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Why one might study Siegel modular forms

I they are multivariate elliptic modular forms

I they can be related to the number of ways of representing a
quadratic form by another

I they have many applications: Coding Theory (Choie, Duke),
Conformal Field Theory (Tuite), Special Values of L-functions
(Fukuda-Komatsu), etc.
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What’s needed for modular forms

I an upper half-space

I an arithmetic group acting on the upper half-space

I a functional equation and automorphy factor

I a Fourier expansion
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An Upper-Half Space

I Let
hg = {Z ∈ Mg (C) : Z = tZ , Im(Z ) > 0}

be the Siegel upper half-space of genus g .
I h1 = Poincaré upper half plane

I Since the Z ∈ hg are symmetric g × g matrices, we see there are
g(g+1)

2
free variables.

I For g > 1 the upper half-space is hard to picture. In particular, H2 is bounded by 28 algebraic

surfaces.
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An Arithmetic Group

I Let Spg (R) be{(
A B
C D

)
∈ M2g (R) : tBD, tAC symm. tAD − tCB = Ig

}
,

the symplectic group of size 2g .
I Sp1(R) = SL2(R).
I Γg = Spg (Z) is Siegel’s modular group. The notion of congruence subgroups of Γg also

translates nicely.
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An action

I Let

(
A B
C D

)
∈ Spg (R). Then

(
A B
C D

)
· Z = (AZ + B)(CZ + D)−1

defines an action on hg .
I For g = 1, this corresponds to the action of SL2(R) on the upper half-plane.

I We must show that CZ + D is invertible, but that’s a straightforward exercise in linear algebra.
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Siegel Modular Forms

I Let Mk(Γg ) = Mg
k be the space of Siegel modular forms

of weight k and genus g. I.e., F ∈Mg
k iff

I F : hg → C is holomorphic,

I F
“
(AZ + B)(CZ + D)−1

”
= det(CZ + D)kF (Z) for all

„
A B
C D

«
∈ Γg

I F (Z) =
P

T≥0 a(T )eπitr(TZ) where T runs over all positive semi-definite even integral g × g

matrices.

I We remark that
I the existence of a Fourier expansion like the one above is a theorem for g ≥ 2

I if the Fourier expansion is supported only on positive definite forms F ∈ Sg
k
, i.e., is a cusp form.
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An Example

I Let S be an even unimodular matrix of size m (by a result of
Hecke we know such a thing exists iff 8|m). Then for Z ∈ hg ,
define

Θ
(g)
S (Z ) =

∑
N∈Mm×g

eπitr(tNSNZ).

I if r(S, T ) is the number of ways of respresenting T by S , then

Θ
(g)
S

(Z) =
X
N≥0

r(S, N)eπitr(TZ)

I Θ
(g)
S

(Z) ∈ M
g
m/2

.
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Hecke operators

I Let Γ := Γg and G = GSp+
g (Q) be the group of rational

symplectic similitudes with positive scalar factor.

I Let L(Γ,G ) be the free C-module generated by the right
cosets Γα where α ∈ Γ\G .

I Γ acts on L(Γ,G ) be right multiplication and we set

Hg (Γ,G ) = L(Γ,G )Γ.
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Hecke operators form an algebra

I Let T1,T2 ∈ Hg (Γ,G ) and

Ti =
∑

αi∈Γ\G

ci (α)Γα.

Then
T1T2 =

∑
α,α′∈Γ\G

c1(α)c2(α
′)Γαα′.
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Local Hecke algebras

I Hg =
⊗

p primeHg ,p where the construction of the local
Hecke algebra Hg ,p is the same as before but with G
replaced with Gp = G ∩ GL2g (Z[p−1]).

I Hg ,p is generated by the double cosets

T (p) = Γdiag(Ig ; pIg )Γ and

Ti (p
2) = Γdiag(Ii , pIg−i ; p

2Ii , pIg−i )Γ.

Punchline: Knowing the action of the generators in principle
means knowing the algebra.
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Slash operator

I Hg acts on Mg
k by

F |k
(∑

ciΓαi

)
=

∑
ciF |kαi

where

(F |kα) (Z ) = r(α)gk− g(g+1)
2 det(CZ + D)−kF (α · Z )
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Satake isomorphism

I In the 1960s Satake proved the following theorem (in much
more generality):

Hg ,p
∼= C[x±1

0 , . . . , x±1
g ]Wg

where Wg is the Weyl group generated by the permutations of
x1, . . . , xg and by the maps x0 7→ x0xj , xj 7→ x−1

j , xi 7→ xj

(i 6= j , 1 ≤ i ≤ g).

Call this map the spherical map and denote it by Ω.

Nathan C. Ryan Computing with Siegel Modular Forms



Satake parameters

I What Satake really proved (again in more generality) was:

HomC (Hg ,p, C) =
(
C×)g+1

/Wg .

Let Ψ denote the isomorphism.

I Let F be an eigenform for all the Hecke operators and for
T ∈ Hg write F |kT = λF (T )F . Then

Ψ(T 7→ λF (T )) = (α0,p, . . . , αg ,p).

The entries of the above (g + 1)-tuple are the Satake
parameters of F .
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Lifts

I Let f be an (elliptic) simultaneous eigencuspform of weight
2k. I.e., f ∈ Sg

2k . Ikeda (2001) showed that (roughly) there

exists a form F ∈ S2g
k+g (if k, g have the same parity) so that

the L-functions of f and F (almost) coincide. In particular,

Lstd(F , s) = ζ(s)

2g∏
i=1

L(f , s + k + g − i).

where
I Lstd(F , s) =

Q
p [Lp(F , s)(p−s )]−1 where

Lp(F , X ) =

gY
i=1

(1− αi,pX )(1− α
−1
i,p X ).

In the literature, this is called the Ikeda lift.

I Ikeda (2006) also proved the existence of a lift from
S1

2k ⊗ S r
k+r+n → S2n+r

k+r+n. In the literature this is called the
Miyawaki lift.
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How I tackle problems for Siegel modular
forms

I What’s the statement/solution to the problem for genus 1
modular forms?

I What’s the statement/solution to the problem for lifts?

I What’s the statement/solution for nonlifts?
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The problems I’ve been involved in:

I (1) How can I compute the Satake parameters of a Siegel
modular form?

I (2) What kinds of complex numbers are the Satake
parameters?

I (3) Is there a Maeda-type conjecture for Siegel modular forms
of genus 2?

I (4) How can we compute Siegel modular forms in genus 2?

I (5) What can be said about the L-functions of genus 4
modular forms?

I will try to provide short answers to these which will necessarily be
incomplete.
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Ramanujan τ -function

I τ(n) is defined by:

(2π)−12∆(z) = q
∏
n≥1

(1− qn)24 =def

∑
n≥1

τ(n)qn

I the L-function associate to ∆ can be thought to have
denominator at p of:

1− τ(p)X + p11X 2

I Ramanujan conjectured the roots of this polynomial were
complex conjugate
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Satake parameters of elliptic forms

I Let f ∈ S1
k be a simultaneous eigenform, and let

T (p)|k f = λpf . Then (β0,p, β1,p) is the solution to

β2
0β1 = pk−1

β0(1 + β1) = λp

I β0β1 and β0 are roots of

1− a(p)X + pk−1X 2

where a(p) is the pth eigenvalue of f
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Satake parameters of Ikeda lifts . . .

I The parameters of a lift (to genus 2) are given by:

α0,p = pk−2

α1,p = p2−kβ0,p

α2,p = p2−kβ0,pβ1,p

I Similar formulas hold for arbitrary g
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Key result to compute with

Theorem (R. 2006)

Grade the Hecke algebra. Then, the matrix representation of Ω
restricted to a direct summand is square and upper triangular.
Moreover, the entries of the matrix are computed explicitly.

I It appears that this result might have some application to the
study of buildings.
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Satake parameters of nonlifts in genus 2

I In genus 2 the parameters are the roots of the following
polynomial:

P4(x) = x4 − c1x
3 + (c2 + 2)x2 − c1x + 1

where c1 and c2 are explicit constants that depend on p and
the form F .
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Computing in Arbitrary Genus

Theorem (Poor, Yuen, R. 2006)

Let F ∈ Sk(Γg ) be a simultaneous eigenform. Given the
eigenvalues of F with respect to the generators T (p), T1(p

2), . . . ,
Tg (p2) of the local Hecke algebra, we construct a polynomial
whose roots are the Satake p-parameters of F .
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Degrees of Satake parameters

We have the following bounds for the degrees:

I For lifts:

deg α0 = 1 deg α1 = deg α2 = d or 2d

where d = dimS1
k .

I For nonlifts:

deg α0 ≤ 4D5 deg α1 = deg α2 ≤ 4D2

(where D is the dimension of S?
k(Γ2), the space of nonlifts).

Nathan C. Ryan Computing with Siegel Modular Forms



Maeda-type conjecture

I It is known that

Sk(Γ2) ≡ S2k−2 ⊕ S?
k

is a Hecke invariant splitting and so the characteristic
polynomials of the T (p) is reducible, so the obvious Maeda
conjecture does not hold.

I Skoruppa showed that even on S?
24(Γ2) the characteristic

polynomial splits (into linear terms).
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Maeda-type conjecture

I Computational evidence suggests that for lifts

deg(α0) = 1 and deg(α1) = deg(α2) = 2 dim(S1
k )

while for nonlifts

deg(α1) = deg(α2) ≤ 4 dim(S?
k(Γ2)

I We can interpret this as “Satake parameters are as irreducible
as possible,” like Maeda’s conjecture says that “Hecke
eigenvalues are as irreducible as possible”.
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Computations in genus 2

This conjecture has been verified up to weight 48, in joint work
with David Yuen. Our method is as follows:

I M2
∗ = C[E4,E6,X10,Y12]

I Determine these forms as theta lifts

I Find a basis of S2
k in terms of these forms

I Find the action of T (p) and T (p2) on S2
k

I Compute Satake parameters
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Computations in genus 4

I Poor and Yuen have determined the spaces of genus 4 in
weights 8 through 16.

I Poor, Yuen and I have (almost) identified which forms can be
Ikeda lifts, which are Miyawaki lifts, and the last form in
weight 16 appears to be neither. Is this a new lift?
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