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I. Introduction and statement of results

The main theorem of this paper gives a relation between the heights of
Heegner divisor classes on the Jacobian of the modular curve X (N) and the
first derivatives at s=1 of the Rankin L-series of certain modular forms. In the
first six sections of this chapter, we will develop enough background material
on modular curves, Heegner points, heights, and L-functions to be able to state
one version of this identity precisely. In § 7 we will discuss some applications to
the conjecture of Birch and Swinnerton-Dyer for elliptic curves. For example,
we will show that any modular elliptic curve over @ whose L-function has a
simple zero at s=1 contains rational points of infinite order. Combining our
work with that of Goldfeld [12], one obtains an effective lower bound for the
class numbers of imaginary quadratic fieclds as a function of their discriminants
(§8). In §9 we will describe the plan of proof and the contents of the remaining
chapters.

Many of the results of this paper were announced in our Comptes Rendus
note [17]. A more leisurely introduction to Heegner points and Rankin L-
series may be found in our earlier paper [13].

§ 1. The curve X ,(N) over Q

Let N=1 be an integer. The curve X =X,(N) may be informally described
over @ as the compactification of the space of moduli of elliptic curves with a
cyclic subgroup of order N. It is known to be a complete, non-singular,
geometrically connected curve over Q. Over a field k of characteristic zero, the
points x of X correspond to diagrams

(L.1) ¢:E-E

where E and E’ are (generalized) elliptic curves over k and ¢ is an isogeny over
k whose kernel A4 is isomorphic to Z/NZ over an algebraic closure k. The
function field of X over @ is generated by the modular invariants j(x)=j(E)
and j(x)=j(E"); these satisfy the classical modular equation of level N: ¢ (j, j')
=0 [2].

The cusps of X are the points where j(x)=j'(x)=oc0. They correspond to
diagrams (1.1) between certain degenerate elliptic curves, where A =ker ¢ meets
each geometric component of E [7, 173ff.]. There is a unique cusp where E has
1 component and a unique cusp where E has N components; these are denoted
oo and O respectively and are rational over Q.
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§ 2. Automorphisms and correspondences

The canonical involution wy of X takes the point x=(¢: E— E’) to the point
2.1) wy(x)=(¢": E'—E)

where ¢’ is the dual isogeny. This involution interchanges the cusps co and 0.

The other modular involutions w, of X correspond to positive divisors d of
N with (d, N/d)=1. Let D and D’ denote the unique subgroups of ker ¢ and
ker ¢’ of order d, and define w,(x) by the composite isogeny

(2.2) w,(x)=(E/D—E/ker ¢ ~E' - E'/D).

These involutions form a group W < Aut,,(X) isomorphic to (Z/2Z)’, where s is
the number of distinct prime factors of N. The group law is given by w,w,
=w,., where d’ =dd'/gcd(d,d")>.

For an integer m=1 the Hecke correspondence T,, is defined on X by

(2.3) T.(x)= ; (xc)s

where the sum is taken over all subgroups C of order m in E which intersect
ker ¢ trivially, and x is the point of X corresponding to the induced isogeny
(E/C— E'/¢(C)). This endomorphism of the group of divisors on X is induced
by an algebraic correspondence on X x X which is rational over Q. When
(m, N)=1 the correspondence T, is self-dual, of bidegree ¢, (m)= ) d.

d|lm

Let J be the Jacobian of X: its points J(k) over any field k of characteristic
zero correspond to the divisor classes of degree zero on X which are rational
over k. The correspondences T,, induce endomorphisms of J over Q; we let
T <Endg(J) be the commutative sub-algebra they generate.

§ 3. Heegner points

Let K be an imaginary quadratic field whose discriminant D is relatively prime
to N. Let @ be the ring of integers in K, let h denote the class number of
K(=the order of the finite group Pic(()), and let u denote the order of the finite
group O */{+1}. We have u=1 unless D= —3, —4, when u=3, 2 respectively.

We say x=(E—E') is a Heegner point of discriminant D on X if the elliptic
curves E and E’' both have complex multiplication by (. Such points will exist
if and only if D is congruent to a square (mod 4N). In this case, there are 2°- h
Heegner points on X, all rational over the Hilbert class field H= K (j(E)) of K.
They are permuted simply-transitively by the abelian group W x Gal (H/K). We
remark that there are also Heegner points with non-fundamental discriminants
and with discriminants not relatively prime to N on X [13], but we will not
consider them in this paper. Also, we shall assume throughout that D is odd,
hence square free and congruent to 1 (mod 4).
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Fix a Heegner point x of discriminant D; then the class of the divisor ¢
=(x)—(o0) defines an element in J(H). A fundamental question, first posed by
Birch [3], is to determine the cyclic module spanned by ¢ over the ring
T[Gal(H/K)], which acts as endomorphisms of J(H). Our approach to this
problem uses the theory of canonical heights, as developed by Néron and Tate,
as well as the L-series associated by Rankin to the product of two modular
forms. We will show (Theorem (6.3)) that the eigencomponent ¢, , of ¢ is non-
zero in J(H)®C if and only if the first derivative of an associated Rankin L-
series L(f, y, s) is non-zero at s=1. (Here f is an eigenform of weight 2 for the
Hecke algebra T and y a complex character of Gal(H/K).)

§4. Local and global heights

For each place v of H, let H, denote the completion and define the valuation
homomorphism ||,: H ->R} by:

o] ad=|a|> if H~C
ol =
I U if H, is non-archimedean, with prime = satisfying
v(n)=1 and finite residue field of order gq,.

For any aeH> we have the product formula: [ ] |af,=1.

Néron’s theory gives a unique local symbol {a,b), with values in R,
defined on relatively prime divisors of degree zero on X over H, [27]. His
symbol is characterized by being bi-additive, symmetric, continuous, and equal
to

(4.1) <a, by, =log|f(a)l,= ). m,log|f(X)],

whenever a=) m(x) and b=div(f). One can obtain formulae for the local
symbol using potential theory when v is archimedean and intersection theory
when v is non-archimedean [14].

If a and b are relatively prime and defined over H, the local symbols
<a, by, are zero for almost all places v and the sum

(4.2) {a,by =7} <a, b},

depends only on the images of a and b in J(H), by (4.1) and the product
formula. The symbol <, ) defines the global height pairing on J xJ over the
global field H and the quadratic form

(4.3) h(a)=<a, a)

is the canonical Néron-Tate height associated to the class of the divisor 2(0),
where @ is a symmetric theta-divisor in J. Since this divisor is ample, & defines
a positive definite quadratic form on the real vector space J(H)®R [24]. This
form may be extended to a Hermitian form on J(H)®C in the usual manner.
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§5. L-series

Let f(z)= ) a,e*™" be an element in the vector space of new forms of weight
nz1

2 on Iy(N) [1,34]. Thus f is a cusp form of weight 2 and level N which is
orthogonal to any cusp form g(z)=g,(dz), where g, has level N, properly
dividing N and d is a positive divisor of N/N,. We define the Petersson inner
product on forms of weight 2 for I(N) by

(5.1) (fe)= [[ f(2g)dxdy z=x+iy
To(N\H

where the integral is taken over any fundamental domain for the action of
I,(N) on the upper half plane $.

Let o be a fixed element in Gal (H/K). This group is canonically isomorphic
to the class group Clg of K by the Artin map of global class field theory. Let
o/ be the class corresponding to ¢, and define the theta-series

1 ; .
(52) 6.%(2):1_‘_ Z eZmNaz: Z '}1(”) 6,21|:mz
2” aesd n>0
a integral -

1
where rd(O)zi— and r,(n) for n=1 is the number of integral ideals a in the
‘ u

class of o with norm n. This series defines a modular form of weight 1 on
I (D), with character ¢: (Z/DZ)* — {+ 1} associated to the quadratic extension

K/Q (see e.g., [19]).
Define the L-function associated to the newform f and the ideal class &/ by

(5.3) L,fis)y= Y emn' =% a,r (nyn~*
(n DW= 1 net

The first sum is the Dirichlet L-function of ¢ at the argument 2s—1, with the
Euler factors at all primes dividing N removed. (These factors were not
removed in our announcement [17], which is in error. Also, there we denoted
this L-series by L_(f, s), and 0_(z) by 0,(2).)

If f is an eigenform under the action of the Hecke algebra T, normalized
by the condition that a, =1, and y is a complex character of the ideal class
group of K, we define the L-function

(5.4) L(f, 1, 9)=2 () Ly (£, 9)-
o

This has a formal Euler product, where the terms for p¥ND have degree 4. The
terms where p|D or p||N have degree 2, and the terms where p?|N have
degree 0 [13].

It is not difficult to show that the series defining L_(f,s) and the Euler
product for L(f,y,s) are absolutely convergent in the right half-plane Re(s)>3.
Using “Rankin’s method”, we shall show

(5.5) Proposition. The functions L_(f,s) and L(f, x,s) have analytic conti-
huations to the entire plane, satisfy functional equations when s is replaced by
2—s, and vanish at the point s=1.
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§ 6. The main result

We recall the notation we have established: x is a Heegner point of discrim-
inant D, which we have assumed is square free and prime to N, and c is the
class of the divisor (x)—(o0) in J(H). The quadratic field K=Q(]/ D) has class
number h and contains 2u roots of unity; the element ¢ in the Galois group of
H/K corresponds to the ideal class o/ under the Artin isomorphism. Finally,
{, » denotes the global height pairing on J(H)® C and (,) the Petersson inner
product on cusp forms of weight 2 for I;(N).

(6.1) Theorem. The series g, (z)= Y. <c,T, »cmyermimz s a cusp form of weight
2 on I,(N) which satisfies mz1

u?|D
(6.2) (/. gg)— l I— Ly(f, 1)

for all f in the space of newforms of weight 2 on I,(N).

By using the bilinearity of the global height pairing, we can derive a
corresponding result for the first derivatives L(f, x, 1), when f is a normalized
eigenform and y is a complex character of the class group of K. We identify x
with a character of Gal(H/K), and define cX=ZX“(0) ¢? in the y-eigenspace

of J(H)®C. (This is h times the standard eigencomponent.) Finally, we let ¢, ,
be the projection of ¢, to the f-isotypical component of J(H)® C under the
action of M[13]. Then we have

87°(£,f)
hu?|D|"?

Here £ is the canonical height on J over H, as in (4.3). The discrepancies in
the constants of (6.2) and (6.3) from those in our announcement [17] come
from the fact that there we were considering the global height on J over Q.
The heights over H, K and @ are related by the formula

(6.4) {a, by y=h<a, by =2h<a, by,

(6.3) Theorem. L(f, y, 1)= hic, ).

We remark also that the quantity 8n*(f,f) is equal to the period integral
lopll?= [ w,Aiw,, where w,=2nif(z)dz is the eigendifferential associated to
X(©

f- Thus (6.3) may be re-written in the more attractive form

wa”

(6.5) LU =

We recall that u=1 when |D|>4.

)

§ 7. Applications to elliptic curves

Let E be an elliptic curve over Q. The L-function L(E,s) is a Dirichlet series
Y. a,n~* defined by an Euler product which determines the number of points

nx1
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on E (mod p) for all primes p [35]. This product converges in the half plane
Re(s)>3, but it is generally conjectured that the function f(z)= Y, a,e’™" is a

nz1
newform of weight 2 and level equal to the conductor N of E [35, 38]. In this
case, the function

o0 > d
I*(E, 5)= | f(iy:) v Y N92(2m)~* I'(s) L(E, 5)
0 I/N y

is entire and satisfies a functional equation

(7.1) L*(E, s)= + [*(E, 2 —s).

This conjecture may be verified for a given curve by a finite computation, and
we will assume it is true for all of the elliptic curves considered below.

The conjecture of Birch and Swinnerton-Dyer predicts that the integer r
=ord,_, L(E, s) is equal to the rank of the finitely generated abelian group
E(@Q) of rational points. This conjecture also gives an exact formula for the real
number L"(E, 1) of the form:

(1.2) I, 1)=a-Q-R,

where Q is the real period of a regular differential on E over @, R
=det({F, P)) is the regulator of the global height pairing on a basis
(P,..., B> of EQ)®Q, and « is a non-zero rational number (for which there
is also a conjectural description in terms of arithmetic invariants of the curve)
[35]. We will combine Theorem (6.3) with a theorem of Waldspurger to obtain
the following result, which may be viewed as a contribution to the problem of
finding rational solutions of cubic equations:

(7.3) Theorem. Assume that L(E, 1)=0. Then there is a rational point P in E(Q)
such that L(E,1)=a-Q-{P,P) with aeQ*. In particular:

1) If L(E, 1)*£0, then E(Q) contains elements of infinite order.
2) If L(E,1)*0 and rank E(Q)=1, then formula (7.2) is true for some non-
zero rational number o.

If the sign in the functional equation (7.1) is —1 and the point P con-
structed in Theorem (7.3) is trivial in E(Q)®Q@, then the order r of L(E,s) at
s=1 must be at least 3. One example where this happens is the following (for a
proof that P is trivial in this case, see [17] or [39]):

(7.4) Proposition. The elliptic curve E defined by the equation
—139y?=x3+10x?—20x+8
has ord,_, L(E, s)=rank E(Q)=3.

§8. Application to the class number problem of Gauss

As well as providing some support for the conjecture of Birch and Swinnerton-
Dyer, Proposition (7.4) furnishes the final step in Goldfeld’s attack on Gauss’s
class number problem for imaginary quadratic fields [12]. Suppose K has
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discriminant D and class number h=h(D); then Goldfeld’s theorem and Propo-
sition (7.4) together imply

(8.1) Theorem. For any ¢>0 there is an effectively computable constant k(g)>0
such that h(D)> k(e)(log|D|)' —=.

For the analytic details of Goldfeld’s method, see Oesterlé [28]. In fact,
Oesterlé gives a sharper final result, a slightly simplified formulation of which
is the inequality

(82) C(t)h(D)zlog|D],

where C(t) is an explicitly given function of ¢, the number of prime divisors of
t . .

D, with log C(t)~4|/1~——t~ as t—oo. This implies Theorem (8.1) since 27!
og

divides h(D) by genus theory and hence log C(t)<(logh(D))* <€logh(D). How-
ever, the actual value of C(t) in (8.2) depends heavily on the particular elliptic
curve used, and the curve E of Proposition (7.4) does not give a very good
value. It has recently been shown by Mestre [26] that Proposition (7.4) is also
true for the elliptic curve y>—y=x>—7x+6, which has much smaller con-
ductor than E (5077 rather than 714877), and this gives (8.2) with a considera-
bly smaller value of C(t), but only for D prime to 5077. In particular it implies
(8.2) with C(1)=355, i.e. h(D)><slog|D| for D prime [28]. In combination with
previous results of Montgomery and Weinberger, this suffices to show that the
largest value of |D| with h(D)=3 is 907.

§9. The plan of proof

We will now summarize the contents of the remaining chapters, and will
indicate how these results fit together to yield a proof of Theorem (6.1).

We begin with the question of calculating the global pairings <{c, T,,¢’) for
those m which are prime to N. Set d=(x)—(0); since the cuspidal divisor
(0)—(oo) has finite order in J(@Q) we have {c, T, c’>={c, T,d’). On the other
hand, it is easy to show that

(9.1) Proposition. The divisors ¢ and T,d° are relatively prime if and only if
N>1 and r (m)=0.

In the cases where the hypotheses of (9.1) are met, we may calculate
{c, T,,d’> as the sum of Néron’s local symbols {c, T,,d°),. The general case
can be treated using (4.2) and a mild extension of Néron’s local theory [14].
We will treat the case when r,(m) =0, but will assume for simplicity that N> 1
throughout. For a detailed consideration of the case N =1, see [18].

In Chap. II the archimedean local symbols {c, T,,d°)>, are expressed in
terms of a Green’s function for the Riemann surface X (C)=1I,(N)\ H* with the
two distinct points co and 0 marked. In Chap. III the non-archimedean local
symbols {c, T,,d°),6 are determined using intersection theory on a modular
arithmetic surface with general fibre X. In both cases, there is considerable
simplification when we consider the sum Y {c, T,,d°), over all places of H
dividing a fixed place p of @. vlp
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In Chap. IV we will use Rankin’s method and the theory of holomorphic
projection to find for each k=1 a cusp form ¢ (z)= Y. a, ,e*™™ of weight
2k on I,(N) which satisfies mz1

2k -2
0 () = ey IDIF Ly (£ )

for all f in the space of newforms of weight 2k and level N. (The function
L,(f,s) for k>1 is defined as in (5.3) but with n'~2* replaced by n**~'-25; it
satisfies a functional equation for s—2k—s and vanishes at s=k.) The exis-
tence of some cusp form satisfying (9.2) follows from the non-degeneracy of the
Petersson inner product on the space of new forms, which also shows that ¢,
is well determined up to the addition of an old form. We shall give explicit
formulas for the Fourier coefficients a,, , for those m=1 which are prime to N.
The computations are independent of those in Chaps. II and III and are
carried out in more generality: not only is k arbitrary, but the condition
D =square (mod 4N) is relaxed to ¢(N)=1. These more general results are also
interesting as discussed in §§3-4 of Chap. V. In the case k=1 and D=square
(mod 4N), the formula for a,, , turns out to be identical (up to a factor u?) to
the sum of the local height contributions {c, T,,d’>, so we have the identity

9.3) (e, T, y=u*a, , (m21,(m N)=1)

for the global height pairing. A formal argument (§1 of Chap. V) shows that
the series g,(z)= Y, ¢, T,, "> ¢*™™ is a cusp form of weight 2 on I,(N), and

mz21
(9.3) shows that g, differs from u?¢, by an old form. Theorem (6.1) then
follows from Eq. (9.2). The rest of Chap.V is devoted to the proofs of its

various corollaries and to generalizations.
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II. Archimedean local heights

In this chapter we compute the local symbols {c, T, d’>, as defined in §4 of the
Introduction for archimedean places v of H. We recall the notation: c=
(x)—(o0), d=(x)—(0) where 0 and oo are cusps and x a Heegner point
of discriminant D=Dy on X (N), ceGal(H/K), c=0, for some ideal class
o eCly.

§ 1. The curve X ,(N) over €

In Chap. I we gave the modular description over @ of the curve X =X  (N), its
automorphisms and correspondences, and of Heegner points. We now describe
this all over the complex numbers C; this is of course the most classical and
familiar description.
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An elliptic curve E over € is determined up to isomorphism by the
homothety type of its period lattice L: E(C)=C/L. If x=(E-*>E’) is a non-
cuspidal point of X, and we write E(C)=C/L, E'(C)=C/L, then we can modify
by a homothety to obtain L>L, ¢=identity. Then L/L~Z/NZ, so we can
choose an oriented basis {w,,w,» of L over Z (“oriented” means

1 . . .
Im(w, @,)>0) such that <w1,N—w2> 1s a basis for L. The point z=w,/w, then

lies in $, the complex upper half-plane, and the point xeX(C) uniquely
determines z up to the action of

r=r0(N)={ (i Z) €PSL,(Z)| c=0(mod N)}.

Conversely, any zel'\$ determines a point x= ((E/(z, 1)—“—» (E/(z, i)) of
X(C). Thus N

(X~ {cusps)(C) =T, (N\ 9.

The compactification is given by X(C)=IL,(N)\ H*, where H* = H UIP'(Q) with
the usual topology. We have

({cusps})(C)=T,(N\IP'(Q) = ‘!IDIV(Z/de)*

d>0

where f,=(d, N/d) and the map is given by

%(m,nel, (m,n)=1) > (n/d)"'m(mod f,), d=(n,N)

(one easily checks that n/d is prime to f; and that the definition depends only
on the class of m/n modulo I'). In particular, the number of cusps is

Z d)(fd): l—[ (p[”/2]+p[(v—l)/2])‘
alN Pl

The curve X over € has the following automorphisms and correspon-
dences: The action of complex conjugation ceGal(C/R) on X (C) is induced by
c(z)=—Z (z€9H*);

the minus sign arises because for a lattice L< € with oriented basis {w,, w,)
the conjugate lattice c(L) has oriented basis { —®,, ®,», and the formula is

1
0 1) normalizes I
The canonical involution wy of X is induced by the Fricke involution

compatible with the projection map $—I'\$ because (—

wy(z)=—1/Nz  (z€9%);

more generally, for any positive divisor d of N with (d, N/d)=1 the involution
w,eW is induced by the action on H* of any matrix
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iz Z
(L.1) wde(NZ dZ), detw,=d.

The Hecke correspondence T, (meN, (m, N)=1) acts by

(1.2) T.(2)= ) 7z
yel'\Rn
dety=m
Z Z . . o
where R = ( NZ Z)‘ It is easily checked that these descriptions over € agree

with the modular interpretations of wy, w, and T, given in Chap. L.

Finally, we give the description over € of the Heegner points. Let K be an
imaginary quadratic field, D its discriminant, @ its ring of integers; we suppose
N is prime to D. Recall that a Heegner point on X was a non-cuspidal point x
=(E-% E’) such that both E and E' have complex multiplication by ¢/. Then
E(€)=C/L, E'(C)=C/L where L and LcC are rank 1 modules over 0; we
can change by a homothety to ensure that L and L are in K, and then both
are (fractional) ideals of K. If we choose Lo L, ¢=id, L/IL~Z/NZ as before,
then n=LL~! is an integral ideal of norm N and is primitive (“primitive”
means O/n=Z/NZ or equivalently that n is not divisible as an ideal by any
natural number >1). Thus L=aqa, L =an~"' for some fractional ideal a of K and
some primitive ideal nc @ of norm N. Conversely, given any such a and n, the
elliptic curves €/a and €/an~" over € have complex multiplication by ¢ and
the isogeny C/a— C/an~' induced by id; defines a Heegner point on X.
Clearly two choices a;, n, and a,, n, define the same Heegner point iff
a,=Aa, for some AeK* and n,=mn,. Hence we have a 1:1 correspondence

Heegner points pairs (&7, n), L eClg, nc @
«>
xeX(C) a primitive ideal of norm N

(C/a S, C/an~1)([a], ),

where Cly is the ideal class group of K. The action of ¢ on x corresponds to
(o, )= (o, W) =(o/ ", Nn~")

while Gal(H/K)~Cly acts by multiplication on &/ and trivially on n (H
=Hilbert class field of K). The Atkin-Lehner involutions on X ,(N) permute
the possible choices of n. More specifically, let N=p"' ... pts (r;>0) be the prime
factorization of N. The existence of Heegner points for K on X is equivalent to
the requirement that all p; split in K (if N were divisible by an inert prime, it
could not be the norm of a primitive ideal, and we are supposing N prime to
D), so there are precisely 2° primitive ideals n of norm N, namely the ideals
pY ... pts where p, is one of the two prime ideals of K dividing p;. The effect of
w, (d||N) on a Heegner point is to map it to another Heegner point with &/
replaced by «/[d], where d=(d, n), and an n obtained by making the opposite
choice of p, for all p; dividing d. In particular,
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i) wy acts on Heegner points by (&, 1) — (=[], 1i);

ii) the group Gal(H/K)x W (W=(Z/2Zy the group of Atkin-Lehner in-
volutions) acts freely and transitively on the set of all Heegner points of
discriminant D on X.

It will also be useful to have a description of Heegner points in terms of
coordinates in §. There is a 1:1 correspondence between primitive ideals n< @
of norm N and solutions f of

(1.3) BeZ/2NZ, B>=D(mod4N)

(notice that B2 is well-defined modulo 4N if f is well-defined modulo 2N)
given by

n=<N,B+2l/B) IN+ zﬁﬂ/D

The point in § corresponding to a Heegner point x=(C/a—-C/an~"') with

an~! integral is then the solution t of a quadratic equation

(1.4) At>+Bt1+C=0, A>0, B?*—4AC=D,
' A=0(mod N), B=pf(mod2N),

with

B+yD

(L5) a=Z- A+Z —5—,

B+VD
1=Z.AN-'+Z +2‘/, Ny q(a)=A4.

Indeed, a point €9 gives rise to an elliptic curve €/Z1+Z with complex
multiplication by 0O iff 7 is the root of a quadratic equation At*>+Bt+ C=0
with integral coefficients and discriminant D, and the requirement that Nt
have the same property implies that N|A4; then B*=D(mod4N) and one
checks easily that the class of B(mod 2N) is an invariant of t under the action
of I,(N) on $ and that this invariant corresponds to the choice of n as in (1.3).
As a convention, we will always use z to denote an arbitrary point in & or
IL(N)\$ and 7 for a Heegner point.

For more details on the contents of this section we refer the reader to [13].

§ 2. Archimedean heights for X ,(N)

Let S be any compact Riemann surface. Recall from §4 of Chap.I that a
height symbol on S is a real-valued function {a, b)¢=<a, b) defined on di-
visors of degree 0 with disjoint support, and satisfying

(2.1) a) (a, b) is additive with respect to a and b;
b) <a,) m;(y)> is continuous on S |a| with respect to each variable y; (la|

denotes thé support of a);
) 3 ni(xy), by = Z n; log | f(x;)I* if b=(f), a principal divisor.
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Such a symbol is unique if it exists since for fixed a the difference of any two
symbols b—<{a,b) would define a continuous homomorphism from the com-
pact group Jac(S) to R and hence vanish identically. Now fix two distinct
points x,, y,€S and set

G(x, y)={(X)=(x0) M) —(vo)>  (x,y€S, xFyo, yFxq, XF)).
Then the biadditivity of {, ) implies the formula

(2.2) {a, b>=Zniij(x,.,yj) for a=) ni(x), b= my),
tJ

at least if |a|$y,, |b|$x,. Conversely, a function G(x, y) will define via (2.2) a
symbol satisfying (2.1) if for fixed xeS the function y—G(x, y) is continuous
and harmonic on S~ {x, x,} and has logarithmic singularities of residue + 1
and —1 at y=x and y=x,, and similarly with the roles of x and y in-
terchanged. (Here the terminology “g has a logarithmic singularity of residue
C at x,” means that g(x) — C log|p(x)|* is continuous in a neighborhood of x,,
where p(x) is a uniformizing parameter at x,.) To prove this, we note that the
symbol defined by (2.2) is obviously bi-additive and is continuous in all y;¢|a]
because the logarithmic singularities of G(x;, y) at y=x, cancel (since dega
=0), so (2.1a), (2.1b) are satisfied; Eq. (2.1¢) is also satisfied because the
function x—log|f(x)|> —<x,(f))> is harmonic and has no singularities (the
logarithmic singularities at x = y;e|(f)| cancel) and hence is a constant, and this
constant drops out in (2.1c) because Z n;=0. Notice, however, that the axioms
we have imposed on G determine it only up to an additive constant (which of
course has no effect in formula (2.2)); to make sure that G(x, y) is exactly {(x)
—(x0), (¥)—(yo)> we must impose one extra condition, e.g. G(x,, y)=0 for
some yeS~ {x,}.

Now take S=X,(N)(C)=I,(N\9Hu{cusps} and x,= 0, y,=0 (we assume
N>1, so x,%y,). We want to construct a function G(x,y) satisfying the
properties above, i.e. a function G on § x & satisfying

(23) a) G(yz,72)=G(z,2) Vz,2'€9, 7, V'el(N);

b) G(z, z') is continuous and harmonic for z¢I,(N)z';

¢) G(z,z')=e, log|z—2z'|*+0(1) as z' > z, where e, is the order of the stabil-
izer of z in I(N);

d) For ze$ fixed, G(z, z')=4ny +0(1) as 2’ =x"+iy’ — o0 and G(z, z')=0(1)
as z'—any cusp of I (N) other than oo; similarly, for z' fixed G(z, z')
=47 N—lyT2-+0(l) as z=x+iy—0 and G(z,2)=0(1) as z—any cusp of I(N)

z

other than 0.

The conditions in c) and d) come from noting that a uniformizing parameter
for X (N) at a point represented by ze$ has the form p(z)=(2' —2)"*(1 +
0(z' —z)), while uniformizing parameters at oo and 0 are e?™# and e~ 2%/Nz,
respectively. The most obvious way to obtain a function with the invariance
property a) is to average a function g(z, z') satisfying

a') g(yz, yz)=g(z,2') VyePSL,(R)
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over I,(N), ie. to set G(z,z')= Y g(z, yZ). To achieve the properties b)-c) we
would also like velo(N)

b’) g(z,z) is continuous and harmonic in each variable on
9 x H~diagonal;

¢) gz, z)=loglz—2'|>+0(1) for z'—z.
A function satisfying a’)-c’) is given by

2
(2.4) 2(z, z)—logll_ Z:Z.
Unfortunately, the sum of g(z, yz') over I,(N) diverges (although only barely)

for this choice of g. To resolve the difficulty, we modify the condition of
2 2

harmonicity to Ag=eg with ¢>0, where A=y2( ) denotes the La-

o "oy
place operator on $, obtaining a function for which } g(z, yz’) converges and
which is an eigenfunction of the Laplacian with eigenvalue ¢, and then take the

limit as ¢—0, subtracting off any singularities. Condition a’) requires that g be a

function only of the hyperbolic distance between z and z/, or equivalently a
|2

function Q of the quantity 1+| > (which is the hyperbolic cosine of this

distance). The equation 4g=¢g then translates into the ordinary differential
equation J
—t?) ——2t :) Q(1)=0.
((1 )dt2 z+c) o)
This is the Legendre differential equation of index s —1, where e=s(s —1) with
s> 1. The only solution (up to a scalar factor) which is small at infinity is the
Legendre function of the second kind Q,_,(t), given by

2.5) 0. (0= (t+V/1T =T coshu)*du (t>1,5>0)
0

or
s (2. . 2

2.6) 0, (=575 (1—+:) F(S,S,ZS,I—_H) (t>1, se@),

where F(a, b; c; z) is the hypergeometric function (cf. any book on special
functions). From either of these closed formulas one easily deduces the asymp-
totic properties

2.7) Q,_1 ()= —3log(t=1)+0(1) (¢£\1),
(2.8) Q_1()=0("") (t— ).
The first implies that the function
2
2.9) g.(z,7)= —20,_, (1 +|22yi| ) (2, 2€$, 247
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satisfies axiom ¢’) above and the second, that the sum

(210) GN.s(Z’ Z/): Z gs(Z, 'VZ/) (Z’ Zless’ Zléro(N) Z)

yeTo(N)
converges absolutely for s> 1. The differential equation of Q,_, implies
(2.11) 4,Gy (2,2)=4, Gy (2,2)=s(s=1) Gy ((z,2) (Z¢[H(N)2),
while the property
(2.12) Gy (02,7 2) =Gy (2, 7) (V3,7 €l (N))

is obvious from the absolute convergence of (2.10) and the property a’) of
g.(z,2).

The function Gy (z,z') on ($/I,(N))*~ (diagonal) is a well-known object
called the resolvent kernel function for I,(N); its properties are discussed

1.
extensively in [20, Chaps. 6-7] (note that Hejhal’s normalization is yp times
T

ours). In particular, the series defining Gy , converges absolutely and locally
uniformly for Re(s)>1 and defines a holomorphic function of s which can be
extended meromorphically to a neighborhood of s=1 with a simple pole of
residue

~12 » 1\~
(2.13) O TN AT ﬂv (1 +13)

(independent of z, z') at s=1. We could thus “renormalize” at s=1 by forming

the limit lim I:GN’S(Z, zZ')— KNI ] But this function would not be harmonic in z

s—1 -

or Z', since

A (lim [GN!s(z, z')_S_".L]) —lim[s(s—1) Gy ,(z, 2] =Ky +0.
- s—1

s— 1 1

To get a harmonic function of z, we should instead subtract from Gy ((z,2) a
KN

Iy(N)-invariant function of z having the same pole I at s=1 and the same

5 —
eigenvalue s(s —1). Such a function is —4nE(z, s), where

(2.14) Ex(z, 8)= Y Im(yz)* (ze$, Re(s)>1)

ve(g D\
is the Eisenstein series of weight 0 for the cusp oo of I (N). Since we want our
function G(z, ') to have its singularities at z=0 and z'= o0, we should in fact
subtract —4nE(wyz,s) and —4nE(Z, s) from Gy ((z, 2'), where wy: z+— —1/Nz
is the involution of X ,(N) interchanging 0 and co; we must then add back a

K . .
term ﬁ, since we have subtracted off the pole of Gy  twice. We therefore set

(2.15) G(z,z')=lim [GN‘S(Z, 2)+4nEy(wyz, 5)+4nEy(2Z, 5)+

Kn
s—1 -

Jre

N
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with a constant C still to be determined, and claim that it possesses all the
properties (2.3). Indeed, (2.3a) and (2.3b) are obvious from the definition of
Gy, (2, ) and the preceding discussion, and (2.3¢) follows from (2.7). It remains
only to check the behavior of the function (2.15) at the cusps, i.e. that it has the
correct logarithmic singularities as z goes to 0 or z’ to oo and is bounded at all
other cusps; we would also like to choose the constant in (2.15) so that
G(z,2z)—>0 as z— co. We must therefore know the expansions of G ; and E,
at all cusps of X (N). For E, this is easily obtained from the elementary
identity

(2.16) Ey(z,)=N—*[](1—p-29-1.y 9 E(ﬁ z,s),
pIN drv d d

where y(d) is the Mobius function and E(z, s)=E,(z, s) the Eisenstein series for
SL,(Z), because for SL,(Z) all cusps are equivalent to oo, where E(z, s) has the
well-known expansion

(2.17) E(z,5)=y "+ ¢(5) y! *+0(e7*) (y=Im(z)— ),
r&res-4 ¢2s—1
(2.18) B(s)= (2)F(§ 2) C(C(st) )

(By O(e™”) in (2.17) and below we mean a function which is not only O(e™?) -
actually, O(e~®’) for any ¢ <2n - for fixed s> 1 but is holomorphic in s at s=1
and is O(e™’) uniformly in a neighborhood of s=1.) For Gy, we have the
expansion

47
2s—1

(2.19) Gy z,2)=~ Ey(Z,s)y' 5 +0(e™) (y=Im(z) > x0)

at oo (see [20], (6.5); this expansion is obtained by calculating the Fourier-
development of Gy ((z, z') with respect to z). At other cusps there is a similar
expansion, so that Gy ((z, Z)=a(s) Y=+ 0(eY) where Y=Im(yz) for some
yeSL,(R) transforming the cusp in question to co. Hence as z tends to any
cusp other than O, the expression in square brackets in (2.15) has the form
a(s) Y=+ B(s)+ O(e~ ), where a(s) and B(s) have at most simple poles at s= 1
and a(s)+ B(s) is holomorphic there; letting s — 1, we obtain a function of the
form alog Y+ B+ O(e~¥), and the harmonicity of this requires that «=0. Hence
(2.15) is bounded as z tends to any cusp other than 0. At 0, we find from (2.16)

and (2.17)
Ey(wyz, s)=Im(wyz)*+O0(Im(wy2)' 7% (z—0),

so the same argument shows that G(z, z') has an expansion 4nY+alog Y+ f

+0(e7 ") as Y=Im(wyz)= — o0, where again o must be 0 (by direct

Yy
Niz|?
computation or because G is harmonic). This proves the assertions of (2.3d) for
z, and the assertions for z' are proved similarly or by noting the symmetry

property
(2.20) G(z,2)=G(wy 2, wy2).
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Finally, we must determine the constant in (2.15) so that G(z, z') vanishes as
z—o00. By (2.19) we have

1—s
G(z, 2)=lim [4n Ey(Z,s) (1 —2y 1 )] +lim [47zE

s—1 S —

1]+C+0(e‘y)

s—1

as y— 0. Since

1-s

y
2s—1

as s— 1, the first limit equals —xy(logy+2). The second limit is evaluated by
(2.16)-(2.18) (recall N>1):

4nEy(Z, 5)=

), 11— =(logy+2)(s—1)+0(s —1)?

Ey(wyz,s)=N"[](1—=p=29~1-% #(f) E(dz,s)
pIN d|N d
=N T1A=p )" YA =p= ") d(s) y' *+0(e™)),

pIN pIN

lim [4nEN(wNz s)+———1~]—kN logy+Ay+0(e™)

s—1

with
—2s+1
_11m [411N Sd)(s)l_[ p 4 ]
2.21) PIN . s—1 .
[10gN+210g2 2125 @2y P g”]
C pIN p _1

r Ir 1
(here y=Euler’s constant and we have used 7 H)=—-y, — (~) =-—2log2—y,

1 r \2
C(2$—l)=m+y+0(s—1)>. Hence
2s—2

G(z,2)= =2Kky+Ay+ C+0(e7?)
as y— oo, so we must have C=2x,—Ay. Summarizing, we have proved:

(2.22)  Proposition. Let x, x' be distinct non-cuspidal points of X ,(N)(C). Then
(%) =(00), (x) = (0)>¢
=lim [GN (2, 2)+4nEy(wyz, s)+4n Ey(zZ, s)+

s—1

.l 1] —Ay+2Ky,

where z, z'€$ are points representing x and x' and Gy ,, Ey, ky, Ay are defined
by (2.10), (2.14), (2.13) and (2.21), respectively.

We would also like a formula of the same kind for {(x)—(o0), T,((x")
—(0)>¢, where T, is the m™ Hecke operator (m>0 prime to N). Since T, maps
each cusp to itself, we have

{(x)=(0), T,(x) = (0)>¢=G(z, ). T,,= Z\R G(z,y2)
yel'\RN
dety=m
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(cf. (1.2)). The operator T,, acts on constants by multiplication with

#{yel\Ry, dety=m}=0,(m)= 3 d,
dlm
d>0

and on Ey(Z, s) by multiplication with

mso—2s+1(m)=ms Z dl—Zs
dlm

(this can be seen easily from the definition or from (2.16) and the correspond-
ing statement for SL,(Z)). Finally, it is clear from the definition of G  that

GN.s(Z’ Z,)':' Tm: Z gs(z, ’YZI)~
vst‘N/{i 1}
ety=m

Putting all this together, we obtain

(2.23) Proposition. Let m=1, (m, N)=1, x,x'€eX(N)C) non-cuspidal points
with x¢ T, x'. Then

{(x)=(0), T,((x) = ()¢

=lim [Gx, (z,2)+4no,(m)Ey(wy 2, 5)
s—1
o,(m)Ky

+4nm*o, _,,(m)Ey(Z, s)+ =

|-o1m 220,

with z, Z', Ey, Ky, Ay as in Proposition (2.22), o (m)= ). d", and

dlm
(2.24) Gy (n2)=t ¥ (z “Z/“Lb)
. N st z a,b,c,deZ gS ’CZ/—{—d .

Nlc,ad—bc=m

As a final remark, we observe that the functions Gy ; and Gy ; have the
invariance property

(2.25) GN.swyz, w,2) =Gy ((z,2')

for any d||N, where w, are the Atkin-Lehner operators as in (1.1). This
property, which follows easily from (2.24) and the invariance of g(z, z') under
z—-vz, 2’ —>yz (yeSL,(R)), is compatible with the fact that the height pairing is
invariant under automorphisms.

§ 3. Evaluation of the function Gy ; at Heegner points
According to the results of §2, in order to compute the height pairing

(¢, T,d%,, c=(x)—(o0), d=(x)—(0), oeGal(H/K) (x=Heegner point)

at an archimedean place v of H, we must evaluate the functions Gy , at the
corresponding points of X(H,)=X(C). These points were described in §1 and
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shown to be parametrized by pairs (&, n), where «eCly and nc@ is a
primitive ideal of norm N, the corresponding point 7, el,(N)\ H<= X (C) (or
rather, a representative of it in §) being a root of a quadratic equation as in
(1.4). Since 0=0,eGal(H/K) acts by 1, +1, ,-1, we need only consider
values

(31) G%.S(le,n"tﬁz,n)

where the arguments are Heegner points associated to the same n and to ideal
classes <), o/, satisfying o, o/; ' =.o/. Here we must assume r,(m)=0 since
otherwise the value (3.1) is not defined; we will discuss the modifications for
the case r,(m)=%0 in §5.

The expression (3.1) depends on the choice of n. On the other hand, the
function Gy ; is invariant under the action of the Atkin-Lehner operators w, by
(2.25), and we saw in § 1 that these act on the Heegner points by

Ty Ty - n-1p  Where D[n, N(d)=d.

We can therefore replace ./, and .o/, by «,[0]~!, .o/,[0]~"! and n by nd~'d
in (3.1) without affecting the value of this expression. This substitution does not
change either .o¢, o/, '(=f) or o7, o/,[n]~" Hence the sum

(3.2) B = Y GN (T Ty (rg(m)=0)
o 1,4 2eClg
Ay A=A
d1dan]" 1= B

is independent of mn.-The summation here is very small: If K has prime
discriminant, so that |Cl| is odd, it reduces to a single term (i.e. we have just
re-indexed the quantities (3.1)), while in general it has 2~ ! terms if {/} = {#n}
and is empty otherwise; here t is the number of prime factors of D and {</}
denotes the genus of <7, i.e. the class of o in Cl/2Cl,~(Z/2Z) . (Notice that
all ideals n with N(n)= N belong to the same genus, so the condition on <, % is
independent of n, as it should be.) In this section we will obtain formulae for
(3.1) and for the slightly cruder invariant (3.2); the latter will be much nicer (as
can be expected since the dependence on the choice of n has been eliminated).

By summing further we obtain an even simpler expression for the yet cruder
invariant

(33) VIIU,S('M)= Z G’Nn, s(le,nr sz, n): Z y%,s(d’ g)
1,54 ,eClg RBeClg
A1 d 5V =of

Of course, (3.3) is all we need to compute the total contribution Y {c,d’), to
v|oo

the global height pairing from all of the archimedean places of H, since these
places are permuted transitively by Gal(H/K)=~Clg. However, in Chap. V we
will see that some interest attaches also to the individual terms (3.1).

We now start the calculation of (3.1). In (2.24), suppose that z=7, and z’
=1, are Heegner points with the same n, ie. that they satisfy quadratic

. b
equations A;t?+ B, 1;+ C; as in (1.4) with the same f. Then for y= (j d)eRN
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we have
Iyt —1,/? ) ( 2nN )
T, 1,)=—2 It ) = =2 T et
&(r71, 72) Qs—‘( 2Im(yt,) Im(t,) Qi +|Dldet(v)
with
A A
(3.4) n=""2 et 1y +dv, —at, bl

Since n is a rational multiple of the norm of an element of K, it is rational. In
fact, a direct calculation gives

1 —~B.,B
(3.5) n=r; [czclcz—l-(ad—bc)D 21 2

+a*C A,+d*A, C,—cdB, C,
+acC,B,+b2A, A,+bdA,B, —baBlAz],

and this is integral because 4,, 4, and ¢ are divisible by N and B, B,=$*=D
(mod 2N). Hence
2nN

R (1) = =2 % p"(Q,_, (1 +W)

n=1

b
where p™(n) is the number of y= (Lcl d)eRN/{-_I—l} satisfying ad —bc=m and

(3.4) or (3.5). To see what kind of an expression p™(n) is, consider the simplest
case when N=1, D= —4 and 1,=1,=i,50 4,=4,=C,=C,=1, B,=B,=0.
Then (3.5) becomes
n=a*+b*+c*+d*—2(ad —bc),
sO p™(n) counts the number of 4-tuples (a, b, ¢, d)eZ* (up to sign) satisfying
(a—d)?+(b+c)*=n, (a+d)?*+(b—c)*=n+4m,

i.e. (apart from a congruence condition modulo 2) p™(n) is the product of the
numbers of representations of n and of n+4m as sums of two squares. The
answer in general will be similar. However, since (3.5) is so complicated we will
stop using the language of quadratic forms and shift to that of ideals in
quadratic fields.

We start by redoing the proof that the number n defined by (3.4) is inte-

. b .
gral. Given y= (i d)eRN we define two numbers o, feK by

(3.6) a=ct,T,+dT7,—at,—b, f=ct,1,+dt,—at, —b.
From r,e A7 ' a;=a; ' (compare (1.5)), ce(N)=nii and n|a; we have
(3.7) ecaylaz!, Pea;laz'n

It follows that the two numbers

(3.8) I=A4,A,N(0), n=N-'4,A4,N(p)
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are in Z. Also

(39) I—Nn=4, A, det (% g.)
—_-AlAzdet[(:i 2)(‘; Z)(rll -Ell)]
=|D| det(y)

and

(3.10) A, A,a=A4, A, f(modDd),

where b=(]/D) is the different of K (the last equation holds because A4, 1,,
A, 1, are integral and 1=JA(mod D) for any Ae()). Conversely, given any « and f
in K, we can think of the real and imaginary parts of (3.6) as a system of 4
linear equations with rational coefficients in 4 unknowns a, b, ¢, d and solve for
a, b, ¢, d. The simplest way is to notice that

— A
ct,+d= b S )
T, 7T, ]/D
-0 A,
at, +b=1,(ct,+d)— —2——T~:—:» (T,p—1,0).
2 p= 1,1, I/D 2B,

If « and B satisfy (3.7) and (3.10) then the right-hand sides of these two
equations are in na;'=NZt,+Z and a7'=Zt,+Z, respectively, so
a,b,c,deZ and N |c. If also the integers | and n defined by (3.8) satisfy I=nN
+m|D| then (3.9) shows that det(y)=m. We have proved:

(3.11) Proposition. Let .o/,, &/, be two ideal classes of K, n a primitive ideal of
norm N and a; (i=1,2) an integral ideal in <f; with n|a;, N(a;)=A,. Then for
meN, r, ,-1(m)=0 we have:

£y 2nN
G'ﬁ.s(rﬂl.n’ 1:;12,"): —2 z p"l(n) Qs_l (l +mlD‘)

where
P (M)=pg, 4, n(N)
_ Nn+m|D|
=#{(a,ﬁ)e(al tay;!'xag! {+1}| —mj—,

N(B)=

a, A , A Aya=A A[i(modb)}

(The condition Ty, a51(M)=0 is required to ensure that n in (3.8) is strictly
positive.)

To understand the expression p™(n) better, consider first the case when n=0
(mod D). Then A, A,o and A, A, f are automatically 0 (modDd), so p™(n) breaks
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up as a product

o l
(3.12) p;l’ﬂz,n(n)z%#{aeul—lcb 1 N(a)zAlAz}
Nn
x 4#<feartay n|N(f)= }
{ 1 42 A A,

=201y s (D T g1 (1)  (n=0(mod D))

where u=3# of units of K, I=Nn+m|D| and, as usual, r,(n) denotes the
number of integral ideals of norm n in the class &/ Another easy case is when
n#0 (mod D) but D is prime. In this case, exactly half of the pairs o, fea7'as"!
xaytay'n satisfying A4, 4,N(x)=nN+m|D|, A,A,N(B)=nN satisfy
A Ayo=A4, A, f(modd), namely exactly one of («, f) and («, —f) for any «,
(this is because a quadratic residue mod D has exactly two square roots
mod D). Hence

(3.13)
1 Din

D prime).
2 Din (D prime)

pgl,dz,n(n):uz T 5 {(nN+m|DJ) Vet ot 5[]~ 1(n) x {
A formula generalizing (3.12) and (3.13) is

u?d(m)r,(nN+m|D)ry(n) if {o/}={%n},
0 otherwise,

G114 ¥ pm,gz,n(n)={

o y,42eClg
A1 A5 =
A1 dan] =B

where now D is arbitrary, .o/ and # are any two ideal classes of K, {.«/} and
{%n} denote the genera to which &7 and #[n] belong, and

(3.15) sm= [] 2

pl(n, D)

Indeed, if D is prime then the sum in (3.14) reduces to a single term (since Cly
has odd order) and (3.14) is identical with (3.13), while if =0 (mod D) the sum
in (3.14) has 2'~! or O terms according as {/}={%n} or not and these terms
are all equal to the expression in (3.12) (note that o(n)=2' in this case). To
prove (3.14) in general, we fix some .«7,, o/, satisfying the conditions on the
left (if there are no such then {&/}+ {#n} and the formula is trivial). The other
classes in the sum are obtained by replacing &/, and &/, by &, ¥ and «,%
with @2 trivial, ie. by replacing representatives a,, a, of o/,, &/, by a, ¢, a,¢
with ¢? principal, say ¢?=(y), yeK*. If we also replace o and B by a/N(c) and
B/y we obtain a new solution of (3.7) and (3.8). Thus the only question is how
many of the 2'~' choices of [¢] lead to a, B satisfying the congruence (3.10).
This congruence is equivalent to a congruence modulo p for each of the primes
p dividing D; each of these ¢t congruences is true if p|n (both sides are 0) and
true up to sign if pyn (both sides are non-0 and they have the same square).
But the change of a,, a,, a, f described above changes the ratio a:f by a
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factor y/N(c) of norm 1, i.e. by a number of the form r+sl/D with r and s p-
integral and r>=1 (modp) for all p|D. The 2'~' classes of ¢ with [¢]? trivial
correspond in this way to the values +r (modD) with r*=1 (mod D). The
formula (3.14) is now obvious. Combining it with Proposition (3.11), we find:

(3.16) Proposition. The invariant yy (< ; #) defined by (3.2) is given by
m 2 - S 2nN
I (L B)=—2u* ) 6(n)ry(nN+m|D|)rg(n) Q, 1+|—D|)
n=1
(0(n) as in (3.15)) if { A} ={#n} and is 0 otherwise.
Summing over all 4, we obtain:
(3.17)  Corollary. The invariant y§ (/) defined by (3.3) is given by
2nN
Yo (o) = —2u z 3(m Ry (n) ry(nN +m|D) Q,_, (1 + TDI)
where Ry, . (n) is the number of integral ideals of norm n in the genus {.o/n}.

Since a number cannot be the norm of an ideal in more than one genus,
R, (n) is either R(n) or 0, where
Ro= Y = ()
AeClg min T
is the total number of representations of n as the norm of an ideal of ¢. Which

of these two alternatives occurs depends only on values of genus characters. In
particular, if (n, D)=1 then R, (n) can be replaced by R(n) in (3.17) because

ry(nN+m|D|)+£0= (M% +1  (Ypl|D)
9(*‘”'”)=+1 (VpID)
p

=R, ,(n)=R(n).

(A=any integer prime to D which is the norm of an ideal in the genus {.2/}).
In general, there will be one genus condition to be satisfied for each prime
dividing (n, D), and we could replace the product

d(M Ry ry,(nN+m|D)=( [] 2):-Ry,,(n)r,(nN+m|D))
pl(n D)

by
IT (1 +£, (M)) -R(n)r (nN +m|D)),

plin D) nN
where £, is the homomorphism from the group of norms of fractional ideals of
K to {41} defined by £,(Na)=1 for a principal, ép(n)=(g) for neZ, pin.

However, for later purposes we will prefer to leave the formula for 9% (&) in
the form given in (3.17).
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§4. Final formula for the height (r,(m)=0)

Let c=(x)—(o0), d=(x)—(0), 6 =0,€Gal(H/K), m prime to N. We still assume
that r,(m)=0, so that the divisors ¢ and T,,d’ have disjoint support. We want

to compute
ey T,d% o= Y L, T, d%,
v]oo
where the sum is over the hy archimedean places of H. Since these places are

permuted simply transitively by Gal (H/K)~Cly, this equals
Y Lty W) —(0), T, (%, ) —(0))es

o 1,426Clg
A1 A5 =

where 1t is any integral ideal of K of norm N and the 7, , are the points in $
described in § 1. Applying Proposition (2.23), we find

e, T, d%y  =lim [yz’,s(tsz{)+4nal(m) Y Ex(WyTy, u»9)
s—1

o 1€Clg
h
+4nm561423(m) Z EN(I&{L"’S)_’_M&V_]
o 2eClk s—1
—hgo,(m) Ay+2hg o, (M) Ky

Using (2.16), we have

Z EN(WNT,gl,mS)z Z EN(TM,naS)

&LeClg ALeClg

d N
=N La-p ) Y DS B (Y )

pIN d|N AeClg

4.1)

where E(z,s) is the Eisenstein series for SL,(Z). Since each 1, , solves a
quadratic equation at?’+bt+c=0 of discriminant D with N|a, the points
7 Wtn for d| N also satisfy quadratic equations over Z of discriminant D. It is
then easy to see that the inner sum on the right-hand side of (4.1) is inde-
pendent of d and equals ) E(t,,s), where 7, is any point in § satisfying a

o
quadratic equation of discriminant D corresponding to the ideal class /. As is
well-known (and elementary), E(t,,s) is a simple multiple of the partial zeta-
function |

CK(Ms S)= Z Wa)?’

aintegral
[a]=of
namely

E(ty, $)=2"5|D|I"* u{(2s)~ " { (L, s)

where u as usual is one-half the number of units of K. Since Z Lk, s)y={(s),
the Dedekind zeta-function of K, we deduce
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2 s Ds/Z
e Ty =lim [ ot T (vt oo 2
pIN
E‘%ﬁ!]_hko'l(m)’]"N'i'zhxo'l(m)KN-

Substituting into this the expansion

Lx(9)=L(s) L(s, &) (8"’) = (%)

= (%+v+0(s—1))(L(l, &+ L1, e)s—1)+0(s—1)?

and the formula L(1, &)=mnhy/u ]/I_D_l, we obtain

(4.2) Proposition. Let xeX ,(N) be a Heegner point for the full ring of integers
of an imaginary quadratic field K, ¢=(x)—(o0), d=(x)—(0), ceGal (H/K), meN
prime to N, and o/ €Cly the ideal class corresponding to ¢ under the Artin
isomorphism. Suppose m is not the norm of an integral ideal in of. Then

e Ty, =lim [ 1% () —ﬁﬂi’"-)i‘ﬂ]
s—1

s—1
L
+thN[ (m)(longI ¥ 4(2) 2z(1,a))
+d%ndlogd2]

with yy () as in Corollary (3.17). Here D, hy and L(s, €) denote the discrim-
inant, class number and L-function of K and iy the constant defined in (2.13).

§5. Modifications when r,(m)#0

Since the point x occurs with multiplicity r,(m) in the divisor T,,(x°), the
divisors ¢ and T,d’ are not relatively prime in the case when r,(m)=0.
Although the global height pairing {c, T,,d°) is well-defined, Néron’s theory
does not give a canonical decomposition into local terms {c, T,,d’),. We will
first discuss how a local symbol can be defined by choosing a tangent vector at
x, then calculate this symbol when v is an archimedean place of H.

We recall a procedure for defining a local symbol for two divisors a and b
of degree zero on a general curve X over H, whose common support is equal
to the point x [14]. Let g be any uniformizing parameter at x, i.e., any function
on X with ord,(g)=1, and define

(5.1) <a, by, =lim {{a,, b),—ord,(a) ord, (b) log|g(y)l,},

y—x
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where a, is the divisor obtained from a by replacing every occurrence of the
point x in a by a nearby point y which does not occur in b. This limit exists by
the standard properties of local heights. If g’ is another uniformizing parameter
and g/g’ has the value « at x, then

(5.2) {a,b),=<a, by, +ord, (a) ord,(b) log|al,.
In particular, the sum ) {a, by, is independent of the choice of g, by the

product formula; this sum is equal to the global height pairing of the classes a
and b [14].

g
ot
Another consequence of (5.2) is that the local symbol <{a, b, depends only on

0 S .
Let ar be the non-zero tangent vector at x which is determined by 1.

0 . . C
the tangent vector 3 and not on the full choice of g. By (5.2), this pairing is

unchanged if we multiply — by a root of unity «, since |a|,=1 for all v.
g ply ar v

We now apply this procedure to the computation of the local symbols
(¢, T,,d°y, on X,(N). We have ord,(c)=1 and ord, (T, d°)=r,(m); if g is a
uniformizing parameter at x, then

(5.3) ¢, T,d% ,=lim{{c,, T, d>, —r,(m) log|g(y)l,},

y—x

where ¢, =(y) —(o0). The trick is to normalize the function g at x so as to make
the computation of each local symbol as simple as possible. To do this, we
introduce the differential

d
(5.4) w=n*(z) 7q=2nin4(z)dz,
1
where n(z):q-ﬁn(l—q") is the Dedekind eta-function. This differential is

well-defined only up to a 6th root of unity, but this will be sufficient for our
purposes by the remark above. If x is not an elliptic point on X ,(N), so u=1,

. 0
then w is non-zero at x and we may take our tangent vector 3 to be dual to
. The uniformizing parameter g then satisfies t

d
w=(g+a2g2+a3g3+.-.)?g

. . 1
in a neighborhood of x. In general, w has order ——1 at x and we may
normalize g so that u

d
o=(g'™+higher degree terms) ?g

in a neighborhood of x. The reasons for this normalization will become clearer
when we compute the heights at non-archimedean places in the next chapter.
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Here we observe that for a complex place v we have
(5.5) log|g(y)l, —u log|2min*(z)(w —2)|,— 0

as y—x, where z and w are points in the upper half-plane which map to x and
y on X ,(N)(CT).
From Proposition (2.23) and the formulas (5.3), (5.5) we find

(5.6) <c,de">U=lim[ Y. gz yZ)+4no,(m)Ey(wyz,s)
s—1 LyeRn/+1
dety=m
yz' *z

+ur,(m)lim {g (z, w) —log|2min*(z)(w —2)|,}

. (m)Kky

+4nme,_,,(m)Ey(z, s)+als_l ]—6‘(m)(&,\,+2x~),

(z, Z' points in § mapping to x, x°)

because in the terms g (w, yz') with yz'#z and in the term E(wyw, s) we can
carry out the limit w—z simply by replacing w by z, and there are ur,(m)
values of y with yz'=z. Formula (5.6) is identical to the formula in Proposition
(2.23) if we define Gy ((z, z') (which was previously defined only if z¢T,,z) for
all z, z’e$ by

57 Gy z2)= Y glz77)
yeRN/E 1
dety=m
yz' *z

+ ) lim(g(z, w)—log12min(z)*(z —w)[?).
yeRn/+ 1 wW—z
dety=m

yz' =2z

Hence Proposition (4.2) is true without the restriction r,(m)=0, provided that
we define Yy (/) by (3.3) but with the new definition of G} ,. In calculating
this invariant, we find that the terms in (5.7) with yz'#z give exactly the
expression in §3 and that their total contribution to yy (&) is the infinite sum
in Proposition (3.11) (the condition yz'#z translates into the condition n>0 in
this sum). The second sum in (5.7) equals ag,(z), where a is the number of
yERy/+ 1 of determinant m with yz'=z (for z z' as in (5.6) this number is
ur,(m)) and g (z) is the renormalized value of g (z, z) defined by the limit in
(5.7). Using the asymptotic expansion

t+1 (I I
f)=31log —— = (5)—— ol N
| 0.\ ()=4log I~ (1 =1 ) +0) D)
we find
412 r’ I
8.(2)= ~log[2n(z = (@42 - (=2 = (1)

By Kronecker’s first limit formula, this is equivalent to

1 ’ 2
g.(z2)=—2log2n+2 E— (s)+2 F_ (1)+— lim [2" {(20) E(z, a)—L],
r r T oot o—1
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where E(z, s) as usual denotes the Eisenstein series of weight zero on SL,(Z).
The identity 2°{(2s) E(t,, s)=u|D|"? { (<, s) mentioned in §4 now gives

’

1)—log Zn] + li_{r} [2—7? |D|"% (o) —«6—2:}%]

I r
T RC=2h | O

’

r L !
—2h [F (9 —log2m+ 7 (1,5)+5 long]].

The total contribution to vy (&) of the terms with yz’'=z is the product of this
with the number a=ur, (m). Summarizing, we have:

(5.8) Proposition. Proposition (4.2) remains true when m is the norm of an ideal
in o/, provided that the local symbols {c, T,,d°)  in the definition of {c, T, d°)
are defined by (5.3) with the choice of g explained above and the invariant
N () is defined by (3.3) with GY  as in (5.7). This invariant is given by

’

. . T L 1
expression in )+2hxury(m) (F (s)—log 2n+z (1, 8)+§ logIDl).

m .ﬂ —
WA (Corollary(3.17)

III. Non-archimedean local heights

In this chapter we will compute the local symbols <c, T,,d°>, for all non-
archimedean places v of H, always under the assumption that m is prime to N.
Assume that v divides the rational prime p; let A, denote the ring of integers in
the completion H,, = a uniformizing parameter in A, and g=p’ the cardi-
nality of the residue field A,/n. Let W denote the completion of the maximal
unramified extension of A,; then 7 is a prime element in W and IF =W/xn is an
algebraic closure of A, /.

We first reduce the calculation of Néron’s local symbols (a, b), on relative-
ly prime divisors of degree zero on X over H, to a problem in arithmetic
intersection theory. Let X be a regular model for X over A, and let A and B
be divisors on X which restrict to a and b on the general fibre. If 4 has zero
intersection with every fibre component of X, we have the formula [14]

0.1) {a,by,= —(A - B)logg.

In the next section we will describe a regular model X for X over Z which
has a modular interpretation; we will then discuss the reduction of Heegner
points on X and use (0.1) to obtain the intersection formula

(0.2) (e, T,,d"),= —(x- T, x°) logq,

where x and x” are the sections of X® A, corresponding to the points x and x°
over H.

The rest of the chapter is devoted to a calculation of the intersection
product (x-T,,x%, which is unchanged if we extend scalars to W. We first
identify the components of the divisor T,,x°, then establish the formula

(0.3) (x- T, x")=1 Y Card Homy, (x, x