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Heights and the Special Values of L-series

Benedict H. Gross

In this paper I will present a geometric approach to Eichler's arith-

metic theory of definite quaternion algebras and to Waldspurger's results

on the central critical values of L-series. The method uses the heights

of special points on algebraic curves, and the arguments are similar to

those that Zagier and I used to study central critical derivatives. For-

tunately, the calculations are much less intimidating in this case; I have

also restricted to forms of weight 2 and prime level N to simplify the

exposition.
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1. = Brandt matrices and Eichler's trace formula.

In this section, we will review the arithmetic theory of maximal orders
and ideals in definite quaternion algebras of prime discriminant. Almost

all of these results are due to Eichler [2].

Let N be a rational prime, and let B be '"the'" quaternion algebra
over Qi which is ramified at the two places N and «© . Let R be a
fixed maximal order in B . A left ideal I of R is a lattice in B
which 1s stable under left multiplication by R . The right order
{beB:1IbcI} of I is another maximal order in B . Furthermore,
the set I '={beB: IbIcI} isa right ideal for R whose left order

is the right order of I .

Two left ideals I and J are in the same class if J = Ib with
#
be B . The set of left ideal classes is finite, and its order n 1is

independent of the choice of R . Let (I "In} be a set of left

1rIpee
ideals representing the distinct ideal classes, with I1 =R .

For 1 =1i<n welet R, be the right order of the ideal I, .
<+

i
Then each conjugacy class of maximal orders in B 1is represented (once or
twice) in the set {Rl,Rz,.;.,Rn} . We let' t £ n be the number of distinct
conjugacy classes of maximal orders in B . 1In the classical literature,
n 1s the class number and t 1s the type number of B .

The groups I‘i = R:/z* = R:/<:1> are all finite, as they embed as
discrete subgroups of the compact Lie group (B® ]R)*/R* = 803(]R) . Let

v, = [Fi] » where for any finite set 5§ we let [S] denote its cardinality.
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The integer

(1.1) W= Nw

is independent of the choice of R , and is equal to the exact denominator

of the rational number (12) Eichler's mass formula states that
n
1 1
(1.2) I =%t
i=1 "%

We therefore have the following values of n .

Table 1.3

N w LA >1 n

2 12 12 1

3 6 6 1
=52 | 3 3 B
=712) | 2 2 Ll
=1102) | 6 3,2 | B3
=13012) | 1 =
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Now fix 1 £ 1,j £n . The product

- 1. . -1
Mij = Ij I, {Zakbk ta e IJ » by € Ii} is a left ideal of R_-] with

right order Ri . For any element b ¢ Mij we let Wb be its reduced

norm, and define WM as the unique positive rational number such that

ij

the quotients Nb/NM are all integers with no common factor. Define

ij
the theta series £ 1j by

1 2ri(NDb/NM, )1

(1.4) fo.=5— 1 e
ij 2w
i beMij

i3

= Z Bi.(m)qm ___e21ri'r
m=0 J

These functions on the upper half plane are all modular forms of weight 2
for the group I‘O(N) + Their Fourier coefficients Bij (m) give the

entries of the Brandt matrix of degree m :
(105) B(m) = ((Bij (m)))ls i’j <n .

The matrix B(0) has the form

SRR Y 1
i Ya
(1.6) B(0) = % : e
i 1 A
wl Y2 wn

and B(1l) is the identity matrix. For m 2 1 the matrix B(m) has



e

HEIGHTS AND SPECIAL VALUES 119

non-negative integral entries. An efficient algorithm for computing these

matrices is given in Pizer [9].

We will now give a formula for the trace of B(m) in terms of Hurwitz's
class numbers H(D) . If d is a negative discriminant we let h(d) be
class number of: .b'i;n::y quadratic forms of discriminant d , and let
u(d) =1 unless d = -3,-4 when u(d) = 3,2 respectively. If 0 is the
order of discriminant d and rank 2 over Z » then h(d) 1s the order
of the finite group Pic(0) and wu(d) dis the order of the finite group

* % *
0/Z =0/<x1>. For D>0 we define

1.7) HD) = | h(d)/u@) ;
: df2=-p

a short table is given below.

D H(D) D H(D)
3 1/3 31 3
4 1/2 32
7 1 35 2
8 1 36 5/2

11 1 39 4

12 4/3 40 2

15 2 43 1

16 3/2 44 4

19 1 47 5

20 2 48 10/3

23 3 51 2

24 2 52 2

27 4/3 55 4

28 2 56 4

We use the prime N to define the modified invariant H.N(D) as follows.
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2 L(M)\ ‘ )t_n ,

7t br e é D
0 if N splits in 0=0_g, Z SRRy
H(D) if N is inert in 0, L fumerm fons
(1.8) HN(D) = 1 : Fove 2
EH(D) if N 1is ramified in 0, but does not
divide the conductor of 0 ,
HN(D/NZ) if N divides the conductor of 0,
13 .
// ; E(N)L—')
We also.define HN(O) = %i% . Then HN(D) =0 unless D20, -D = 0,1 (mod 4)

{mod 4), and (7%) # 1 . Using Table 1.3 one can show that W-HN(D) is

integral for D > 0 , and ZWHN(O) is an integer.
Eichler's trace formula is the following identity

Proposition 1.9. For all m 2 0 , Trace B(m) = ) HN(4m—sz).
seZ

szs&m

Before sketching the proof, we will give two examples. Taking m =1 in

Proposition 1.9 we find

n = Trace B(l) = HN(4)*'2HN(3)4-2HN(0)

3o- b +4- B)

which agrees with the entries in Table 1.3. Taking m = N in Proposition

1.9 we find

1 if N = 2,3
(1.10) Trace B(N) =

H(GN) 1f N> 3,
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as in the latter case HN(an-sz) =0 for all s # 0 . Using (1.8) we find

%h(-l»N) NZ1 (4)
(1.11) B 4N =< h(-N) N7 (8)
2h(-N) N=3(8),N211.

We now turn to the proof of Proposition 1.9. The result for m = 0
is equivalent to the mass formula, which is best proved using zeta functions,
so we shall assume m 21 . The diagonal entry Bu(m) is equal to the

num'ber of elements b ¢ R, = M,; of reduced norm m , modulo left multipli-
*

cation by the 2wi units in Ri + For every integer s , we define

Ai(s,m)' ={beR, : Tr(b) =58, NMb) =m} .

i

Then Ai(s,m) is a finite set, which is empty once 32 > 4m (as every

element b ¢ Ri has discriminant 52-4m € 0) . We therefore have
n [Ai(s,m)J
Trace B(m) = ) ———
i=1 s2 <4m [R:LJ
.3 (’z' [Ai(s,m)])
sZs4m M1 [R;] ‘

We will show that the inner sum is equal to HN(lm-sz) . This follows
from the mass formula when lnn-sz =0, s0 b=5/2 is an integer. Hence

we will assume that D = lun-sz is positive.
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In this case, every b ¢ Ai(s,m) gives rise to an embedding of the
order 0 = O-D into R, . The group Fi = R:/il acts on Ai(s,m) and
the set of these embeddings by conjugation, and the Fi orbits of Ai
correspond to embeddings of 0 up to conjugation by R: . For each
negative discriminant d , we let hi(d) be the number of optimal embedd- -
ings of the order of discriminant d into Ri , modulo conjugation by R: H

an embedding is optimal if it does not extend to any larger order inm the

quotient field. Then we have shown that

[A;(s,m)/Ty] = g hy (d).
df"=-D

The order of the stabilizer of an element be Ai(s,m) under the action of
Fi is equal to 1 unless the corresponding embedding of 0 extends to

Z[u6] or Z[ual, when it is equal to 3 or 2 respectively. Hence

(A (s,m)] = w, ; hy (d)/u(d) .
df "=-D

n
On the other hand, Eichler calculated the sum Ih ((d) of all optimal
i=1

embeddings of the order of discriminant d into the n maximal orders

Ri . His result is given by the formula:

- @n@ i d # N

n
(1.12) I h(d) =
i=1
2
0 if d = N°d' |
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Combining this with our previous formula shows that

n [Ai (s,m)]

2w

2
= H.(D) = H. (4m-52)
1=1 i H“ N

as desired.
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2. Supersingular elliptic curves

It is known that the Brandt matrices for prime level N are related
to isogenies between supersingular elliptic curves in characteristic N .
We will review this connection, then use the theory of elliptic curves to
establish some of the basic properties of these matrices. In this section,

we shall assume that m 21 , so B(m) lies in M(n,Z).

Let TF be an algebraically closed field of characteristic N . There
are n distinct isomorphism classes of supersingular elliptic curves over
T, which may be ordered El, EZ’ ceey En so that End(Ei) & Ri . One

then has an isomorphism

(2.1) Mij = Hom(Ei,Ej)
as a left Rj and right Ri module. The degree of an isogeny
¢b : Ei - Ej corresponding to a non-zero element b € Mij is given by

the formula

(2.2) deg ¢b = Z&\H)/NMij

Proposition 2.3. The entry Bij (m) is equal to the number of subgroup

schemes C of order m in Ei such that Ei/C = Ej .

Proof. BS; (2.2) and the definition of Bij (m) in (1.4), Bij(m) is the

number of equivalence classes of isogenies ¢ : Ei + E, of order m ,

3
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*
we identify ¢' with ¢ if ¢' = adp and a e Aut:(Ej) a Rj . This has

the effect of identifying two isogenies with the same kernel C » Which

is a subgroup scheme of order m in Ei .

It is also known that the orders Ri and RJ are conjugate in B if and
only if the elliptic curves ~E1 and Ej are conjugate by an automorphism

of the field IF . Since the modular invariants of all of the curves Ei

lie in the field of N2 elements, the curves are conjugate by an automor-

phism of F if and only if 1 = 3 or E? = Ej + Since the kernel of the

Frobenius morphism E1 g Eliq is the only subgroup scheme of order N in

Ei » we find by Proposition 2.3 that

Proposition 2.4. The curves Ei and E;] are conjugate by an auto-

morphism of T if and only if i = j or B ) =1 . The number of

13
supersingular moduli which lie in the prime field is equal to the trace of

As a corollary of Proposition 2.4, we find that the type number of
our quaternion algebra is given by the formula .
t = Trace B(N) + _________n—Tracze B(N)
(2.5)

= Trace(ggl)_;ﬂ)

This is equal to the number of distinct irreducible factors of the super-
singular polynomial over the prime field Z/N. By our formula for

Trace B(1) and Trace B(N) , given in (1.9-1.11), we see that

125
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= -%4— O(N1/2+€). Here is a table of the relevant invariants for small N .

Table 2.6

N n t supersingular polynomial [1, pg. 1431
2 1 1 j
3 1 | j-1728
5 1 1 j
7 1 1 . j=1728
11 2 2 j(3-1728)
13 1 1 j-5
17 2 2 j(5-8)
19 2 2 (3-1728) (3-7)
23 3 3 j(3-1728) (3+4)
29 3 3 3 (3-2) (3+4)
31 3 3 (3-1728) (3-2) (3-4)
37 | 3| 2 (4-8) (12-63-6)
41 4 4 3 (3-3) (3+9) (3+13)
43 4 3 (j-1728) (3+2) (12+193+16)
47 5 5 3(3-1728) (3-9) (3-10) (j+3)
53 5 4 .
59 6 6 .
61 5 4
67 6 4
71 7 7
73 6 4
79 7 6
83 8 7
89 8 7
97 8 5
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Proposition 2.7. 1) The row sums Z B 13 (m) are independent of 1
J

and equal to o(m)N = 1da .
defn
"d|m

(d,N)=1
2) If (m,m') =1 then B(m)B(m') = B(mm') .

3) B(N) is a permutation matrix of order dividing 2 and for k 21

B(NY) = Ban® .
4) I1f p# N is prime and k 2 2 , B(pk) = B(pk-l)B(p) -pB(pk_z) .
5) The matrices B(m) for m= 1 generate a commutative subring B

of M(n,Z).

6) We have the symmetry relation ijij (m) = wiBji(m) .

7) The commutative algebra BOQ is semi-simple, and isomorphic to

the product of totally real number fields.

Proof. 1) The sum Z Bij (m) is, by Proposition 2.3, the number of
J

subgroup schemes C of order m in E This is multiplicative in m ,

i L]
k 2 k k
equal to 1 if m= N , and equal to 1l+p+p“+...4+p if m = p with

P#N. Hence ) By (@) = o@m)y * -
h]

2) By Proposition 2.3, (um') 1is the number of subgroup schemes. .,

Bij
cmm' of order m in Ei with Eilcmm' = Ej .
subgroup scheme of order m in Cm, and let Ek = E:'_/Cm . Let Cm' be

Let Cm be the unique

. ' o
the image of Cmm' on Ek ; this has order m' and Ek/Cm. E.‘l . Since
any isogeny of degree mm' may be uniquely factored in this fashion:

"y = 1
B:I.j (mm’) E Bik(m)Bkj (m') . This proves the matrix idemtity.

3) Each Ei has a unique subgroup scheme C, of order N » Which

N
is the kernel of the Frobenius mapping E, » EI: . Hence Bij (N) =1 if
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E, « E, and Bij(N) = 0 otherwise. This shows B(N) is a permutation

matrix of order dividing 2. Since the unique subgroup scheme of order Nk

k Nk k k
is the kernel of Fr : Ei + Ei , this shows B(N ) = B(N) .

4) Any isogeny ¢ Ei -+ Ej of order pk can be factored as an isogeny

Ei > Ek of degree p followed by an isogeny l-:k -+ Ej of degree pk-l .

This factorization is unique if the kernel C of ¢ is cyclic. If the

kernel is not ecyclic, so ¢ = p-¢' with ¢' of degree pk"2 , there are

N kK, _ k-1, ., k-2
p+l possible factorizations. Hence B(p )ij = % Biz(p)Bﬂ.j (p~ ")-pB(p )ij .

which proves the matrix identity.

5) By 3) and 4) the algebra B is generated over Z by the matrices

B(N) and B(p) for p # N . These commute with each other by 2).

6) The duality ¢ ¢> ¢  identifies Hom(E;,E,) with Hom(Ej,E;) and

preserves the degree. Since w,B . (m) is!s the number of elements in

33

Hom(Ei,E ) of degree m , the symmetry follows.

3

n
7) Define an inmer product on the group z" = o Zei by the formula
i=1

<ei'e.'l > = wiéij . This is positive definite on R", and by 6) the
matrices B(m) give self-adjoint endomorphisms of z" . The result now

follows from the spectral theorem.

We may interpret optimal embeddings of 0 into Ri as singular 1lift-
ings of the supersingular elliptic curve Ei . Assume that OGZN is a
discrete valuation ring, so local optimal embeddings exist at all finite

primes, and let W be a complete discrete valuation ring containing OGZN
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with residue field IF . Then the h,;(d) optimal embedding 0 -+ R, , modulo
conjugation by R: » correspond to the elliptic curves E with complex
multiplication by 0 over W which are isomorphic to E, over F,
together with a fixed isomorphism g : 0 2 End,(E) . We identify (E,g)
with (E',g') if there is an isomorphism i : EZX E' over F such that

g'(a)ei = ieg(a) for all a e O .
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3. Curves of genus zero and their special points.

We begin with an adélic reinterpretation of Eichler's results. Let

A A A
Z = limZ/nZ = HZP be the profinite completion of Z and Q = ZOQ

= P

the ring of finite adéles of @ . For any prime p we let Rp = R@Zp be

A A
the local component of R in Bp = B@Qp , and put R =ROZ = IIRp and
P

A A
B=B®Q . Since every left ideal I for R is locally principal, we
kK
have I_=R with € R\B . The element = (veef o0s then
PA*Rip T By = (-+-pee)
lies in R \B ; conversely any such coset determines a left ideal

A
I=RgnB of R.

*
The left ideal classes correspond to the orbits of B acting on the

Ak Ak

right of R \B , so the class number is the number of double cosets:
Ax Ak %

(3.1) n=[(R\B/BJ].

The choice of representative ideals 11,12,...,1n corresponds to a choice

A Ax
of cosets g., 845 -5 8. in R \B  such that
1* °2 n
(3.2) B = (JR g,B

The right order Ri of the ideal Ii is given by the formula

-1/ )
Ri = Bn gilR gy ° Since the maximal orders in B are all locally conjugate
A

Ak A
in B , and the subgroup fixing R is the normalizer NR of ‘R , we have
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Ax Ax
(3.3) t = [NR\B /B'] .
AgAk

Ak
We remark that R @ 18 a normal subgroup of index 2 in NR , and

* k%
the quotient is generated by the non-trivial eclass in RNQN\BN .

The optimal embeddings f : 0 - Ry also admit an adélic description.
To give £ 1is equivalent to giving a field homomorphism £ : K+ B such
that £(K) n g;]'.ﬁgi = £(0) in 3 . The group B* acts on the right of
the set ﬁ*\a*xﬁom(K,B) by the formula. (g,f)+— (gb,b-lfb) . Since
g* = Uﬁ* giB* , the set of all optimal embeddings of ( into the n orders
R:I. s, modulo conjugation by RI » is then identified with the classes (g,f)
in the quotient space (a*\g*xﬂom(K,B))/B* which satisfy £(K)n g-lag = £(0) .

This quotient 4s‘pac:e"ad';trn{t’:s a-_éeometric interpretation, as the K-valued

points of a curve X over Q.

Indeed, let Y be the curve of genus zero over @ which is associated
to the quaternion algebra B . The points of Y in any @Q-algebra E are
given by {aeB®E:oa ¢ 0,Tra = 0.,'1\10. =0 }/E* . The group B*:Ets on Y on
the right by conjugation: o -+ b-lab and Q* acts trivially; in fact,
the automorphism group of Y is the Q-form of PGL2 asgsociated to the
quaternion algebra B . In particular, Ath(Y) = B*/Q* . If K is a
quadratic field we have a canonical identification Y(K) = Hom(K,B) : t:-o
each embedding f : K+ B we let y = Ve be the image of the unique K-line
on the quadric {0 € B®K : Tra = Na = 0} on which conjugation by f(K*)

acts by multiplication by the character k+ k/k . Then Ve is one of

*
2 fixed points of f(K ) acting on Y(K) ; the other is the image of the
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line where conjugation acts by the character k— k/k .

The curve X is defined as the double coset space
Agx Ax *
(3.4) X=R\B XY/B ,

which is the disjoint union of n curves of genus zero over § . Indeed.

Ak Ak *
the decomposition B = Ur giB gives an isomorphism

) n
(3.5) x= Il v/r,
i=1

Ag %
which takes the double coset R gixy (mod B) to the coset y(mod Pi)

on the ith component X, = Y/I‘i of X .

Ak Ak
The special points on X over K are the image of R \B xY(K) in
X(K) . We say the .point x = gXy has discriminant d iff

A
le = f(0) is the image of the order of discriminmant d , where

f£(K)ng
f : K+ B is the embedding corresponding to y . If the component g of
x dis congruent to 8 in IQ*\Q*/B* , then the special point x lies on
the component Xi(K) . There are exactly hi(d) special points of dis-
criminant d on this component, as they correspond to the number of optimal

*
embeddings of (¢ into R; , modulo conjugation by R, .

We can now prove~ Eichler's formula (1.12) for the total number

n
Z hi(d) of special points of discriminant d on X . We will show this
i=1 .

number is divisible by h(d) = [Pic(0)] by exhibiting a free action of the
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group 6*\£*/K* = Pic(0) on the set of special points of this discriminant;
we will then count the number of orbits using the theory of local embeddings.
Let a ¢ £* be a finite idele of K and X=gXy a special point of
discriminant d . Let f : K+ B be the embedding corresponding to y ;

A%
this induces a homomorphism f ¢t K -» B and we define

A
(3.6) x, = gf(a) xy .,

If x=Zg'xy' then g' =gb and f' = bt

A ) .
fb ; hence g'f'(a)xy' =
1A A N .
gb(b lf(a)b) xy' = gE(a)bxy' = x, 50 the action is well-defined independ-

ent of our choice of representative for x .

Cerifs that w A rk
Let us first verify that X, has discriminant d . Since f(R) 1is
‘ A -1A A A1, -1A A
commutative, £(K) ngf(a) "Rgf(a) = £(a) “(£(K)ng ~R g)f(a) =
A =1 A ) * Ak Ak
£(a) ~ £(0) f(a) = £(0) . The subgroups K and 0 of K act trivially;
' A%

conversely if x = x, then a 1lies in the subgroup K 0 . Hence
Ak Ax % ’
0 \K /K" = Pic(0) acts freely. -The orbit space is identified with the

double cosets
Ax Ax Age
(3.7) RA\N/f(XK) ,

where f : K+ B 1is a fixed embedding (if any exist) and
Ak A =1 A

={geB :£f(K)ng 1Rg = £(0)} . But the space :ln (3.7) is a product
of local terms R \N /f(K ) , which classify the number of optimal embeddings

of Op into the maximal order Rp modulo conjugation by Rp . This
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number is 1 for all p# N, for p=N it is 0,1, or 2 depending on

the behavior of N in (¢ . This gives a geometric proof of (1.12)

Another description of the points of discriminant d on the component

Xi = Y/l"i

in many computational contexts. Here we describe the action of Pic(0)

as corresponding to optimal embeddings f : 0 - Ri is useful

on these points in terms of ideals. Let 4. be the ideal (= projective
Ax
module of rank 1 in K) which is determined by the idéle a (mod 0 ) ;

A
specifically ot = Kna0 . Let R' be the right order of the left Ry

module RiOI; since 0 also acts on the right of @ , the map f induces

an optimal embedding O + R' which corresponds to the point X, -

We may refine our modified Hurwitz class numbers by defining the

rational divisor ¢ on X for D >0 by

D

1l 1
(3.8) cp = 3 ) u(d) I (x) .
-D=df2 x of
discriminant d
on X

Then deg(cD) = HN(D) by formula (1.12). The element ¢, lies in

'gﬁDiv(x); we will analyze its class in Pic(X) in the next section.

The action of Gal(K/Q) on the special points in Y(K) preserves
the points of discriminant d and may be described as follows.
If x corresponds to the embedding 0~ Ri then x corresponds to the
embedding o = £(a) ; in particular, x lies on the same component as X .
When N is inert in 0 the group Gal(K/Q) x Pic(0) acts simply transi-

tively on the points of discriminant d . When N is ramified in 0 ,
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the group Pic(0) acts simply transitively; we have x = x if and only

if x corresponds to an embedding f : 0 - Ri where f(a) = jaj-l for a
*

4th root of unity j in Ri + In this case, wy 20 (mod 2) . Hence

wihi(d) is always an éven integer.
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4, Correspondences and the height pairing.

The curve X has a large ring of correspondences over ¢ , which

Ak A
come from the geometry of the coset space R \B . Since the class number
Ak * Ak
of @ is 1, we have Q@ =Q Z and
Ax Ax Ak * *x
(4.1) . X= (R\B/Q)xY/(B/Q) .

* k%
The elements g = (...gp...) ‘lie in the product of local spaces Rp\Bp/Qp .

When p # N the space R;\B:/Qz = PGLZ(ZP)\PGLz(Qp) has the structure
of the set of vertices in a homogeneous tree of degree p+l [10, pg. 701].
When p = N the space R;\B:/Q: has 2 elements, so may be viewed as the
vertices in a homogeneous tree of degree 1. Let Gp denote the distance
function on the tree at the place p ; for m 2 1 we define a correspond-
ence t ~ on the product of these trees by the formula
£, (8) = P CY
(4.2) Gp(gp,hp) < ordp(m)

Gp(gp,hp) = ordp(m) (mod 2)

Ax A Ax
This is self-dual of degree o(m)N . It preserves R\B /@ , as m 1is
divisible by only a finite number of primes. Since the right action of

* %
B /Q in (4.1) preserves distance, t induces a correspondence on X

(4.3) e (gxy) = I (hxy) .
hetm(g)

The correspondences tm on X commute, and satisfy the same relations as
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the Brandt matrices in Proposition 2.7 [10, pg. 73].

The group Pic(X) of line bundles on X 1is isomorphic to z" ,
and is generated by the classes ey of degree 1 on each component Xi .
The correspondences t, on X induce endomorphisms of the group Pic(X) ,

and we have the following

Proposition 4.4. For all m 21 and 1= 1,2,...,n

n
tm ey = jzl Bij(m)ej .

In other words, on the basis <ei>u of Pic(X)., the action of t is
i=1

given by the transpose B(m)tr of the mth Brandt matrix. This giveé a

geometric interpretation of Brandt matrices.

Proof. The components of X are indexed by the supersingular elliptiec

curves Ei + The number of points in the divisor class tme which lie on

i
the component Xj is equal to thé number of isogenies Ei'+—E3 -of degree
m , which two isogenies identified if they bave the same kernmel. This
follows from tﬁe defiq;tion of t in (4.2)-(4.3) and Tate's theorem that
an 1sogeny is determinea by its agtiou on the Tate mo@ules 'IpEi and
Dieudonné module TNEi + But the number of such isogenies is equal to

Bij(m) by Proposition 2.3.

We define a height pairing <,> on Pic(X) with values in Z by

setting
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<ei,ej>=0 if 14 3

(4.5)

<ei,ei> =W,

and extending bi-additively. If e = Eaie i and e' = Eaj"e y are two divisor

classes, then

n
<e,e'>= Jw.a.a.
' i=1 i“ii
This pairing is clearly positive definite. It gives an isomorphism of
Pic (X)v = Hom(Pic(X),Z) with the subgroup of Pic(X)®@ with basis

v n
<ei = ei/w1>=l .

Proposition 4.6. For all classes e and e' in Pic(X)

<t e,e'> =<e,t e'> .
m m

Proof. It suffices to verify the equality when e = e, and e' = e.’l .
The left hand side is then w_-]B:lj (m) by Proposition 4.4, and the right

hand side is wiBj i(m) . These are equal by Proposition 2.7.

We let ep denote the class of the divisor N defined in (3.8).

This lies in Pic(X)®Q , but in fact we have

Proposition 4.7. The class_e 1lies in the subgroup I’:i.c':()()v of

D
Plc(X)®Q .
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Proof. By its definition, we have

n h (d) . wh, (d)
ey = Z( 1 E:(—d)')ei= Z( ) ‘_;;u:tT)) eI in Pic(X) . We must
1= _peag? 121 Lpeas?
show that |
w.h (d)
i1
“2u@) ¢ Z.

This is clear if vy is odd, as then u(d) divides wy and 2 divides
hi(d) . If LA = 2 (mod 4), the only possible problem is when u({d) = 2 ;
but in this case d = -4, N is odd, and hi(d) is even. If N=2 and

w, = 12, then w1/2u(d) is always integral.

We define éd in Pic(X)" as the class

\4

1 n
(4.8) e=z—e=zei.

0 41 ¥ 1 45

The deg(eo) = NT-zl by the mass formula. By proposition 4.4 we_have

for m21.

(4.9) te = o(m)N'e0 .

For any class e iu Pic(X) we _have the height formula:

(4.10) <e,e0> = deg e .
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5. Modular forms of weight 2

We recall the slash notation for functions on the upper half plane 61

ab
cd

positive determinant, and k 2 0 an integer. Then

let f :5.-* ¢ be a function, A= ( ) a matrix in GL2(]R) with

az+b /2

-k K
(5.1) . £l A = f(cz+b)(cz+d) (det A)
defines a right action of the matrices: fIkAB = (flkA) IkB . We say f
is a modular form of weight k for T (M) with character ¢ if f is

holomorphic on6_, regular at the cusps, and satisfies

(5.2) f|kA = g(d)f

ab
cd

shall only consider modular forms of weight 2 and trivial character for

for all A = ( ) in SLZ(Z) with ¢ 20 (mod M) . In this section, we

FO N) .

The set of these modular forms forms a complex vector space MC » and

it is well-known that dim Mc = n . Every function f 1in MC has a

Fourier expansion

-]
£(1) = ) amqm with q = 2T .

mz0

We define M as the subgroup of those modular forms which satisfy
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ameZ for all m 2 ,

(5.3)
1
Wao € 22 .
Then M is a free Z-module of rank n and M®C = MC . Some examples of
elements in M are the theta-series f,, defined in (1.4). We remark

ij
that the condition on a, is forced by the condition on the higher

coefficients.

The Hecke algebra T = ZZ[...Tm...] acts on the lattice M by the
well-known formulae. This algebra is generated over Z by the operators
of prime index, and the operators satisfy the same relations as the Brandt

matrices in Proposition 2.7. If p # N is prime we have
m _ m
Zamq ITp N Z{amp+pam/p}q .
If p=N we have
m - m
Ja " |1y = Ja o".

We remark that as endomorphisms of M , TN+wN = 0 where w\‘ is the

canonical involution f+— f | (?1})1) . Also, the subgroup M+ on which

TN = +1 (or WN = =1) has rank t . It is also know that M®Q 1is a

free T ®Q module of rank 1 , this is a restatement of the multiplicity

one theorem, as every eigenform in M® R is a new form of level N .
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By computing the trace of Tm on the homology of the Riemann surface
5/1"0 (N) using Lefschetz's fixed point formula, and comparing with

Proposition 1.9, Eichler established the identity
(5.4) Trace Tm = Trace B(m) for all m 2 1.

The lef;: hand side is the trace of Tm as an endomorphism of M , or
equivalently, of MC . The semi-simplicity of the algebras T ®§ and
B®Q then shows that they aré conjugate inside M(n,Q) . Hence the map
Tln -+ B(m) induces a ring isomorphism T = B. Since we have seen that B
is isomorphic to the ring of correspondences Z[--»tmu-] acting on
Pic(X) (Proposition 4.4), we may also identify this ring with the Hecke

algebra T .

We will now compute the action of the Hecke operators on our theta

series fij .

Proposition 5.5. For all m 2 1 we have

fij | Tm = lz( Bik(m)fkj = 1{ Bkj (m)fik .

Proof. The second identity will follow from the first, as wjfij = wifji
and w, B, (m) =w, B (m) . It also suffices to calculate f,, |Tlu for
prime indices, as these operators generate T and satisfy the same rela-

. . .\ 1 n
tions as the matrices B(m) in B. Since f,, =5 +7 Bys (m)q we

must show
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Byy(mp) +p By, (m/p) = l)"é Byy (P)By 4 (m)
By 4 (mN) = 1{ By (B @) .

These follow from Proposition 2.7.

In simple terms, Proposition 5.5 states that the subgroups

Ny = <E)Ey £ >

N =
Nj <fj1’fj2""’fjn>‘

are stable under the action of W', and that Tm acts on the spanning sets

tr N o
by B(m) and B(m) respecticely. Since wjfij = wifji » these two

Z-modules have the same rank n_, , which depends on the order R

J i
determination of n 4 is Hecke's basis problem, which is still open and

The

appears rather difficult. From (5.4) it follows that the n2 theta-series

{fij} span M®Q .

We will now use the curve X to construct elements of M .

v
Proposition 5.6. The map ¢(e,ev) = ggg_eé_deg.i + Z <tm,e,ev>qm

m21
defines a M-module homomorphism ¢ : Pic(x)@n.Pic (X)V + M which is an

isomorphism over T ®Q .

Proof. We first verify that ¢(e,ev) is an element of M . The defini-
tion is bi-additive in each variable, so it suffices to check this when

e=e, and e’ = e’ . Then <t:m,e,ev> = Bi (m) , so qb(e,ev) = f

k| ] ij ’
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The MT-linearity follows from Proposition 5.5 and Proposition 4.4. The
fact that ¢ gives an isomorphism over @ results from the fact that
Pic(X)®Q = Pic(X)v@Q and M®Q are free MO®Q modules of rank 1 ,

and the map ¢ 1is surjective (the n2 theta series fij generate M®Q)

We now discuss the normalized Eisenstein series F of weight 2 for

I’O(N) and the cuspidal eigenforms. The Eisenstein series is given by °

5.7) F = ¢(ei,e0) for any i=1,2,...,n
)
= £ for any i=1,2,...,n
g1 U

N-1 m
=5 + lomg
m21

It satisfies F|Tm = 0(m)F for any m 21 . The other characters in the

spectral decomposition of M ® R correspond to normalized cusp forms f in

M with a, =0, a m1/2+€) . The rank of the subgroup

0 1
of cusp forms is equal to n-1 , which is the genus of the modular curve

=1, and am=0(

Xo (N) .
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6. Some examples

Consider first the case when N=2, 80 n=t=1. The algebra B
was found by Hamilton: B = Q+Qi+qQ; +Qk , 12 = j2 = k2 ==1. 1 = ~ji = k.

A maximal order, which is unique up to conjugacy, was found by Hurwitz:

(6.1) R = Zi+2Zj +Zk+z(ﬁi—*zi+£) .

The supersingular elliptic curve E in characteristic 2 with End(E) = R

*
has the equation y2+y = x3 and invariant j = 0 . The group Aut(E) = R

has order 24, and is given by

R g

By considering the action on the 3-~division points of E , one obtains an

* *
isomorphism R = SL2(2/3) . Hence T = R /:1 1is isomorphic to PSL2 (Z/3) ,

or to the alternating group on 4 letters. .We have W = w, = 12.__The theta

series f = f11 is given by

1 Nb
(6.3) £=2 Y gq
24 beR
L ‘ 4y 222 14
2% 2. 1
xZy=zZw (mod 2)
=§%+q+q2+4q3+q4+6q5+-n .

By (5.7), the mth Fourier coefficient of f is equal to o(m)2 3 in
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particular, this shows that every integer = 0 (4) is the sum of 4 squares.
The first case where n > 1 and there are cusp forms is when N = 11 .

There n=t=2, w1 = 2 and w2 = 3 , The first few Brandt matrices are:

1/4 1/6 2 2
B(0) =( B(3) =( )

/4 1/6 31

1 0 5 2
B(1) = ( ) B(4) =( )

0 1 3 4

1 2 4 2
B(2) = ( ) B(5) =( )

3 0 3 3/ .

The unique normalized cusp form is

£117 65 = £55 £ = 36y = 28,

(6.4) £
= q-2q2-q3+2q4+q5+2q6-2q7+---

q T a-am%a-q™? .
mel

Its Mellin transform is the zeta function of the elliptic curve Xo(ll)

with equation y2+y = x3-x,2-10x-20 over @ . We have the congruence

(6.5) f = F (mod 5M)

where F 1is the Eisenstein series:
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(6.6) Fe=f),t8,=1£,,+f,, =3, 2,

='T5§+q+3q2+4q3+7q4+6q5+...

Indeed, F-f = 5(fu-f22) ,and M=Z§f +Zf

11 22

147

SV IR P, - S P S SN S S N N SORI S




148 BENEDICT H. GROSS

7. The main identity

For the next five sections f = ) amqm will be a cusp form in M

>
m2l ¢

K will denote an imaginary quadratic field of discriminant -~D where the
prime N is inert, and 0 will denote the ring of integers in K . We

let A denote a fixed ideal class of 0 and € the quadratic character

* .
of (Z/DZ) determined by e(p) = (FD) for primes p not dividing D .

Also, u= u(-D) and h

(]

h(-D) .

1]

Let we = 2nif (T)dT. ): amqm %ﬂ be the holomorphic differential

m21

associated to f on the Riemann surface XO(N) . If g 4is any element

in MC » we define the Petersson product of f and g by the formula

(7.1) (f,g) = ]f waiu)g
Xy (M)
= 8n° ff £(z) g(z) dxdy  z = xHy .
TeMN\A

Let EA be the theta series of weight 1 which is determined by the

ideal class A :

(7.2) EA(z) = 2=

1 m
e ): r, (m)q
2u m>1 A
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In this formula, o is any ideal in the class A . Hecke showed that EA
is a modular form of weight 1 for FO(D) with character & . The sum over

all classes

(7.3) E=] E, = %+ I R@)q"
m21

is the weight 1 Eisenstein series, whose Fourier coefficients R(m) are

the number of ideals of 0 of norm m . We put R(0) = %ﬁ'= %- for con-

4

sistency.

Define the L-function L(f,A,s) as the product of the two Dirichlet

series:
ad €(m) 2 A(m)
(7.4)  LEae = Y SR Z
m=l m
(m,N)=1

The first is a modification of the Dirichlet L-function L(e,2s~1) and the
second converges for Re(s) > 3/2 . In the next section, we will show that
L(f,A,s) admits an analytic continuation to the entire plane. It also

satisfies the functional equation ' /

*
(7.5) L*(£,4,8) [(2m” ]"(s)] (D)5L(£,4,8) = L (£,4,2-5) .
: defn
Our main result gives the value of L(f,A,8) at s =1 in terms of
the heights of special points of discriminant -D on the curve X . Let
X be a fixed point of this discriminant, and define the element g of

M by taking the sum over all classes B in Pic(0)
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(7.6) g) = g ¢ (x50 %p,)

and using Proposition 5.6. The main identity to be proved is then

(f,g,)
Proposition 7.7. L(f,A,1) = —5——
u“vD

We will prove (7.7) by a method similar to Gross-Zagier [3]. First
we will use Rankin's method to obtain the analytic identity
(£,G,) ' T (ND)

A with GA(z) = Trace 0 EA(z)E(Nz)
FO(N)

L({f,A,1) =

We will then explicitly compute the trace and obtain the Fourier coeffici-
ents a of GA . (These computations are performed in greater detail in
Chapter IV of [3]). Finally, we well explicitly compute the height pairing

<xB,tmx AB> and compare with our previous results to obtain the identity
uwla = 1<x,t x,.>
m g *B* “m*aB

for all m21 . This shows that uZG =

A gA and completes the proof.

!
1
i
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8. Rankin's method

%
We now discuss Rankin's integral representation for L (f,A,s) ; more

details can be found in [3, Ch. IV], Let I'm = {i (3 '1') ‘ne Z}; a

fundamental domain for l"m on 5, is the region 0 £ x <1 ,0 <y <o,

For Re(s) large, we therefore have

- 2 ar,m [ /= o
(4m)"°r(s) X oA __ =_[ (2 amrA(m)e 41"“y) il dy
0

m=1 ms m=1 y

=/ rl
=j f £ (xHy)E, (eHiyddx ) y° &L
0o Vo y

ff f(Z)W ys+1 dxdy

ALY v
= Z fff(z)?(z')_ys'ﬂg‘%x.
Yel‘m\l'O(N'D) YFND y

where FND

Using the modular behavior of f and E, under this subgroup:

is any fundamental domain for the action of 1"0 (ND) on 5_ .

£(vz) = £(2) (cz+d)?
E,(vz) = E,(2) (cz+d) £(d)

Im(yz) = b4 ’
|ez+d|?
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and the invariance of the measure dxdy under SLZCR) , we find that the

2
y
last expression is equal to
2 Jecoymmm mom ™ S8 .
Yelm\TO(ND) FND y

(8.1)
J'f €(d) ys-l
f(2)E, (2) 7= — dxdy .
()T OD) By (cz4d) | ptq| 2872

We now introduce the Eisenstein series END(s,z) of weight 1, level

ND , and character ¢ , defined by

8.2)  Egls,2) = ¥, > £(d) y*‘2
m=1 m . . cz+d s
(m,N)=1 e g) T\l D) |ez+d]
=1 e(d) y°
2 Tez (€2 |op4q)28
c=0 (ND)
(d,ND)=1

Then switching the order of integration and summation in (8.1) and multi-
€ (m)

plying by the Dirichlet L-fumction Z—fsTl gives the identity
m
(8.3) (4m) ST (s)L(£,A,8) = Hf(z) E, (D)E(5-1,2) dxdy .
FND

Since the function ﬂ-sF(s)'END(s,z) can be continued to an entire function

. *
on the s-plane [3], this gives the analytic continuation of L (f,A,s) ; the

[ - TR
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functional equation (7.5) also follows from a functional equation for the

Eisenstein series. Setting s = 1 in (8.3) gives the formula

(8.4) L(£,A,1) = 47 fff(z) E, (D)E(0,2) dxdy .

Fap

We wish to express this as a Petersson product on XO(N) ;3 for any form g

of wieght 2 on I‘O(ND) we define the trace to ‘I‘O(N) by

(8.5) | g = Z gl2 Y .
Y€l (ND)\T (N)

Then with our normalization of the Petersson product (7.1), formula (8.4)

becomes

(8.6) - L(f,4,1) = -%E(f,TrgD{EA(z)Em(O,z)}).

Finally, we remark that the imprimitive Eisenstein series —%(s,z)
can be expressed in terms of the Eisenstein series E(s,2z) of weight 1

and level D , defined by /

1 e(d) al
®.7) Be.2) = 2 c%& (cztd) |cz+dlzs .
c=0(D)

At 8 = 0 this gives the identity:

Eyp(0,2) = E(0,Nz) +N—1E(0,z)’ .
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The second term contributes 0 to the trace, as N-lEA(z)E(O,z) has weight
2 and level D , so TrgD(N—lEA(z)E(O,z) = Tr?(N-lEA(z)E(O,z)) = 0 (there

are no holomorphic forms of weight 2 and level 1). Hence

L(£,A,1) = EIF(f,TrgD{EA(z)E(O,Nz)}) .

On the other hand, Hecke proved that E(0,z) was related to the holomorphic

Eisenstein series E = Z EA by the formula
A .

2
/D

Combining this with the previous formula, we see we have proved:

ND

Proposition 8.9. Let GA(z) = TrD {EA(z)E(Nz)} . Then

(£,G,)
%)

L(f,A,1) =

for any cusp form of f weight 2 on FO(N) .
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9. The trace computation.

We put g = EA(z)E(Nz) and G, = Tr:D g + Our aim in this section is

A
to compute the Fourier coefficients of the modular form G A of weight 2 on
I‘O(N) . To simplify the exposition, we shall treat the case when D is
prime in detail, and refer the reader to [3] for the proof in the general

case.

Proposition 9.1. Assume that D is prime. Then

1 2+]j
1) G,(z) =g +T 2, s .
A D j (mod D) ( D)

2) The Fouriler coefficients of G A Z amqm are given by the formula:

m20
Dw/N r . (m)h Dm/N
a_ = ngo,rA(Dm-nN) §(R(n) = —=—+ 2:::1 r, (Dm-nN) §(n)R(n) %;_

L 1 if (m,D) =1
where 6&(n) ={
: 0 (mod D) .

2 4if n

Proof. We will show how 2) follows from 1). Then we will derive 1) after

a transformation lemma. If g = Z bmqm then ll) gives the formula
m20

a =b +b . By the definition of g , we have. /

m m nD .

i;; b = r, (m-2N) R(%)
m zgo A

= 2 r,(uD-nN) R(n)
n20
n=0 (D)

where n = D& , as rA(k) = rA(Dk) for all k 21 . Using the second
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formula for bm and the first for me » We get 2),

ab

Lemma 9.2. 1) If Y= (c d

) is in SLZ‘(Z) end c¢ # 0 (mod D) then

efc)
E | ye= E
AI1 i 2@

*
*
(2+; d) where ¢ is an inverse for c¢ (mod D)

2) If Y is in T,(N) and c # 0 (mod D) then

E(Nz) |,y = ';‘6‘:) E(N(z+;*d)) :

. : 0 -1y _1
Proof. 1) We will use Fhe well-known formula EAll (D 0) =7 EA , Which

follows from Poisson summation. First consider the special case when

1= 030 YED - e

AI Y=3E A|1(c1) %) j.ﬁEA(%l)

This gives 1) in this case, as e¢=1 and cd=3j . The general case

follows from this, as the matrices (g —j) represent the non-trivial cosets
(967 e (9

of FO(D)\FO(I) . Hence any Y has the form Y (Y s\ j) with v s

in FO(D) . Then

EA Y = €(§)E | ( )

) E(;; A(z+1§*d)

*
as c¢c=06 and cd = j (mod.D) .
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. *
2) Clearly E|y =-§€§; E(Ei%.ﬂ) as E= 2 EA « Now use the matrix
ivD A

identity

(o 2)C a) = (e "a)o 2)
to obtain:

E(Nz) |, = E|1(c7n "g) (Nz) . . |

- gfjéy) E(Nz+-t;c*d )‘

The last identity follows from the fact that e(N) = -1

We are now ready to prove part 1) of Proposition 9.1. The D+1 cosets

10 ab
of FO(ND)\PO(N) are represented-by (0 1) and matrices vy =‘(c—d)' in

*
PO(N) with ¢ 20 (mod D) and j=cd running through the D residue

classes (mod D) . We have

’

g[zy = EAlly'E(Nz)llY

- %/231 EA(?%J-) 'i:;) E(N(z;j)

- 3 o2

by Lemma 9.2. Summing over the D+l cosets gives 1).
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The analog of part 2) of Proposition 9.1 in the general case when D
is composite requires some genus theory. Let q be a prime with
q = -N (mod D) . Then gq =0Lo£ is split in 0 . Let & be an ideal in
the class of A ; we say an ideal ¢ is in the genus {-NA} if 5-% has

square class in Pic(0) . We let R }(n) be the number of integral

{-NA
jdeals in the genus {-NA} of norm n ; this is equal to R(n) or zero,

as two jdeals with the same norm lie in the same genus. Let é(n) be equal

to 2k , where k is the number of primes which divide both n and D .

. ; - m
Proposition 9.3. The Fourier coefficients of GA = tllg‘:)amq are given

by the formula

rA(m)h Dm/N
+ r, (mD-nN) §(n)R (n) .
2;1 A {-NA}

a =
m u

1l h
For example, we have a, = E? s 8O GA is not a cusp form.
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10. The heights of special points.

Let x be a special point of discriminant -D on X . For A and B

in Pic(0) we wish to compute '<xB,tm > . To do this, we must determine

¥AB

lie on the same component as x

how many points in the divisor tmxAB B

The components of X are indexed by the supersingular elliptic curves in

characteristic N , and we have

(10.1) <xB,tmx > = %[¢ € Hom(E,E') : deg ¢ = m]

AB

where E is the component of x, and E' the component of x We will

B AB °

denote the group Hom(E,E') by Hom(xB ) in this section.

**AB

First we will consider the case when D is prime. Let D = (/=D) be
the different ideal of 0 . The quaternion algebra has the form B = K+Kj ,

where j2 = =N, jo = aj for all o e K. Let € be a solution of the con-

gruence €2 = -N (mod D). The point x = X, may be chosen so that

(10.2) End(x)) = {wBj : 0 e D1 ,BeD ", a=eb (mod0pl.

Let ¢ and g- be ideals in the classes of A and B which are relatively

prime to 7,

Proposition 10.3. We have a bijection

Hom (x ,xB) = {o+Bi : a € D-%t , B ¢ D.lé-ﬂii a = eB (mod OD)}.

AB
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If ¢ corresponds to o+Bj then deg ¢ = (NotN NB)/Ner.

Proof. The ring End(xB) is the right order of the left End(x) module

End(x)* 06 , and Hom( can be identified with the left End(xy)

X, po¥g)
module End(xB)-é‘l.. The proposition now follows from a calculation in

K+Kj = B .
By (10.1) and Proposition 10.3, we wish to c>ount: half the number of
solutions to the identity

No+NNB = mNot

(10.4)
_with o€ D,-]e" B € 0—16‘-1'{: o, a=¢ef (mod 00)'

This is moét easily done by introducing the integral ideals
L = (@0eat
(10.5)
gt = @l T, ,
which satisfy the identity
(10.6) ‘ N +NNg' = mD .
The ideals y and ' 1lie in the classes of A-l and ABZ respectively,

and the number of solutions to (10.6) with ideals in these classes is équal

to
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r _,(mD) + z r __(mD-nN)r (n) ,
A 1 n20 A 1 AB2

where n = Ng' and mD-nN = Ng.

But a solution to (10.6) in ideals gives a solution to (10.4) in ele-
ments (o,B) by inverting formula (10.5). There are a priori w2 possible
choices for (a,B) , except when n = 0 when there are w choices. These
all satisfy the condition a Z €f (mod OD) in (10.4) when n = 0 (mod D), but
when n Z 0 (mod D) only half of them satisfy this final condition.

Hence we find

mD/N

2: r _1(mD—nN) d(n) r 2(n) .

2
<x_,t x,_>=uqy
B’ m AB =\ AB

We sum this result over the classes B and use the fact that ZIr 2(n) = R(n) ,
AB
as D is prime and there are no elements of order 2 in Pic(0) . Since

r _l(k)'= rA(k) ,» we have the final result
A

Proposition 10.7. If D ié'prime, then for all m=1
2 mD/N
g <xB,tmxAB> =y 2 r, (mD~nN) §(n)R(n)

In the case when D 1is composite, we let q be a rational prime
with q 2 -N (mod D) . Then q =g, ‘;l_« is split in K and B = K+Kj with

j2 = -Nq . We then find

Hom(gAB’xB) = {o+Bj : a € D-%1 , B ¢ v‘%ijlgrlgiz, o = gR (mod OD).
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and

zz;m ( s, ()
<x_,t X, > =u r _,{(mD-nN) é(n)r n) .
B’'m AB L Tl sp2

The sum over all classes B now only gives the ideals in the genus’

{aq} = {-NA} , so we find

Proposition 10.8. For all m 2 1 , we have

2 mD/N

> r, (mD-nN) §(n) R{-NA}(n) .

J <x.,t X,.> = u
B B’ m"AB 5

mD/N
= urA()h + Z
ns=

) rA(mD-nN) 8(n) R{_M}(n) .

If wé compare Proposition 10.8 with proposition 9.3, we see that we

have established the identity

2
£<x5’tmxAB> u'a_ for m=21.

Since the constant coefficient of z ¢(xB,xAB) is equal to h/2 = uzao ,
8 B 7
we have established the important:

Corollary 10.9. u2

GA = % ¢(xB.xAB) in M.

On the other hand, we have

(£,6,)
/D

L(f,A,1) =




by Proposition 8.9.
in Proposition 7.7.

of its corollaries.
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Hence we have completed the proof of the main identity

The rest of this paper will be devoted to a discussion
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.11. Special values of L-series.

We now consider L-series with Euler products. Let X be a complex
character of the group Pic(0) , and assume that f 1is a normalized eigen-

form for the Hecke algebra T . Define

(11.1) . L(f,X,8) = | X(A) L(f,A,s) .
A

This has an Euler product, where the general local term is of degree 4

If we write

L(E,8) =T (-ap S (1-a'p 5t
P P P
-1

L(x,s) =T (1-Bp ) (1-Blp ),
P

then we have

-1

- - - -
L(f,x,8) =T (1~a B p )(1-a B'p >)(1-a'8 p °)(1-a'B'p °)
P PP PP PP PP

The product apa;BpB; is equal to pe(p) if p does not divide ND ;

otherwise this product is equal to zero.

To describe the value of L(f,x,s) at s =1, we let Ce X be the
2
projection of the divisor cx = Z x_l(A)xA to the f-isotypical component
A

of Pic(X)®C . Note that deg Cg X =0, as f 1is a cusp form.
14

> .

Proposition 11.2. L(f,%,1) =-S§L§l <cf »Ce
u ‘/b sx 9X
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Proof. We will adopt the convention that we extend R-bilinear pairings,
like <,> and ¢(, ) to complex pairings which are linear in the first

argument and anti-linear in the second. Thus

<ep,c.> = <Ixtrx, , Tx x>
X X A B B

)) x(A—lB)<xA,xB> .
A,B
Combining the definition (11.1) with the main identity in Proposition

7.7, we find

(£,Zx(a)g,)
A A

L(f)X, 1) =
u’/B

so we are reduced to showing that the coefficient of f in the elgenvector

expansion of zX(A)?A is equal to the (real) number <cst’cst> . But
by definition
IX(d)g, = EX(A) %cb (g0 %, )
= AZBx(A) 6(x5,%, )
= T x(7'B) 6(x, g0 AT =B
A' B' v ,
? B" = AB

"

¢(cx.cx)
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Since ¢ is T-bilinear, the f-eigencomponent of the modular form ¢(cx,cx)

is equal to

. = = 7< ~q®
0oy goe) = oley oy ) = L <oy prtaty £

2<cx’fncx,? ‘ am(f)qm

m21

1}

ey e, E e

This completes the proof.

Corollary 11.3. 1) L(f,x,1) 20 , with equality if and only if Ce X =0.
14

2) For any automorphism o of €

(LCE, %, 1) VB (£, EN = L%, DD/ (%, £ .

In particular, the ratio lies in the numberfield generated by the values of X

and the Fourier coefficients of the eigenform f .

3) L(f,X,1) = 0 if and only if L(e%,x*, 1) =0 .

Proof. 1) follows from the fact that <,> induces a positive definite
Hermitian pairing on Pic(X) 8 € and Proposition 11.2. Since this pairing

is rational on Pic(X) @ Q , we have
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e, _,e, D¥ =<e ,c >
£.x° £,X% fa’xa fa’xa

which gives 2). Part 3) is an immediate corollary of 2).

In the case where X =1 we have a decomposition:
(11.4) L(f,x,1) = L(f,1)L(f8e,l) ,

where f 9 ¢ = Z ame(m)qm is the twist of f , which has level ND2 . Also,
m21
we have

(11.5) c. = ng Zu - e, in Pic(X) ,

where e, is the class of the rational divisor cp = == ) (x) de-
D D~ 2u
disc(x)=-D
in (3.8). This follows from the fact that Pic(0) x Gal(K/Q) acts simply
transitively on the special points, and the points X) and EA lie on the

same component of X . Hence Proposition 1l1l.2 becomes

£,0°%6,0° °

Corollary 11.6. L(f,1)L(fécy,1) = (_f‘%f_)@

We shall reinterpret this identity, using forms of weight 3/2, in section §13.

Here we simply note that e lies in the l-dimensional space (Pic(X) G]R)f

£,D

for each value D , so the different values <ef £ ﬁ> have square ratios

e
’
D" £,

in the field generated by the fourier coefficients of f . This is a result

due to Waldspurger.
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Finally, we note that Proposition 11.2 can be extended to include the

case where f = F is the normalized Eisenstein series of weight 2. We have

L(F,8) = J o ® = g(s)5(s-1) + NS .
m=1

and we define

(r,F) = 528 (-1

This definition of the inmer product is obtained by taking the residue of a
Rankin L-function at s = 2 , and was motivated by the considerations in
Zagier [13]. Then the formula in Proposition 11.2 continues to hold, although

for X # 1 both sides are equal to zero. When X =1 we have

12n%
(11.7) <cF’x,cF’x> = -1 <cF,cF>

and both sides are equal to :E%§§§ h2 .
u

Formula (11.7) has some implications for cusp forms. Since

<e ,e.> =<c
X

» F,x’cF, >+ Z<cf X’cf,i> is an integer, if p 1is a prime which
f b

1212
N-1

divides the denominator of it must also divide the denominator of some
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<c > for ¥ =1 . One then shows easily that f = F (mod pM) , so

£,X*°£,X
we have obtained a result of Mazur.

N-1
1

Then there is a cusp form f which is congruent to the Eisenstein series

Corollary 11.8. Assume p divides but does not divide h .

F (mod p) and satisfies L(f,1)L(fee,1) # 0 .

169
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12. Modular forms of weight 3/2.

*
(¥

weight 3/2 on P0(4N) with trivial character, which is due to Kohnen [4].

We begin by defining a subspace M, of the space of modular forms of
(In his paper, Kohnen denotes the cusp forms in this subspace by 83/2(N)- .)
Recall that a modular form of weight 3/2 and level 4N is a function g(T)

on the upper half-plane which is regular at the cusps and satisfies
(12.1) g(T)/e(T)3 : is invariant under PO(AN) .

2
where 6(1) = an is the standard theta-series of weight 1/2 . Then g

has a Fourier explansion

(12.2) g(t) = 2 aDqD .

D20

*

¢ consists of those forms with

and Kohnen's subspace M

(12.3) a;, =0 unless -D 20,1 (mod 4) and 6%?) #1.

*
The space Mm has dimension t and is stable under Shimura's Hecke

*
operators T 2 of degree m2 for all m prime to 4N . Kohnen defined
m .

* *
operators T 2 on MC for all m , and used the trace formula to prove that
m

4, pa. 471.
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*
(12.4) Trace T , = Trace T "
m m' C

where Tm is the Hecke operator om forms of weight 2 for I'O(N) and M'::' is

the subspace of Mc where TN =1 (or WN = =1 ). The action of the opera-

tors with prime-squared index on Fourier coefficients is given by

* . -
ZaanlT ) = z{a 2t (TD)‘BD +pa 2}qD , P#N
12 Dp b/p
(12.5)

D

D, %
ZaDq |T 9 = La 24 .

N DN

On the subspace M. the operator T acts as the identity, so a_ = a .
p ¢ NZ D DNZ
* *
There is a lattice M of rank t in Mc which is stable under the Hecke

*
algebra T ; this consists of the forms g whose Fourler coefficients satis-

fy (12.3) as well as the integrality conditions -

(12.6) a, 1is integral for all D>0
1 !
a, € -2-2 .

*
We now use our maximal orders to construct elements in the lattice M .

For each 1 with 1 €1 <n we let Si be the suborder of index 8 in Ri

which is defined by
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(12.7) - Si =Z + 2R:L .
Let S: be the subgroup of elements of trace zero in Si ; this has rank 3

over Z . Let 8y be the theta-series of the lattice S‘: with its norm

form (which is positive definite):

(12.8)

Then ai(D) is one half the number of elements b € Ri with

b £0,1 mod ZR:L

Trb = 0

&b = D= -b .

This is an integer (as b # -b ), which is zero unless --D_E*(i,l (mod 4) and

(——ND-) # 1 . Since gi('r:) is well-known to have weight: 3/2 and level 4N , the

/

*
forms - all lie in Kohnen's subgroup M . Since the orders associated to

the curves Ei and E? are conjugate in B and give the same theta-series,

only t of the modular forms 81s8y» -+ 18, are distinct.

Proposition 12.9. For 1 <1 <n and D >0 we have
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beb )
-

W, hi(d)

A el
2;(D) = 3 _Dzdfz ED

where hi(d) is the number of optimal embeddings of the order of discrimi-

%
nant d into Ri , modulo conjugation by Ri .

Proof. Let 0 be the order of discriminant -D . Any embedding f : 0 + Ry

gives rise to an element b = £(/-D) in R, with Trb =0 and Nb =D .

i
Since 0 =2Z + Z(D+—/:T)) we have the congruence b = -D (mod 2Ri) » 80 b

2
lies in Sg and contributes to ci(D) .

Conversely, if b ¢ Sg then b2 =-D,s80 b =-D (mod ZRj_) . Hence

b ; D jies in R; and we obtain an embedding f : 0 + R, by taking
—ED—;—D to b_';_'_ll . This bijection completes the proof when w, = 1l . When

wy > 1 we take I‘i orbits and analyse the stabilizers, as in the proof of

Proposition 1.9.

Proposition 12.10. For all m 21 we have

E3
gile2 = EBik(m)gk =y EBki(m)(gk/"k) .

In particular, the subgroups spanned by <g1, ,gn> and <g1/wl, ,gn/wn>

* *
are stable under the Hecke algebra ¥ , and T o 8cts on the spanning sets by
m

B(m)tr and B(m) respectively.
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Proof. It suffices to check this when m is prime, as these operators gener-
*
ate T over Z and satisfy the same relations as the Brandt matrices in

Proposition 2.7. Also, the second identity follows from the first, as

Vi By () = wyBy, (m)

*

When m=N we have g/ |T ., = l-+ za (DN?')qD by (12.5). But a (DNZ) =

i N2 2 i i i

* ‘ .

ai(D) using (12.9), as hi(DNZ) =0 . Therefore gilT 9 = 8 - On the other-
N

_ - oN

hand, EBik(m)gk = gj where Ej = Ej is the conjugate elliptic curve. Then

Ry = Ry

are equal to 8y

and gj g - This proves the identity in this case, as both sides

Now assume that m = p 1is a prime not equal to N . According to (12.5),

we must verify the identity:
e, (0pD +(Dye, () +p ¢ (0/pD = IB,, (p)ec, (D)
1 P 1 i £k S

First assume that D 20 (mod p) , so the third term on the left hand side
is zero. Let a be an element of trace 0 and norm D in the order Sk
and let ¢ : Ei > Ek be an isogeny of degree p . Then the element

b= ¢v °ac ¢ lies in Si , has trace zero and norm Dp2 , and depends only

on the kernel of ¢ .

In fact, all elements b of this trace and norm which are not divisible

by p in Si are obtained uiquely as ¢v °ac°¢. Indeed, let ¢ : Ei -+ Ek



e

HEIGHTS AND SPECIAL VALUES

be the unique isogeny of degree p with ker¢ < ker b . Then the isogeny
. v

b factors through Ek : Ei $ Ek -J; E:I. o Since b+b =0, ker¢ 1s the

unique subgroup of order p in ker bY . Hence kerd < kery’ and the

dual diagram factors

to define a’ (and -hence .7.a,e..sk ).

The element b 1s divisible by p in § i if a stabilizes the sub-
group ¢(Ei[p]) = kerqbv . There are (1 + (:I_?)) subgroups of this type, and

each gives a way to write b = ¢v ¢cac°g$ ., Hence

- 2 D
lchsm(p)ck(m = {ey(pD-e, (M} + A + ey (D

i

2 ~-D
ci(Dp ) + (?-)ci(D) .

We leave the case when p divides D to the reader.

17h
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As a corollary of Proposition 12.9 and Eichler's formula (1.12) the ele-

ment G has Fourier expansion

G =

nes19

L,
go1 ¥y 1
(12.11)
' N-1 D
+ Y H (D)q .
1A D>0HN

*
As a corollary of Proposition 12.10, G is an eigenvector for the algebra T

%
acting on M ©® Q with eigenvalues cr(m)N :

(12.12) clr”
m

2=o(m)N'G for all m 21 .

This is the normalized Eisenstein series of weight 3/2 and level 4N ; the
*
multiple WG 1lies in the lattice M . Also, Eichler's trace formula in

Proposition 1.9 is simply the identity

n
(12.13) Go|r, = } £
47 (LT

among forms of weight 2 on 1‘0(4N) . We note that T4 takes the product G-8

to a form of level N., which generates M8 Q over T 6 Q .

We conclude with a famous example, when N = 2 ., From (6.1) we find
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5

Hence

Si = {b = xityj+zk : x,y,2 € Z , x 2y = z (mod 2)}

qx2+y2+zz

N

g
1 xSy=z(2)

1

=3+ 4q” + 36" + 698 + 1241 +

Since g, = 12G ?_lgfh 128 (D)qD » this gives the classical results on the
1 2 2

D>0

number of representations of integers D = 3,4 (mod 4) as the sum of 3

squares.

=Z + 2Zi + 2Z§ + &k + Z(1+H+j+k) ,

177
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13. Waldspurger's formula

Recall the classes ey defined in Pic(X)v by (3.8) and (4.7), and

nv
the class e, = ) e, -

Define the formal series
i=1

(13.1)

N

D
g = e. + Z eq .
0 D>1 D

Then g may be viewed as a modular form of weight 3/2 with coefficients in

. *
Pic(X)v » Or more precisely as an element of Pic(X)v 8 M . Indeed, Proposi-

tion 12.9 gives the identity

‘Z‘ v

(13.2) g = e, 8g. ,

151 i i

where 8; are the theta-series defined in (12.8) and e

i ei/wi is the
basis of Pic(x)v .

Actually, a little more is true. We have the following.

Proposition 13.3.

% *
g 1is an element of Pic(X)v qm M = Hoqm(Pic(X),M ) .
More precisely, for any class e ¢ Pic(X)

the series

gle) = Eg_e + 3 <e.eD>q°
D>1
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% %
is an element of M , and g(tme) = g(e)lT 2 for all m=21.
m

Proof. It suffices to check this when e = e; . But g(ei) =8 and
n
) . *
g(tmgi) = -ZlBij(m) 84 by Proposition 4.4. This agrees with gile by

Proposition 12,10.

Now let es be a non-zero element in the f-isotypical component of
Pic(X) ® R , where f is an eigenform for T . This component has dimen-
sion 1, so ee is determined up to a real scalar multiple. The modular

form

(13.4) g(ef) = ):meD

*
then lies in the f-isotypical component of M ® R . It is clearly zero un-

less fITN = f , so the sign in the functional equation for L(f,s) is +1 .

Proposition 13.5. Let =D be a fundamental discriminant with

=D = -

2
(£,6) _"p

L(f,l)L(f@ED,l) = —/5-— Ze—f"?f;

Proof. We will use Corollary 11.6 and show that

2

)
<e; pte g

179
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By definition: m, = <ef,eD> = <ef,ef D> . Hence

2
m

_ D . £
ef,D = —-<ef’ef> er in (Pic(X) ® R)" .
The formula in Proposition 13.5 is due to Waldspurger [11], and gives the

variation of the special values with the discriminant -D . If -D is fun-~

damental and D = 0(N) the correct formula is:

2
2 .
_EH 2™
L(f,l)L(f@ED’l) = )ﬁ <ef’ef>

We will not prove this here; it follows from methods similar to those in §8-10.

Corollary 13.6. The rank of the subgroup spanned by the t distinct

*
theta series g, in M 1is equal to .the number of eigenforms f (including
——————————n——— i_

the weight 2 Eisenstein series) with L(f,1) # 0 .

*
Proof. Since the subgroup spanned is stable under T , it suffices to de-
termine which eigenforms f satisfy g(ef) # 0 . By Proposition 13.5 this

will be true if L(f,l)L(faeb,l) #£0 for a fundamental discriminant -D

with (%?) -1 . But Waldspurger has shown [12] that it is always possible
to choose D so that (:%b = =1 and L(f@en,l) # 0 , the condition reduces

to L(f,1) #0 .
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One case where the rank is less than t is when N = 389 . Here
t = 22 and the rank is 21 ; there is an eigenform with rational Fourier co-
efficients with ords=1L(f,s) = 2 . It would be interesting to determine the

linear relation on the theta-series explicitly in this case.

We end this section by explicitly computing an example, in level
N = 11 . The unique normalized cusp form f was given in (6.4) and cor-
responds to the elliptic curve Xo(ll) . We have e, = &, = el and

<ef,ef> =5. If K=Q(/-D) , and 11 is inert in K , we obtain

. _(£,8) 2
(13.7) L(x0(11) /K) = —;:-4:)— ny

where m, is the Dth coefficient of g(ef) =8, " 8" If 11 is ramified

in K , the above formula holds with m% replaced by 2m§ .

We recall that the maximal orders in B are distinguished by w, = 2

and Wy = 3 ; we find after an explicit description of Rl and R2 that

2, ...2,.. 2 '
Hily“+ 4 12 6
31”% & iy Hlz ""':lz'+‘1 +qtl 4 2g22 + 2q%5 + g1 4 ..
*x=y (mod2)
2,012 o2 - '
g, =% I ((x+11y™+3329)/3 =%+q3 R A

%=y (mod3)
yZz (mod2)
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Here is a table of the first few coefficients of the eigenform g(ef) :

D mD D mD D mD

3 1 23 -1 55 1

4 -1 27 -1 56 2
11 -1 31 -1 59 -1
12 -1 36 0 60 -3
15 1 44 1 64 -2
- 16 2 47 0 67 3
20 1 48 0 71 b1

*
Since 2g(ef) £ 66 (mod 5M ) , where G 1is the normalized Eisenstein

series defined in (12.11), we obtain the congruences
(13.8) m, = 3H11(D) (mod5)

for all D >0 . Using (13.7) this gives congruences for the special values,

which are due to Mazur [6].

In the next section, we shall see that if -D 1is the discriminant of
an imaginary quadratic field K and m # 0 , then the conjecture of Birch

and Swinnerton-Dyer predicts that
(13.9) ne = [(x (1) /K)] .

In particular, the integer o should always annihilate 1JJ(x°(11)/K)) .
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14. Elliptic curves with prime conductor

We now consider the special case where the normalized eigenform £ has
integral Fourier coefficients. Then f corresponds to an isogeny class of
elliptic curves {e} over Q with conductor N which appear as quotlents of

the modular curve XO(N) . The L-series of E over Q is equal to L(f,s) .

In the isogeny class {E} there is a distinguished curve Eo , called

the strong Weil curve, where the covering
(14.1) ' EEXORES:

has minimal degree. Im this case, the induced map on homology
Hl(xo(N)(C);Z) > Hl(Eo(E),Z) is surjective, so the induced map of

Jacobians has a connected kernel (which is an abelian variety).
(14.2) 0+A~ JO(N) -+ E0 +0.

For any curve in the isogeny class, we let w be a Néron differential
on E, &=2bw the minimal discriminant, and t be the order of the fi-
nite group E(Q)tor . We assume that the parametrization given by (14.1)
has minimal degree for E , and adjust its sign so that ﬂ*(uﬂ =c * f(q)%?
with ¢> 0. Ve will assume Manin's conjecture that c4 = 1 .

for the strong Weil curve Eo in each isogeny class. (Raynaud has recently

proved that ¢4 = 1 or 2).
The strong Weil curve Eo is the unique curve in its Q-isogeny class
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and to = 1 , except in the following cases [7].
N curves(see [1,pg.82-84]) c t A deg T
= 43
11 EO = Jo(ll) 1 5 11 1
EO/u5 5 5 | =11 5
E,/ @/5) 1 1 (-1 5
. 4
17 Ey = J0(17) 1 4 | =17 1
EO/u2 2 4 17 2
EO/u4 4 4 17 4
E,/(Z/4) . 2 2 17 4
19 | E. =J.(19) 1| 3 |-193 1
0 0
EO/U3 3 3 1-19
Ey/ @/3) 1 1| -19
37 | Ey = 3,03 1| 3| 373
Eo/l.l3 3 3 37
EO/(Z/B) 1 1 37 6
6l+u’ EO:y2 = x0-2ux’+Nx 1 2 | -2 ?
(1w extses)l g /y iy? = xrud-16x 2| 2| w 22

In particular, we have ¢ <€ t <€ 5.

When E, is the unique curve in its Q-isogeny class, it is reasonable

0
to conjecture that A = iN ; some evidence for this conjecture is given in
[5,§9]). When combined with the information in the previous table, this leads

to the slightly more general conjecture that

— e
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(14.3) tie ord (8) .

Now let ee be an element in the f-isotypical component of Pic(X)
which is not divisible by any integer n > 1 ; then e, is well~determined

up to sign and Proposition 13.5 gives the identity

2
_0 ™
(14.4) L DL, 1) = 25 e

*
where n, is the Dth coefficient of the form g(ef) in M . The left hand
side of this identity is equal to the L-function of E over the field K =
Q(/~D) where N is inert. If L(E/K,1) # 0 , then the conjecture of Birch

and Swinnerton-Dyer predicts that the rank of E(K) is equal to zero and that

WAW
N ord _(A)
(14.5) L(E/K,1) 35(% d‘z‘ wl,
N |

where llID is the (conjecturally finite) Tate-Shafarevitch group of E over

K L4

Since cz(f,f) = deg T -« [ WAL » and Mestre and Oesterlé have recently

shown that the identity E(©)
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9
(14.6) <ef,ef> = degm ordN(A)

follows from conjecture (14.3), we are led to the following.

Conjecture 14.7. If m 2 0 then E(K) is finite of orxder ¢t

]

and _._J'_LD is finite of order ma.




~

15.
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