hence po(s) is unipotent, q.e.d.
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HARVARD UNIVERSITY
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