Lecture 4: Examples of automorphic forms on the unitary group U(3)

Lassina Dembélé
Department of Mathematics
University of Calgary

August 9, 2006

Motivation

The main goal of this talk is to show how one can compute automorphic forms on the unitary group in three variables.

- F is the field of rationals or a real quadratic field and E is a totally CM quadratic extension of F.
- The involution in Gal(E/F) is denoted by $a \mapsto \bar{a}, a \in E$.
- The rings of integers of F and E by \mathcal{O}_F and \mathcal{O}_E , respectively.
- For any prime \mathfrak{p} in \mathcal{O}_F , we denote by $F_{\mathfrak{p}}$ and $\mathcal{O}_{F,\mathfrak{p}}$ the completions of F and \mathcal{O}_F at \mathfrak{p} , respectively.

- F is the field of rationals or a real quadratic field and E is a totally CM quadratic extension of F.
- The involution in Gal(E/F) is denoted by $a \mapsto \bar{a}, a \in E$.
- The rings of integers of F and E by \mathcal{O}_F and \mathcal{O}_E , respectively.
- For any prime \mathfrak{p} in \mathcal{O}_F , we denote by $F_{\mathfrak{p}}$ and $\mathcal{O}_{F,\mathfrak{p}}$ the completions of F and \mathcal{O}_F at \mathfrak{p} , respectively.

- F is the field of rationals or a real quadratic field and E is a totally CM quadratic extension of F.
- The involution in Gal(E/F) is denoted by $a \mapsto \bar{a}, a \in E$.
- The rings of integers of F and E by \mathcal{O}_F and \mathcal{O}_E , respectively.
- For any prime \mathfrak{p} in \mathcal{O}_F , we denote by $F_{\mathfrak{p}}$ and $\mathcal{O}_{F,\mathfrak{p}}$ the completions of F and \mathcal{O}_F at \mathfrak{p} , respectively.

- F is the field of rationals or a real quadratic field and E is a totally CM quadratic extension of F.
- The involution in Gal(E/F) is denoted by $a \mapsto \bar{a}, a \in E$.
- The rings of integers of F and E by \mathcal{O}_F and \mathcal{O}_E , respectively.
- For any prime p in O_F, we denote by F_p and O_F, p the completions of F and O_F at p, respectively.

- For any prime $\mathfrak P$ of E, by $E_{\mathfrak P}$ and $\mathcal O_{E,\,\mathfrak P}$ the completions of E and $\mathcal O_F$ at $\mathfrak P$.
- The ring of adèles of F and its finite part are denoted by A and A_f respectively.

- For any prime $\mathfrak P$ of E, by $E_{\mathfrak P}$ and $\mathcal O_{E,\,\mathfrak P}$ the completions of E and $\mathcal O_E$ at $\mathfrak P$.
- The ring of adèles of F and its finite part are denoted by \mathbb{A} and \mathbb{A}_f respectively.

For any F-algebra A, the Gal(E/F)-action induces an involution of the matrix group $GL_3(E \otimes_F A)$ we denote as before.

The unitary group in three variables $\mathbf{U}(3)$ on F attached to E is defined as follows. For any F-algebra A, the set of A-rational points on $\mathbf{U}(3)/F$ is given by

$$\mathbf{U}(3)(A) = \left\{ g \in \mathbf{GL}_3(A \otimes_F E) : \ g\bar{g}^t = \mathbf{1}_3 \right\}.$$

The unitary group in three variables U(2, 1) on F attached to E is defined as follows. For any F-algebra A, the set of A-rational points on U(2, 1)/F is given by

$$\mathbf{U}(2,\,1)(A) = \left\{ g \in \mathbf{GL}_3(A \otimes_F E): \ g \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \bar{g}^t = \mathbf{1}_3 \right\}.$$

We define an integral structure on $\mathbf{U}(3)/F$ which we denote the same way by putting

$$\mathbf{U}(3)(A) = \left\{ g \in \mathbf{GL}_3(A \otimes_{\mathcal{O}_F} \mathcal{O}_E) : \ g\bar{g}^t = \mathbf{1}_3, \ \in A^{\times} \right\},$$

for any \mathcal{O}_F -algebra A.

We define an integral structure on $\mathbf{U}(2, 1)/F$ which we denote the same way by putting

$$\mathbf{U}(2, 1)(\mathcal{O}_{E} \otimes_{\mathcal{O}_{F}} A) = \left\{ g \in \mathbf{GL}_{3}(A \otimes_{F} E) : g \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \bar{g}^{t} = \mathbf{1}_{3} \right\},$$

for any \mathcal{O}_F -algebra A.

U(2, 1) versus SL_2

SL_2	U(2, 1)
Global symmetric space: 5,	Global symmetric space:
the Poincaré upper-half plane	$B = \{(z, u) \in \mathbb{C}^2 :$
	$2Re(z) + u ^2 < 0$
Congruence subgroups: $\Gamma_0(\textit{N}) \subseteq \operatorname{SL}_2(\mathbb{Z})$	Congruence subroups: $\Gamma_0(N) \subseteq \mathbf{U}(2, 1)(\mathbb{Z})$
$\Gamma_0(N) \backslash \mathfrak{H}^*,$ compact arithmetic curves	$\Gamma_0(N) \backslash B^*$, compact arithmetic surfaces

U(2, 1) versus SL_2

SL_2	U(2, 1)
Inner forms:	Inner forms:
quaternions algebras	U (3) and (certain) division algebras, with involution of the second kind.
Jaquet-Langlands	Jacquet-Langlands.

Goal

We want to construct automorphic forms on $\mathbf{U}(2, 1)$ by using its inner form $\mathbf{U}(3)$.

Study the Galois representations we obtain from those automorphic forms.

Assumption: Assume throughout this paper that F has narrow class number 1 and that the quadratic extension E/F is chosen so that the associated group $\mathbf{U}(3)/F$ has class number 1.

- Let \mathfrak{p} be a prime in F and choose a prime \mathfrak{P} of E above \mathfrak{p} .
- Then, $K_{\mathfrak{p}} = \mathbf{U}(3)(\mathcal{O}_{F,\mathfrak{p}})$ is a maximal compact open subgroup in $\mathbf{U}(3)(F_{\mathfrak{p}})$.
- When p is split in E, we choose an isomorphism

$$\mathbf{U}(3)(F_{\mathfrak{p}}) \cong \mathbf{GL}_{3}(E_{\mathfrak{P}}) = \mathbf{GL}_{3}(F_{\mathfrak{p}}) \text{ s.t. } K_{\mathfrak{p}} = \mathbf{U}(3)(\mathcal{O}_{\mathfrak{p}}) \cong \mathbf{GL}_{3}(\mathcal{O}_{\mathfrak{p}}).$$

• When $\mathfrak p$ is inert in E, then $\mathbf U(3)/F_{\mathfrak p}$ is the unique unitary group in three variables on $F_{\mathfrak p}$ attached to the quadratic extension $E_{\mathfrak B}/F_{\mathfrak p}$, and $K_{\mathfrak p}=\mathbf U(3)(\mathcal O_{\mathfrak p})$ is hyperspecial.

- Let $\mathfrak p$ be a prime in F and choose a prime $\mathfrak P$ of E above $\mathfrak p$.
- Then, K_p = U(3)(O_{F, p}) is a maximal compact open subgroup in U(3)(F_p).
- When p is split in E, we choose an isomorphism

$$\mathbf{U}(3)(F_{\mathfrak{p}}) \cong \mathbf{GL}_{3}(E_{\mathfrak{P}}) = \mathbf{GL}_{3}(F_{\mathfrak{p}}) \text{ s.t. } K_{\mathfrak{p}} = \mathbf{U}(3)(\mathcal{O}_{\mathfrak{p}}) \cong \mathbf{GL}_{3}(\mathcal{O}_{\mathfrak{p}}).$$

• When $\mathfrak p$ is inert in E, then $\mathbf U(3)/F_{\mathfrak p}$ is the unique unitary group in three variables on $F_{\mathfrak p}$ attached to the quadratic extension $E_{\mathfrak B}/F_{\mathfrak p}$, and $K_{\mathfrak p}=\mathbf U(3)(\mathcal O_{\mathfrak p})$ is hyperspecial.

- Let $\mathfrak p$ be a prime in F and choose a prime $\mathfrak P$ of E above $\mathfrak p$.
- Then, K_p = U(3)(O_{F, p}) is a maximal compact open subgroup in U(3)(F_p).
- When p is split in E, we choose an isomorphism

$$\mathbf{U}(3)(F_{\mathfrak{p}}) \cong \mathbf{GL}_{3}(E_{\mathfrak{P}}) = \mathbf{GL}_{3}(F_{\mathfrak{p}}) \text{ s.t. } K_{\mathfrak{p}} = \mathbf{U}(3)(\mathcal{O}_{\mathfrak{p}}) \cong \mathbf{GL}_{3}(\mathcal{O}_{\mathfrak{p}}).$$

• When p is inert in E, then $\mathbf{U}(3)/F_{\mathfrak{p}}$ is the unique unitary group in three variables on $F_{\mathfrak{p}}$ attached to the quadratic extension $E_{\mathfrak{P}}/F_{\mathfrak{p}}$, and $K_{\mathfrak{p}} = \mathbf{U}(3)(\mathcal{O}_{\mathfrak{p}})$ is hyperspecial.

- Let \mathfrak{p} be a prime in F and choose a prime \mathfrak{P} of E above \mathfrak{p} .
- Then, $K_p = \mathbf{U}(3)(\mathcal{O}_{F, p})$ is a maximal compact open subgroup in $\mathbf{U}(3)(F_p)$.
- When p is split in E, we choose an isomorphism

$$\mathbf{U}(3)(F_{\mathfrak{p}}) \cong \mathbf{GL}_{3}(E_{\mathfrak{P}}) = \mathbf{GL}_{3}(F_{\mathfrak{p}}) \text{ s.t. } K_{\mathfrak{p}} = \mathbf{U}(3)(\mathcal{O}_{\mathfrak{p}}) \cong \mathbf{GL}_{3}(\mathcal{O}_{\mathfrak{p}}).$$

• When $\mathfrak p$ is inert in E, then $\mathbf U(3)/F_{\mathfrak p}$ is the unique unitary group in three variables on $F_{\mathfrak p}$ attached to the quadratic extension $E_{\mathfrak P}/F_{\mathfrak p}$, and $K_{\mathfrak p} = \mathbf U(3)(\mathcal O_{\mathfrak p})$ is hyperspecial.

Automorphic forms

- We let K be the product $K = \prod_{\mathfrak{p}} K_{\mathfrak{p}}$, and fix a compact open subgroup U of K.
- Let V be an irreducible algebraic representation of U(3) defined over F

Automorphic forms

- We let K be the product $K = \prod_{\mathfrak{p}} K_{\mathfrak{p}}$, and fix a compact open subgroup U of K.
- Let V be an irreducible algebraic representation of U(3) defined over F.

Automorphic forms

Definition

The space of automorphic forms of level U and weight V on $\mathbf{U}(3)$ is given by

$$\mathcal{A}_{\textit{V}}(\textit{U}) = \left\{f: \, \textbf{U}(3)(\mathbb{A}_f)/\textit{U} \rightarrow \textit{V}: f \| \gamma = f, \, \gamma \in \textbf{U}(3)(\textit{F}) \right\},$$

where $f \| \gamma(x) = f(\gamma x) \gamma$ for all $x \in \mathbf{U}(3)(\mathbb{A}_f)$ and $\gamma \in \mathbf{U}(3)(F)$.

Hecke operators

For any $u \in \mathbf{U}(3)(\mathbb{A}_f)$, write $UuU = \coprod_i u_iU$. Define the Hecke operator

$$[UuU]: \mathcal{A}_V(U) \rightarrow \mathcal{A}_V(U)$$
$$f \mapsto f || [UuU]$$

by
$$f|[UuU](x) = \sum_i f(xu_i), \ x \in \mathbf{U}(3)(\mathbb{A}_f).$$

Hecke operators

In the rest of this section, we fix an integral ideal N of F such that $(N, \operatorname{disc}(E/F)) = (1)$, and define the level

$$U_0(N) = \left\{ \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} \in K \text{ such that } a_3 \equiv b_3 \equiv 0 \mod N \right\},$$

and to simplify notations, we let $A_V(N) = A_V(U_0(N))$ and $T_V(N) = T_V(U_0(N))$ be the Hecke algebra.

Hecke operators

Let $\mathfrak p$ be a split prime in F and choose a prime $\mathfrak P$ in E above $\mathfrak p$. Then, the local algebra of $\mathbf T_V(N)$ at $\mathfrak p$ is isomorphic to the Hecke algebra of $\mathbf G\mathbf L_3(F_{\mathfrak p})$ which is generated by the two operators

$$\textit{T}_1(\mathfrak{p}) = \left[\textbf{GL}_3(\mathcal{O}_{\textit{F},\,\mathfrak{p}}) \mathrm{diag}(1,\,1,\,\varpi_{\mathfrak{p}}) \textbf{GL}_3(\mathcal{O}_{\textit{F},\,\mathfrak{p}}) \right] = \left[\Delta_1(\mathfrak{p}) \right]$$

and

$$\textit{T}_{2}(\mathfrak{p}) = \left[\textbf{GL}_{3}(\mathcal{O}_{\textit{F},\,\mathfrak{p}}) \mathrm{diag}(1,\,\varpi_{\mathfrak{p}},\,\varpi_{\mathfrak{p}}) \textbf{GL}_{3}(\mathcal{O}_{\textit{F},\,\mathfrak{p}}) \right] = [\Delta_{2}(\mathfrak{p})],$$

where $\varpi_{\mathfrak{p}}$ is a uniformizer at \mathfrak{p} .

Main result

Define the two sets

$$\Theta_i(\mathfrak{p}) = \mathbf{U}(3)(\mathcal{O}_{\mathcal{F}}) \setminus \{g \in \mathrm{M}_3(\mathcal{O}_{\mathcal{E}}) : g\bar{g}^t = \pi_{\mathfrak{p}} \mathbf{1}_3 \text{ and } g \in \Delta_i(\mathfrak{p})\},$$

where $\pi_{\mathfrak{p}}$ is a totally positive generator of \mathfrak{p} .

The quotient $\mathbf{U}(3)(\hat{\mathcal{O}}_F)/U_0(N)$ is a flag variety over artinian ring \mathcal{O}_F/N , which we denote by $\mathcal{H}_0(N)$.

Main result

Theorem

There is a natural isomorphism of Hecke modules

$$\mathcal{A}_{V}(N) \cong \{f : \mathcal{H}_{0}(N) \to V \text{ such that } f | | \gamma = f, \ \gamma \in \Gamma \},$$

where $\Gamma = \mathbf{U}(3)(\mathcal{O}_F)/\mathcal{O}_E^{\times}$ and the action of the Hecke operators $T_1(\mathfrak{p})$ and $T_2(\mathfrak{p})$ on the right hand side is given by

$$f||T_i(\mathfrak{p})(x) = \sum_{u \in \Theta_i(\mathfrak{p})} f(ux)u, \ x \in \mathcal{H}_0(N).$$

Let \mathfrak{p} be a split prime in F such that $\mathfrak{p} \mid N$.

- $\pi: \mathcal{H}_0(N) \to \mathcal{H}_0(N/\mathfrak{p})$ the natural surjection.
- Then, the action of the Hecke operators T₁(p) and T₂(p) on A_V(N/p) is given by

$$f||T_i(\mathfrak{p})(x) = \sum_{u \in \Theta_i(\mathfrak{p})} f(ux)u, \ x \in \mathcal{H}_0(N).$$

where the summation is now restricted to the elements whose action is non-degenerate.

Let \mathfrak{p} be a split prime in F such that $\mathfrak{p} \mid N$.

- $\pi: \mathcal{H}_0(N) \to \mathcal{H}_0(N/\mathfrak{p})$ the natural surjection.
- Then, the action of the Hecke operators T₁(p) and T₂(p) on A_V(N/p) is given by

$$f||T_i(\mathfrak{p})(x) = \sum_{u \in \Theta_i(\mathfrak{p})} f(ux)u, \ x \in \mathcal{H}_0(N),$$

where the summation is now restricted to the elements whose action is non-degenerate.

There are three degeneracy maps

$$\alpha_i(\mathfrak{p}): \mathcal{A}_V(N/\mathfrak{p}) \to \mathcal{A}_V(N), i = 0, 1, 2,$$

where $\alpha_0(\mathfrak{p}) = \pi^*$ is the pullback map, and $\alpha_i(\mathfrak{p}) = \pi^* \circ T_i(\mathfrak{p})$, i = 1, 2, which combine to give

$$\iota_{\mathfrak{p}}: \mathcal{A}_{V}(N/\mathfrak{p})^{3} \rightarrow \mathcal{A}_{V}(N)$$

$$(f_{0}, f_{1}, f_{2}) \mapsto \sum_{i=0}^{2} \alpha_{i}(\mathfrak{p})(f_{i}).$$

Similarly, when \mathfrak{p} is inert in E, there are two degeneracy maps

$$\alpha_i(\mathfrak{p}): \mathcal{A}_V(N/\mathfrak{p}) \to \mathcal{A}_V(N), i = 0, 2,$$

where $\alpha_0(\mathfrak{p}) = \pi^*$, and $\alpha_2(\mathfrak{p}) = \pi^* \circ T_2(\mathfrak{p})$, and which combine to give

$$\iota_{\mathfrak{p}}: \mathcal{A}_{V}(N/\mathfrak{p})^{2} \rightarrow \mathcal{A}_{V}(N)$$

 $(f_{0}, f_{1}) \mapsto \alpha_{0}(\mathfrak{p})(f_{0}) + \alpha_{2}(\mathfrak{p})(f_{1}).$

Definition

The space of oldforms is obtained as

$$\mathcal{A}_{V}^{old}(N) := \sum_{\mathfrak{p}|N} \operatorname{im}(\iota_{\mathfrak{p}}),$$

and the space of newforms $\mathcal{A}_{V}^{new}(N)$ as its orthogonal complement with respect to any $\mathbf{U}(3)$ -invariant Hermitian inner product $(\ ,\)$ on $\mathcal{A}_{V}(N)$.

Examples

- The unitary groups $\mathbf{U}(3)/\mathbb{Q}$ in three variables attached to the quadratic fields $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-3})$ respectively; and also, on the unitary group $\mathbf{U}(3)/\mathbb{Q}(\sqrt{5})$ attached to the cyclotomic field $\mathbb{Q}(\zeta_5)$.
- For each group, we compute the space $\mathcal{A}_0(N)$ of automorphic forms of trivial weight and level N, where $\operatorname{Norm}(N) \leq 20$ and $(N, \operatorname{disc}(E/F)) = 1$. We provide a table for the dimensions of $\mathcal{A}_0(N)$ and $\mathcal{A}_0^{new}(N)$, and the list of all the automorphic forms whose Hecke eigenvalues are rational or defined over a quadratic field.

Examples

- The unitary groups $\mathbf{U}(3)/\mathbb{Q}$ in three variables attached to the quadratic fields $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-3})$ respectively; and also, on the unitary group $\mathbf{U}(3)/\mathbb{Q}(\sqrt{5})$ attached to the cyclotomic field $\mathbb{Q}(\zeta_5)$.
- For each group, we compute the space $\mathcal{A}_0(N)$ of automorphic forms of trivial weight and level N, where $\operatorname{Norm}(N) \leq 20$ and $(N,\operatorname{disc}(E/F)) = 1$. We provide a table for the dimensions of $\mathcal{A}_0(N)$ and $\mathcal{A}_0^{new}(N)$, and the list of all the automorphic forms whose Hecke eigenvalues are rational or defined over a quadratic field.

The unitary group $U(3)/\mathbb{Q}$ attached to $\mathbb{Q}(\sqrt{-1})$

N	3		7		11	13		17	19
$\dim \mathcal{A}_0(N)$	2	3	6	11	17	7	16	9	77
$\dim \mathcal{A}_0^{new}(N)$	1	2	5	9	16	6	8	8	76

N	3	5	7	9				
р	$a_1(p, f_1)$	$a_1(p, f_1)$	$a_1(p, f_1)$	$a_1(p, f_1)$	$a_1(p, f_2)$	$a_1(p, f_3)$		
2	-1	$1-2\omega_5$	-1	-1	5	-3		
3	-3	12 $-$ 4 ω_{5}	-4	0	0	0		
5	3	$-1 + 2\omega_5$	$-3 - 6\omega_{-4}$	3	-3	13		
13	15	$7+4\omega_5$	$1-10\omega_{-4}$	15	3	3		
17	27	$19 - 16\omega_5$	$-9 - 12\omega_{-4}$	27	33	1		
29	3	$23 + 8\omega_{5}$	11 $+$ 8 ω_{-4}	3	69	-11		
37	63	$31 + 20\omega_5$	$-21 - 24\omega_{-4}$	63	-33	-33		
41	99	19 $-$ 12 ω_5	$-25 + 44\omega_{-4}$	99	-39	121		

The unitary group $U(3)/\mathbb{Q}$ attached to $\mathbb{Q}(\sqrt{-3})$

N	4	5	7	8	10	11	13	14	16	17	19	20
$\dim \mathcal{A}_0(N)$	2	2	3	4	8	8	5	7	24	26	7	50
$\dim \mathcal{A}_0^{new}(N)$	1	1	2	2	5	7	4	2	20	25	6	40

N	4	5	7	8		10
р	$a_1(p, f_1)$	$a_1(p, f_1)$	$a_1(p, f_1)$	$a_1(p, f_1)$	$a_1(p, f_2)$	$a_1(p, f_1)$
2	0	4	$2 - 2\omega_{28}$	0	0	1
3	-4	-2	$1+\omega_{28}$	4	-4	-4
5	54	-5	$26 + 10\omega_{28}$	22	54	1
7	9	1	ω_{28}	1	9	-3
13	-9	29	$4-\omega_{28}$	23	-9	3
19	45	17	$22 + 5\omega_{28}$	21	45	-3
31	-15	13	$65 - 2\omega_{28}$	9	-15	-15
37	63	21	41 $-$ 14 ω_{28}	31	63	27
43	21	59	$3 + 6\omega_{28}$	125	21	21

The unitary group U(3)/ $\mathbb{Q}(\sqrt{5})$ attached to $\mathbb{Q}(\zeta_5)$

Ν	(4, 2)	(9, 3)	$(11, 3 + \omega_5)$	(16, 4)
$\dim \mathcal{A}_0(N)$	2	3	3	14
$\dim \mathcal{A}_0^{new}(N)$	1	2	2	12

	Ν	(4, 2)	(9,3)	$(11, 3 + \omega_5)$	(16	,4)
$N(\mathfrak{p})$	þ	$a_1(p, f_1)$	$a_1(p, f_1)$	$a_1(p, f_1)$	$a_1(p, f_1)$	$a_1(p, f_2)$
4	2	-4	$2 + 12\omega_{24}$	$18 - 2\omega_{44}$	0	0
5	$2+\omega_5$	4	$2 + 3\omega_{24}$	$6 + 2\omega_{44}$	4	-2
11	$3+\omega_5$	3	$15 - 3\omega_{24}$	12 $-\omega_{44}$	3	-11
11	$3+2\omega_5$	3	$15 - 3\omega_{24}$	$-\omega_{44}$	3	5

- Let f be a newform of level N with eigenvalues in the number field K_f, and let O_f be the ring of integers of K_f.
- Let ℓ ≥ 2 be a prime and choose a prime λ of K_f that lies above ℓ.
- We denote the completions of K_f and \mathcal{O}_f at λ by $K_{f,\lambda}$ and $\mathcal{O}_{f,\lambda}$ respectively.
- Let $\pi_f = \otimes_{\mathfrak{p}} \pi_{\mathfrak{p}}$ be the automorphic representation attached to f, and let $\pi_f^{\mathcal{E}} = \otimes_{\mathfrak{P}} \pi_{\mathfrak{P}}^{\mathcal{E}}$ be the base change lift of π_f to $\mathbf{GL}(3)/\mathcal{E}$.
- We denote the Hecke matrix of $\pi_{\mathfrak{R}}^{E}$ by $t_{\mathfrak{R}}^{E}$.

- Let f be a newform of level N with eigenvalues in the number field K_f , and let \mathcal{O}_f be the ring of integers of K_f .
- Let $\ell \geq 2$ be a prime and choose a prime λ of K_f that lies above ℓ .
- We denote the completions of K_f and O_f at λ by K_{f, λ} and O_{f, λ} respectively.
- Let $\pi_f = \otimes_{\mathfrak{p}} \pi_{\mathfrak{p}}$ be the automorphic representation attached to f, and let $\pi_f^E = \otimes_{\mathfrak{P}} \pi_{\mathfrak{P}}^E$ be the base change lift of π_f to $\mathbf{GL}(3)/E$.
- We denote the Hecke matrix of $\pi_{\mathfrak{R}}^{E}$ by $t_{\mathfrak{R}}^{E}$.

- Let f be a newform of level N with eigenvalues in the number field K_f , and let \mathcal{O}_f be the ring of integers of K_f .
- Let $\ell \geq 2$ be a prime and choose a prime λ of K_f that lies above ℓ .
- We denote the completions of K_f and \mathcal{O}_f at λ by $K_{f,\lambda}$ and $\mathcal{O}_{f,\lambda}$ respectively.
- Let $\pi_f = \otimes_p \pi_p$ be the automorphic representation attached to f, and let $\pi_f^E = \otimes_{\mathfrak{P}} \pi_{\mathfrak{P}}^E$ be the base change lift of π_f to $\mathbf{GL}(3)/E$.
- We denote the Hecke matrix of $\pi_{\mathfrak{R}}^{\mathcal{E}}$ by $t_{\mathfrak{R}}^{\mathcal{E}}$.

- Let f be a newform of level N with eigenvalues in the number field K_f, and let O_f be the ring of integers of K_f.
- Let $\ell \geq 2$ be a prime and choose a prime λ of K_f that lies above ℓ .
- We denote the completions of K_f and \mathcal{O}_f at λ by $K_{f,\lambda}$ and $\mathcal{O}_{f,\lambda}$ respectively.
- Let $\pi_f = \otimes_{\mathfrak{p}} \pi_{\mathfrak{p}}$ be the automorphic representation attached to f, and let $\pi_f^{\mathcal{E}} = \otimes_{\mathfrak{P}} \pi_{\mathfrak{P}}^{\mathcal{E}}$ be the base change lift of π_f to $\mathbf{GL}(3)/\mathcal{E}$.
- We denote the Hecke matrix of $\pi_{\mathfrak{R}}^{E}$ by $t_{\mathfrak{R}}^{E}$.

- Let f be a newform of level N with eigenvalues in the number field K_f , and let \mathcal{O}_f be the ring of integers of K_f .
- Let $\ell \geq 2$ be a prime and choose a prime λ of K_f that lies above ℓ .
- We denote the completions of K_f and \mathcal{O}_f at λ by $K_{f,\lambda}$ and $\mathcal{O}_{f,\lambda}$ respectively.
- Let $\pi_f = \otimes_{\mathfrak{p}} \pi_{\mathfrak{p}}$ be the automorphic representation attached to f, and let $\pi_f^E = \otimes_{\mathfrak{P}} \pi_{\mathfrak{P}}^E$ be the base change lift of π_f to $\mathbf{GL}(3)/E$.
- We denote the Hecke matrix of $\pi_{\mathfrak{P}}^{\mathcal{E}}$ by $t_{\mathfrak{P}}^{\mathcal{E}}$.

Theorem (Kottwitz)

There exists a Galois representation

$$\rho_{f,\lambda}: \operatorname{Gal}(\bar{E}/E) \to \operatorname{GL}_3(K_{f,\lambda}),$$

associated to f, such that the characteristic polynomial of $\rho_{f,\lambda}(\operatorname{Frob}_{\mathfrak{P}})$ coincides with the one of $\mathfrak{t}^{\mathsf{E}}_{\mathfrak{P}}$. The representation $\rho_{f,\lambda}$ is unramified outside $\ell \operatorname{disc}(E/F)N$.

By making an appropriate choice of lattice in $K_{f,\lambda}^3$, one can reduce $\rho_{f,\lambda}$ to get a $\mod \lambda$ representation $\bar{\rho}_{f,\lambda}$. The data we have seem to support the following conjecture.

Problem: Numerically study the image of the Galois representation $\bar{\rho}_{f,\ell}$.

- L. Clozel, M. Harris and R. Taylor; Automorphy for some ℓ-adic lifts of automorphic mod ℓ representations (preprint).
- L. Dembélé, Explicit computations of Hilbert modular forms on $\mathbb{Q}(\sqrt{5})$. Experimental Mathematics **4**, vol. 14 (2005) pp. 457-466.
- L. Dembélé, Quaternionic *M*-symbols, Brandt matrices and Hilbert modular forms. To appear in *Math. Comp.*
- Hashimoto, Ki-ichiro; Koseki, Harutaka. Class numbers of positive definite binary and ternary unimodular Hermitian forms. *Tohoku Math. J. (2)* **41** (1989), no. 1, 1–30.
- Hashimoto, Ki-ichiro; Koseki, Harutaka. Class numbers of positive definite binary and ternary unimodular Hermitian forms. *Tohoku Math. J. (2)* **41** (1989), no. 2, 171–216.

- Kottwitz, Robert E. Shimura varieties and λ-adic representations. Automorphic forms, Shimura varieties, and *L*-functions, Vol. I (Ann Arbor, MI, 1988), 161–209, Perspect. Math., 10, Academic Press, Boston, MA, 1990.
- Lansky, Joshua; Pollack, David. Hecke algebras and automorphic forms. *Compositio Math.* **130** (2002), no. 1, 21–48.
- Gan, Wee Teck; Hanke, Jonathan P.; Yu, Jiu-Kang. On an exact mass formula of Shimura. *Duke Math. J.* **107** (2001), no. 1, 103–133.