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Modular Forms are Computable

Recall that the space of classical weight k level N modular forms is

Mk (Γ1(N)) =
n

f : h → C such that f [γ]k = f all γ ∈ Γ1(N), etc.
o

Theorem

The space Mk (Γ1(N)) is computable, i.e., there is an algorithm that takes as input
k , N, B and outputs a basis of q-expansions for Mk (Γ1(N)) to precision O(qB).

This theorem is not at all obvious from the definitions!
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Modular Forms are Computable: Example

sage: M = ModularForms(Gamma1(2006),2)
sage: M
Modular Forms space of dimension 127136 for Congruence Subgroup
Gamma1(2006) of weight 2 over Rational Field

OK, that’s not computing... But this is!

sage: M = ModularForms(Gamma1(13),2,prec=13)
sage: M.basis()
[
q - 4*q^3 - q^4 + 3*q^5 + 6*q^6 - 3*q^8 + q^9 - 6*q^10 - 2*q^12 + O(q^13),
q^2 - 2*q^3 - q^4 + 2*q^5 + 2*q^6 - 2*q^8 + q^9 - 3*q^10 + O(q^13),
1 + 21060/19*q^11 - 36504/19*q^12 + O(q^13),
q + 11709/19*q^11 - 20687/19*q^12 + O(q^13),
q^2 + 262*q^11 - 467*q^12 + O(q^13),
q^3 + 918/19*q^11 - 1215/19*q^12 + O(q^13),
q^4 - 882/19*q^11 + 2095/19*q^12 + O(q^13),
q^5 - 1287/19*q^11 + 2607/19*q^12 + O(q^13),
q^6 - 1080/19*q^11 + 2024/19*q^12 + O(q^13),
q^7 - 675/19*q^11 + 1056/19*q^12 + O(q^13),
q^8 - 360/19*q^11 + 453/19*q^12 + O(q^13),
q^9 - 153/19*q^11 + 98/19*q^12 + O(q^13),
q^10 - 54/19*q^11 - 9/19*q^12 + O(q^13)
]
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Weight 2 Modular Symbols

Definition (Weight 2 Modular Symbols)

The group M2 is the free abelian group on symbols {α, β} with

α, β ∈ P1(Q) = Q ∪ {∞}

modulo the relations
{α, β}+ {β, γ}+ {γ, α} = 0,

for all α, β, γ ∈ P1(Q), and all torsion.

I.e.,
M2 = (F/R)/(F/R)tor,

where F is the free abelian group on all ordered pairs (α, β) and R is the subgroup
generated by all elements of the form (α, β) + (β, γ) + (γ, α).

Remark

M2 is a HUGE free abelian group of countable rank.

Remark

M2 is the relative homology of the upper half plane relative to the cusps.
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Weight k Modular Symbols

For any integer n ≥ 0, let Z[X , Y ]n be the abelian group of homogeneous polynomials
of degree n in two variables X , Y .

Remark

Z[X , Y ]n is isomorphic to Symn(Z× Z) as a group, but certain actions are different...

Fix an integer k ≥ 2.

Definition (Modular Symbols of Weight k )

Set
Mk = Z[X , Y ]k−2 ⊗Z M2,

which is a torsion-free abelian group whose elements are sums of expressions of the
form X i Y k−2−i ⊗ {α, β}.

Example

X 3 ⊗ {0, 1/2} − 17XY 2 ⊗ {∞, 1/7} ∈ M5.
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Some Representations of SL2(Z)

Fix: finite index subgroup
Γ ⊂ SL2(Z).

Definition

Define a left action of Γ on Z[X , Y ]k−2 as follows. If g =
` a b

c d

´
∈ Γ and

P(X , Y ) ∈ Z[X , Y ]k−2, let

(gP)(X , Y ) = P(dX − bY ,−cX + aY ).

Remark

If we think of z = (X , Y ) as a column vector, then

(gP)(z) = P(g−1z),

since g−1 =
“

d −b
−c a

”
.

The reason for the inverse is so that this is a left action instead of a right action, e.g.,
if g, h ∈ Γ, then

((gh)P)(z) = P((gh)−1z) = P(h−1g−1z) = (hP)(g−1z) = (g(hP))(z).

William Stein Modular Symbols, Manin Symbols and Modular Forms



Modular Symbols
Manin Symbols

Modular Forms and Modular Symbols

Weight k Level Γ Modular Symbols
Let Γ act on the left on M2 by

g{α, β} = {g(α), g(β)}.
Here Γ acts via linear fractional transformations, so if g =

` a b
c d

´
, then

g(α) =
aα + b
cα + d

.

Combine these two actions to obtain a left action of Γ on Mk , which is given by

g(P ⊗ {α, β}) = (gP)⊗ {g(α), g(β)}.
For example,„

1 2
−2 −3

«
.(X 3 ⊗ {0, 1/2}) = (−3X − 2Y )3 ⊗


−

2
3

,−
5
8

ff
= (−27X 3 − 54X 2Y − 36XY 2 − 8Y 3)⊗


−

2
3

,−
5
8

ff
.

We will often write P(X , Y ){α, β} for P(X , Y )⊗ {α, β}.

Definition (Modular Symbols of Weight k and Level Γ)

Let k ≥ 2 be an integer and let Γ be a finite index subgroup of SL2(Z). The space
Mk (Γ) of weight k modular symbols for Γ is the quotient of Mk by all relations gx − x
for x ∈ Mk , g ∈ Γ, and by any torsion.

William Stein Modular Symbols, Manin Symbols and Modular Forms



Modular Symbols
Manin Symbols

Modular Forms and Modular Symbols

Example: Weight k Level Γ Modular Symbols

sage: ModularSymbols(Gamma1(13),2)
Modular Symbols space of dimension 15 for Gamma_1(13) of weight 2 with
sign 0 and over Rational Field

sage: ModularSymbols(Gamma0(1),24)
Modular Symbols space of dimension 5 for Gamma_0(1) of weight 24 with
sign 0 over Rational Field

sage: ModularSymbols(Gamma0(11),2)
Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with
sign 0 over Rational Field

sage: set_modsym_print_mode(’modular’)
sage: M = ModularSymbols(Gamma0(1),24)
sage: M.basis()
(X^18*Y^4*{0,Infinity}, X^19*Y^3*{0,Infinity}, X^20*Y^2*{0,Infinity}, X^21*Y*{0,Infinity}, X^22*{0,Infinity})

That’s weird – the dimensions are twice as big as you might expect... but actually that’s
correct.
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Manin Symbols

Mk (Γ) = quotient of two infinite rank abelian groups

Theorem (Manin, Shokurov)

Mk (Γ) is computable.

Suppose P ∈ Z[X , Y ]k−2 and g ∈ SL2(Z). Then the Manin symbol associated to this
pair of elements is

[P, g] = g(P{0,∞}) ∈ Mk (Γ).

Proposition

If Γg = Γh, then [P, g] = [P, h].

Proof.

The symbol g(P{0,∞}) is invariant by the action of Γ on the left, since it is a modular
symbols for Γ.

For a right coset Γg we also write [P, Γg] for the symbol [P, h] for any h ∈ Γg.
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Manin Symbols Generate
The abelian group generated by Manin symbols is of finite rank, generated by˘

[X k−2−i Y i , Γgj ] : i = 0, . . . , k − 2, and j = 0, . . . , r
¯
,

where g0, . . . , gr run through representatives for the right cosets Γ\SL2(Z).

Proposition

The Manin symbols generate Mk (Γ).

Proof.

We just do the case k = 2. Suffices to prove for {0, b/a}, where b/a is in lowest terms.
Induct on a ∈ Z≥0. Assume a > 0 (case a = 0 trivial). Find a′ ∈ Z with

ba′ ≡ 1 (mod a).

Then b′ = (ba′ − 1)/a ∈ Z, so δ =

„
b b′
a a′

«
∈ SL2(Z). Thus δ = γ · gj for some right

coset representative gj and γ ∈ Γ. Then

{0, b/a} − {0, b′/a′} = {b′/a′, b/a} =

„
b b′
a a′

«
· {0,∞} = gj{0,∞}.
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SL2(Z)-Action on Manin Symbols

Let

σ =

„
0 −1
1 0

«
, τ =

„
0 −1
1 −1

«
, J =

„
−1 0
0 −1

«
.

Define a right action of SL2(Z) on Manin symbols as follows. If h ∈ SL2(Z), let

[P, g]h = [h−1P, gh].

This is a right action because P 7→ h−1P is, as is right multiplication g 7→ gh.
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Manin Symbols Presentation

Theorem (Manin)

Form the free abelian group F on formal symbols˘
[X k−2−i Y i , Γgj ]

′ : i = 0, . . . , k − 2, and j = 0, . . . , r
¯
,

where g0, . . . , gr run through representatives for the right cosets Γ\SL2(Z). Let V be
the quotient of F by the subgroup generated by all

z + zσ and z + zτ + zτ2,

where z = [X k−2−i Y i , Γgj ]
′, and modulo any torsion. Then there is an isomorphism

V ∼−−→ Mk (Γ)

given by
[X k−2−i Y i , Γgj ]

′ 7→ [X k−2−i Y i , Γgj ].

In other words, computing Mk (Γ) is straightforward sparse linear algebra!!!
(We proved surjectivity. Gabor might prove injectivity...)
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Example: Manin Symbols Presentation

sage: set_modsym_print_mode(’manin’) # back to default.
sage: M = ModularSymbols(Gamma0(11),2)
sage: S = M.manin_symbols()
sage: S.manin_symbol_list()
[(0,1), (1,0), (1,1), (1,2), (1,3), (1,4), (1,5), (1,6),
(1,7), (1,8), (1,9), (1,10)]

sage: import sage.modular.modsym.relation_matrix as r
sage: r.relation_matrix_wtk_g0(S,0,QQ,4)[0] # after quotient by 2-term rels
[ 0 0 0 0 0 0 0 0 0 0 0 1]
[ 0 0 0 0 0 0 0 0 0 0 0 1]
[ 0 0 0 0 0 0 1 0 0 0 1 -1]
[ 0 0 0 0 0 0 -1 0 1 -1 0 0]
[ 0 0 0 0 0 0 0 0 -1 1 -1 0]
[ 0 0 0 0 0 0 -1 0 1 -1 0 0]
[ 0 0 0 0 0 0 1 0 0 0 1 -1]
[ 0 0 0 0 0 0 0 0 -1 1 -1 0]
[ 0 0 0 0 0 0 -1 0 1 -1 0 0]
[ 0 0 0 0 0 0 0 0 -1 1 -1 0]
[ 0 0 0 0 0 0 1 0 0 0 1 -1]
[ 0 0 0 0 0 0 0 0 0 0 0 1]
sage: M.basis()
((1,0), (1,8), (1,9))
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Pairing Modular Symbols and Modular Forms

Let
Sk (Γ) = {f : f ∈ Sk (Γ)}.

Define a pairing
(Sk (Γ)⊕ Sk (Γ))×Mk (Γ) → C (3.1)

by letting

〈(f1, f2), P{α, β}〉 =

Z β

α
f1(z)P(z, 1) dz +

Z β

α
f2(z)P(z, 1)dz,

and extending linearly.

Proposition

The integration pairing is well defined, i.e., if we replace P{α, β} by an equivalent
modular symbols (equivalent modulo the left action of Γ), then the integral is the same.

Remark

Modular symbols are constructed exactly so the integration pairing is well defined!
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Special Values of L-functions

Modular symbols were introduced by Bryan Birch in the 1960s in order to study special
values of L-functions and the BSD conjecture.
The L-function of a cusp form f =

P
anqn ∈ Sk (Γ1(N)) is

L(f , s) = (2π)sΓ(s)−1
Z ∞

0
f (it)ts dt

t
(3.2)

=
∞X

n=1

an

ns
for Re(s) � 0. (3.3)

For each integer j with 1 ≤ j ≤ k − 1, we have setting s = j and making the change of
variables t 7→ −it in (3.2), that

L(f , j) =
(−2πi)j

(j − 1)!
·

D
f , X j−1Y k−2−(j−1){0,∞}

E
. (3.4)

Remark

Neither the pairing nor computation of L(f , j) is implemented in SAGE yet, though I
implemented both in Magma.
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Cuspidal and Boundary Modular Symbols
Let B be the free abelian group on symbols {α}, for α ∈ P1(Q), and set

Bk = Z[X , Y ]k−2 ⊗B.

Left action of SL2(Z) on Bk :

g.(P{α}) = (gP){g(α)},

for g ∈ SL2(Z). Let Bk (Γ) be the quotient of Bk by the relations x − g.x for all g ∈ Γ
and by any torsion. Thus Bk (Γ) is a torsion free abelian group.

Definition

The boundary map is the map b : Mk (Γ) → Bk (Γ) given by extending the map
b(P{α, β}) = P{β} − P{α} linearly.

Definition

The space Sk (Γ) of cuspidal modular symbols is the kernel

Sk (Γ) = ker(Mk (Γ) → Bk (Γ)).

We have an exact sequence

0 → Sk (Γ) → Mk (Γ) → Bk (Γ),

which is exact on the right if k > 2.
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Pairing With Modular Forms

Theorem (Shokurov)

The pairing
〈· , ·〉 : (Sk (Γ)⊕ Sk (Γ))× Sk (Γ, C) → C

is a nondegenerate pairing of complex vector spaces.

Theorem

If
f = (f1, f2) ∈ Sk (Γ1(N))⊕ Sk (Γ1(N))

and x ∈ Mk (Γ1(N)), then for any n,

〈Tn(f ), x〉 = 〈f , Tn(x)〉.
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The Star Involution

On Manin symbols, ι∗ it is

ι∗[P, (u, v)] = −[P(−X , Y ), (−u, v)]. (3.5)

(Here (u, v) are the bottom two entries of a matrix, which uniquely determines a right
coset of Γ1(N).)

Let Sk (Γ)+ be the +1 eigenspace for ι∗ on Sk (Γ), and let Sk (Γ)− be the −1
eigenspace. There is also a map ι on modular forms, which is adjoint to ι∗.

Theorem

The integration pairing 〈· , ·〉 induces nondegenerate Hecke compatible bilinear
pairings

Sk (Γ)+ × Sk (Γ) → C and Sk (Γ)− × Sk (Γ) → C,

so
Sk (Γ)+ ≈ Sk (Γ)

as modules over the Hecke algebra.

Thus computing modular symbols allows one to compute modular forms.
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Example: Star Involution

sage: M = ModularSymbols(Gamma0(11),2)

sage: M.star_involution()
Hecke module morphism Star involution on Modular Symbols space of
dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational
Field defined by the matrix
[ 1 0 0]
[ 0 -1 1]
[ 0 0 1]
Domain: Modular Symbols space of dimension 3 for Gamma_0(11)

of weight ...
Codomain: Modular Symbols space of dimension 3 for Gamma_0(11)

of weight ...

sage: ModularSymbols(Gamma0(11),2,sign=1)
Modular Symbols space of dimension 2 for Gamma_0(11) of weight 2 with
sign 1 over Rational Field

sage: ModularSymbols(Gamma0(11),2,sign=-1)
Modular Symbols space of dimension 1 for Gamma_0(11) of weight 2 with
sign -1 over Rational Field
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Summary

1 Modular symbols are a purely algebraic construction
involving a quotient of two infinitely generated abelian
groups.

2 Modular symbols have a finite easy-to-compute
presentation in terms of Manin symbols.

3 Modular symbols are dual to modular forms, hence they
allow one to compute modular forms.
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