Computing with Siegel Modular Forms

Nathan C. Ryan

August 8, 2006

Nathan C. Ryan Computing with Siegel Modular Forms

・日・ ・ヨ・ ・ヨ・

æ

Why one might study Siegel modular forms

- they are multivariate elliptic modular forms
- they can be related to the number of ways of representing a quadratic form by another
- they have many applications: Coding Theory (Choie, Duke), Conformal Field Theory (Tuite), Special Values of L-functions (Fukuda-Komatsu), etc.

向下 イヨト イヨト

What's needed for modular forms

- an upper half-space
- an arithmetic group acting on the upper half-space
- a functional equation and automorphy factor
- a Fourier expansion

E 🖌 🖌 E 🕨

An Upper-Half Space

Let

$$\mathfrak{h}_g = \{Z \in M_g(\mathbb{C}) : Z = {}^tZ, \operatorname{Im}(Z) > 0\}$$

be the Siegel upper half-space of genus g.

- $\mathfrak{h}_1 = \mathsf{Poincare'}$ upper half plane
- Since the $Z \in \mathfrak{h}_g$ are symmetric $g \times g$ matrices, we see there are $\frac{g(g+1)}{2}$ free variables.
- For g > 1 the upper half-space is hard to picture. In particular, 𝔅₂ is bounded by 28 algebraic surfaces.

(日) (日) (日)

æ

An Arithmetic Group

▶ Let $Sp_g(\mathbb{R})$ be

$$\left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in M_{2g}(\mathbb{R}) : {}^{t}BD, {}^{t}AC \text{ symm. } {}^{t}AD - {}^{t}CB = I_{g} \right\},\$$

the symplectic group of size 2g.

- ▶ $Sp_1(\mathbb{R}) = SL_2(\mathbb{R}).$
- ▶ $\Gamma_g = \operatorname{Sp}_g(\mathbb{Z})$ is Siegel's modular group. The notion of congruence subgroups of Γ_g also translates nicely.

(本間) (本語) (本語) (語)

An action

► Let
$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}_g(\mathbb{R})$$
. Then
 $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot Z = (AZ + B)(CZ + D)^{-1}$

defines an action on \mathfrak{h}_g .

- For g = 1, this corresponds to the action of $SL_2(\mathbb{R})$ on the upper half-plane.
- We must show that CZ + D is invertible, but that's a straightforward exercise in linear algebra.

・ロト ・回ト ・ヨト ・ヨト

æ

Siegel Modular Forms

- ► Let $\mathcal{M}_k(\Gamma_g) = \mathcal{M}_k^g$ be the space of Siegel modular forms of weight k and genus g. I.e., $F \in \mathcal{M}_k^g$ iff
 - $\blacktriangleright \quad F:\mathfrak{h}_g\to\mathbb{C} \text{ is holomorphic,}$
 - $F\left((AZ+B)(CZ+D)^{-1}\right) = \det(CZ+D)^k F(Z) \text{ for all } \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_g$
 - F(Z) = ∑_{T≥0} a(T)e^{πitr(TZ)} where T runs over all positive semi-definite even integral g × g matrices.
- We remark that
 - ▶ the existence of a Fourier expansion like the one above is a theorem for g ≥ 2
 - if the Fourier expansion is supported only on positive definite forms $F \in S_k^g$, i.e., is a cusp form.

An Example

Let S be an even unimodular matrix of size m (by a result of Hecke we know such a thing exists iff 8|m). Then for Z ∈ 𝔥g, define

$$\Theta_{S}^{(g)}(Z) = \sum_{N \in M_{m \times g}} e^{\pi i \operatorname{tr}({}^{t} N S N Z)}.$$

• if r(S, T) is the number of ways of respresenting T by S, then

$$\Theta_{S}^{(g)}(Z) = \sum_{N \ge 0} r(S, N) e^{\pi i \operatorname{tr}(TZ)}$$

•
$$\Theta_S^{(g)}(Z) \in M_{m/2}^g$$

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Hecke operators

- Let Γ := Γ_g and G = GSp⁺_g(Q) be the group of rational symplectic similitudes with positive scalar factor.
- Let L(Γ, G) be the free C-module generated by the right cosets Γα where α ∈ Γ\G.
- \triangleright Γ acts on $L(\Gamma, G)$ be right multiplication and we set

 $\mathcal{H}_g(\Gamma, G) = L(\Gamma, G)^{\Gamma}.$

(日本) (日本) (日本)

Hecke operators form an algebra

• Let $T_1, T_2 \in \mathcal{H}_g(\Gamma, G)$ and $T_i = \sum_{\alpha_i \in \Gamma \setminus G} c_i(\alpha) \Gamma \alpha.$ Then

$$T_1 T_2 = \sum_{\alpha, \alpha' \in \Gamma \setminus G} c_1(\alpha) c_2(\alpha') \Gamma \alpha \alpha'.$$

(日) (日) (日)

3

Local Hecke algebras

- ▶ $\mathcal{H}_g = \bigotimes_{p \text{ prime}} \mathcal{H}_{g,p}$ where the construction of the **local Hecke algebra** $\mathcal{H}_{g,p}$ is the same as before but with *G* replaced with $G_p = G \cap \operatorname{GL}_{2g}(\mathbb{Z}[p^{-1}]).$
- $\mathcal{H}_{g,p}$ is generated by the double cosets

$$T(p) = \Gamma \operatorname{diag}(I_g; pI_g)\Gamma \text{ and}$$

$$T_i(p^2) = \Gamma \operatorname{diag}(I_i, pI_{g-i}; p^2I_i, pI_{g-i})\Gamma.$$

Punchline: Knowing the action of the generators in principle means knowing the algebra.

向下 イヨト イヨト

Slash operator

• \mathcal{H}_g acts on \mathcal{M}_k^g by $F|_k\left(\sum c_i\Gamma\alpha_i\right) = \sum c_iF|_k\alpha_i$

where

$$(F|_{k}\alpha)(Z) = r(\alpha)^{gk - \frac{g(g+1)}{2}} \det(CZ + D)^{-k} F(\alpha \cdot Z)$$

・回 ・ ・ ヨ ・ ・ ヨ ・

3

Satake isomorphism

In the 1960s Satake proved the following theorem (in much more generality):

$$\mathcal{H}_{g,p} \cong \mathbb{C}[x_0^{\pm 1}, \dots, x_g^{\pm 1}]^{W_g}$$

where W_g is the Weyl group generated by the permutations of x_1, \ldots, x_g and by the maps $x_0 \mapsto x_0 x_j$, $x_j \mapsto x_j^{-1}$, $x_i \mapsto x_j$ $(i \neq j, 1 \le i \le g)$.

Call this map the **spherical map** and denote it by Ω .

向下 イヨト イヨト

Satake parameters

What Satake really proved (again in more generality) was:

$$\operatorname{Hom}_{\mathbb{C}}(\mathcal{H}_{g,p},\mathbb{C}) = (\mathbb{C}^{\times})^{g+1} / W_{g}.$$

Let Ψ denote the isomorphism.

Let F be an eigenform for all the Hecke operators and for T ∈ H_g write F|_kT = λ_F(T)F. Then

$$\Psi(T \mapsto \lambda_F(T)) = (\alpha_{0,p}, \ldots, \alpha_{g,p}).$$

The entries of the above (g + 1)-tuple are the **Satake** parameters of *F*.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Lifts

Let f be an (elliptic) simultaneous eigencuspform of weight 2k. I.e., $f \in S_{2k}^{g}$. Ikeda (2001) showed that (roughly) there exists a form $F \in \mathcal{S}^{2g}_{k+g}$ (if k, g have the same parity) so that the *L*-functions of f and F (almost) coincide. In particular,

$$L^{\mathrm{std}}(F,s) = \zeta(s) \prod_{i=1}^{2g} L(f,s+k+g-i).$$

where $\mathcal{L}^{\text{std}}(F, s) = \prod_{p} [\mathcal{L}_{p}(F, s)(p^{-s})]^{-1}$ where

$$L_p(F, X) = \prod_{i=1}^{g} (1 - \alpha_{i,p}X)(1 - \alpha_{i,p}^{-1}X).$$

In the literature, this is called the **lkeda** lift.

Ikeda (2006) also proved the existence of a lift from $S^1_{2k}\otimes S^r_{k+r+n} o S^{2n+r}_{k+r+n}.$ In the literature this is called the Mivawaki lift.

How I tackle problems for Siegel modular forms

- What's the statement/solution to the problem for genus 1 modular forms?
- What's the statement/solution to the problem for lifts?
- What's the statement/solution for nonlifts?

Image: A image: A

The problems I've been involved in:

- (1) How can I compute the Satake parameters of a Siegel modular form?
- (2) What kinds of complex numbers are the Satake parameters?
- (3) Is there a Maeda-type conjecture for Siegel modular forms of genus 2?
- ► (4) How can we compute Siegel modular forms in genus 2?
- (5) What can be said about the L-functions of genus 4 modular forms?

I will try to provide short answers to these which will necessarily be incomplete.

Ramanujan τ -function

• $\tau(n)$ is defined by:

$$(2\pi)^{-12}\Delta(z) = q \prod_{n \ge 1} (1 - q^n)^{24} =_{\mathsf{def}} \sum_{n \ge 1} \tau(n) q^n$$

► the L-function associate to ∆ can be thought to have denominator at p of:

$$1-\tau(p)X+p^{11}X^2$$

 Ramanujan conjectured the roots of this polynomial were complex conjugate

伺 と く き と く き と

Satake parameters of elliptic forms

▶ Let $f \in S_k^1$ be a simultaneous eigenform, and let $T(p)|_k f = \lambda_p f$. Then $(\beta_{0,p}, \beta_{1,p})$ is the solution to

$$eta_0^2eta_1=m{
ho}^{k-1}\ eta_0(1+eta_1)=\lambda_{m{
ho}}$$

• $\beta_0\beta_1$ and β_0 are roots of

$$1-a(p)X+p^{k-1}X^2$$

where a(p) is the *p*th eigenvalue of *f*

(4) (5) (4) (5) (4)

Satake parameters of Ikeda lifts ...

The parameters of a lift (to genus 2) are given by:

$$\begin{aligned} \alpha_{0,p} &= p^{k-2} \\ \alpha_{1,p} &= p^{2-k} \beta_{0,p} \\ \alpha_{2,p} &= p^{2-k} \beta_{0,p} \beta_{1,p} \end{aligned}$$

Similar formulas hold for arbitrary g

高 とう ヨン うまと

Key result to compute with

Theorem (R. 2006)

Grade the Hecke algebra. Then, the matrix representation of Ω restricted to a direct summand is square and upper triangular. Moreover, the entries of the matrix are computed explicitly.

It appears that this result might have some application to the study of buildings.

Satake parameters of nonlifts in genus 2

In genus 2 the parameters are the roots of the following polynomial:

$$P_4(x) = x^4 - c_1 x^3 + (c_2 + 2)x^2 - c_1 x + 1$$

where c_1 and c_2 are explicit constants that depend on p and the form F.

高 とう ヨン うまと

Computing in Arbitrary Genus

Theorem (Poor, Yuen, R. 2006)

Let $F \in S_k(\Gamma_g)$ be a simultaneous eigenform. Given the eigenvalues of F with respect to the generators T(p), $T_1(p^2)$, ..., $T_g(p^2)$ of the local Hecke algebra, we construct a polynomial whose roots are the Satake p-parameters of F.

向下 イヨト イヨト

Degrees of Satake parameters

We have the following bounds for the degrees:

For lifts:

 $\operatorname{deg} \alpha_0 = 1 \quad \operatorname{deg} \alpha_1 = \operatorname{deg} \alpha_2 = d \text{ or } 2d$

where $d = \dim \mathcal{S}_k^1$.

For **nonlifts**:

 $\deg \alpha_0 \leq 4D^5 \quad \deg \alpha_1 = \deg \alpha_2 \leq 4D^2$

(where D is the dimension of $S_k^2(\Gamma_2)$, the space of nonlifts).

▲冊▶ ▲≣▶ ▲≣▶ = 目 - - - のへで

Maeda-type conjecture

It is known that

$$\mathcal{S}_k(\Gamma_2) \equiv \mathcal{S}_{2k-2} \oplus \mathcal{S}_k^?$$

is a Hecke invariant splitting and so the characteristic polynomials of the T(p) is reducible, so the obvious Maeda conjecture does not hold.

Skoruppa showed that even on S[?]₂₄(Γ₂) the characteristic polynomial splits (into linear terms).

Maeda-type conjecture

Computational evidence suggests that for lifts

$$\mathsf{deg}(lpha_0) = 1$$
 and $\mathsf{deg}(lpha_1) = \mathsf{deg}(lpha_2) = 2\,\mathsf{dim}(\mathcal{S}^1_k)$

while for nonlifts

$$\deg(\alpha_1) = \deg(\alpha_2) \le 4 \dim(\mathcal{S}_k^?(\Gamma_2))$$

We can interpret this as "Satake parameters are as irreducible as possible," like Maeda's conjecture says that "Hecke eigenvalues are as irreducible as possible".

Computations in genus 2

This conjecture has been verified up to weight 48, in joint work with David Yuen. Our method is as follows:

- $\mathcal{M}^2_* = \mathbb{C}[E_4, E_6, X_{10}, Y_{12}]$
- Determine these forms as theta lifts
- Find a basis of S_k^2 in terms of these forms
- Find the action of T(p) and $T(p^2)$ on S_k^2
- Compute Satake parameters

Computations in genus 4

- Poor and Yuen have determined the spaces of genus 4 in weights 8 through 16.
- Poor, Yuen and I have (almost) identified which forms can be Ikeda lifts, which are Miyawaki lifts, and the last form in weight 16 appears to be neither. Is this a new lift?

向下 イヨト イヨト