KOLYVAGIN CLASSES FOR HIGHER RANK ELLIPTIC CURVES

Let E be an elliptic curve over Q of conductor N, and let K/Q be an imaginary
quadratic field of discriminant —D for which all prime factors of N are split in
K. Kolyvagin [Kol90] uses the system of Heegner points of conductor m for K
to construct a family of cohomology classes ¢(m) € H'(K, E,). Here p is an odd
prime and m is a squarefree integer obeying a certain congruence condition relative
to p. Once the existence of a nonzero Kolyvagin class ¢(n) is exhibited, there
are strong consequences for the arithmetic of £. The most fundamental example
is Kolyvagin’s original application of the Euler system of Heegner points: if the
extension Q(F,)/Q has Galois group GL2(Z/pZ), and ¢(1) does not vanish, then
the group E(K) has rank 1, and the Tate-Shavarevich group II(E/K), is trivial.
Furthermore, in [Kol91] Kolyvagin conjectures that if such a p is given, then there
will exist a power ¢ = p™ and an integer m for which the class ¢(m) € H' (K, E,)
is nonzero. Granting this conjecture, he gives a precise description of the structure
of the Selmer group Sel(K, E,).

The elliptic curve E is modular: let f = > a,q" be the associated newform,
let the sign in the functional equation for F/Q be —¢, and let ¢: Xo(N) — E be
a modular parametrization. We define a Kolyvagin prime to be a rational prime
£1 N Dp satisfying the following pair of conditions:

(1) ¢ is inert in K
(2) ag=£+1=0 (mod p).

These conditions imply that (E(Og /fO) @ Z/pZ)* is cyclic of order p. Let
L be the collection of sqarefree products of s Kolyvagin primes. Given n € L,
Kolyvagin constructs a class ¢(n) € H' (K, E,)(~1)".

Let rt = rkz E(Q), 7~ = tkz EX(Q), so that r = r* 4+ r~ = rkz E(K). For
simplicity we make the assumption that r— < 1. (Given E/Q, there is always a
field K/Q satisfying the Heegner hypothesis for which r~ < 1.)

If £ is a rational prime inert in K, we will sometimes use the same symbol £ for
the unique place of K lying above £.

Let loc, : E(K)/p(K) — E(K,)/pE(K,) be the obvious map.

Lemma 0.1. If ¢(n) = 6(P) for a rational point P € E(K), then loc, P = 0 for
every £|n.

Proof. Let A be a prime in K[n] lying over O, and let Fj be the residue field.
If o4 is a generator of Gy = Gal(K|[n]/K[n/{]), then the operator D, = Zle io}
annihilates F(Fy) ® Z/pZ, because o, acts as the identity on the residue field of
A and because £(¢ 4+ 1)/2 = 0 (mod p). Since the kernel of the reduction map
E(K[n]p) — E(Fa) is a pro-f group, this implies that D, annihilates F(K[n]x) ®
Z/pZ as well. Thus P, € pE(K|[n]a).

If P € E(K) and ¢(n) = 6(P), it implies that P € pE(K|[n]a) and therefore the
image of P in E(F)) lies in pE(Fp) = pE(Fy2). Thus loc, P = 0. O

(Remark: Without the hypothesis that ¢(n) lies in the image of ¢, it would not
follow that the localization locy c¢(n) vanishes. The above argument shows that
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loca 6(P,,) vanishes as an element of H'(K|[n]a, E,), but this says nothing about
locy ¢(n) because HY (K, E,) — H'(K[n], E,)%" is not an isomorphism.)

Assuming that the Kolyvagin system {c(n)} does not vanish, and also assuming
that HI(E/K)[p] = 0, one can calculate the Kolyvagin classes ¢(n) for n € £+ 1
by studying the localization behavior of the rational points in F(K) at the primes
dividing ¢. We spell this out in a special case.

Proposition 0.2. Let r™ =2, r~ =1, and assume that UI(E/K)[p] = 0. Assume
the Kolyvagin system {c(n)} does not vanish. For a prime € satisfying the Kolyvagin
condition, we have ¢(€) # 0 if and only if the linear map loc, : E(K)/pE(K) —
E(K))/pE(K)) has mazimal rank. If locy does have maximal rank, let P € E(Q)
span the kernel; then up to a scalar we have c(f) = §(P).

Proof. First suppose that loc, : E(K)/pE(K) — E(K))/pE(K)) does have max-
imal rank, with kernel spanned by P. Since rk E(K) > 1, ¢(1) = 0. There-
fore ¢(¢) € Sel(K,E,)*. Since HI(E/K)[p] = 0 there exists P’ € E(Q) with
c(f) = §(P’). We have P’ # 0 because....? Then Lemma 0.1 shows that locy P’ = 0,
so that up to a scalar P’ = P as desired.

Now suppose locy does not have maximal rank. Write ¢(¢) = 6(P). We claim
P = 0. Assume otherwise: Let {P,Q} be a basis for E(Q)/pE(Q), and let {R} be
a basis for EP(Q)/pEP(Q). Choose a prime ¢ for which locy : E(K)/pE(K) —
E(Ky)/pE(Ky) has kernel exactly (Q). Thus up to a scalar we have c(¢') = §(Q).
Consider the two classes c(¢¢'),6(R) € H'(K, E,)~. For each place v of K away
from £¢' we have (loc, ¢(¢¢'),1oc, §(R)) = 0 because both classes are finite at v.

We claim (loc, e(€0'),1loce 6(R)) = 0. By hypothesis, the kernel of the localiza-
tion map loc, : E(K)/pE(K) — E(K,)/pE(K,) is strictly larger than (P). Thus
locy(Q) = 0 or locg(R) = 0 (or possibly both). If loc,(R) = 0 the claim is obvious.
If loc,(Q) = 0, then since c(¢') = §(Q) we have that loc, c(€¢') is finite and therefore
that it is orthogonal to §(R) in H*(K,, E,) ™.

By the global reciprocity law, we have (locy c(€¢'),locy 6(R)) = 0. Since locy R
is nonzero by our choice of ¢/, it follows that locy c¢(€€') lies in the finite part of
HY(Ky,E,)~. This implies that locy ¢(¢) = locy P = 0, again contrary to our
choice of ¢'. O

Keep the assumption that 7+ = 2 and r~ = 1. We calculate the density of Koly-
vagin primes ¢ for which ¢(¢) = 0. This can be computed using the Chebotarev
Density Theorem as follows. Let L = Q(E,), so that Gal(L/Q) = GLo(Z/pZ). The

image of complex conjugation 7 in Gal(L/Q) is conjugate to , and the

-1
size of the normalizer Ngai(z/q)(7) in Gal(L/Q) is the order of the split torus
in GLa(Z/pZ), namely (¢ — 1)%. Since LN K = Q, we have Gal(KL/Q)
GL2(Z/pZ) x Gal(K/Q). let 7 € Gal(KL/Q) be the image of 7. The Koly-
vagin condition on £ is equivalent to the requirement that for any prime A|¢ in KL,

a Frobenius element (ﬁ/Q) € Gal(KL/Q) be conjugate to 7x . The density of
such primes is 1/(2(q — 1)?).
Now let M = KL (%E(K)) We have an isomorphism

Gal(M/KL) = Hom (E(K) ® Z/pZ, E,),
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wherein the image of ¢ € Gal(M/KL) is the map P — Q7 — Q, where Q € E(M)
satisfies pQ = P. Let V = Hom (E(K)® Z/pZ,E,); then V admits a natural
action by the group Gal(KL/Q) = GLo(Z/pZ) x Gal(K/Q). We have the exact
sequence
0—V — Gal(M/Q) — GLy(F,) x Gal(K/Q) — 1

which can be split once p-division points of elements of a basis for E(K)®Z/pZ are
chosen. Thus Gal(M/Q) is isomorphic to the semidirect product V x Gal(K'L/Q),
with group law (v,9)(v',¢’) = (v+ g(v'),g9’). Suppose £ is a prime satisfying the
Kolyvagin hypothesis, so that (ﬁ/Q) is conjugate to the image of 7 for any prime
A of KL above £. Let A be a prime in M above A. Since the residue degree of A// is

2
2, we have that (ﬁ) = (W) € V. Furthermore, let ¢»: E(K)RZ/pZ — E,

be the homomorphism represented by the automorphism (W) (Since M/KL
is abelian, ¢, does not depend on the choice of A.) For P € E(K) we have that
¢A(P) =0 if and only if loc,(P) = 0. Therefore loc, has maximal rank if and only
if ¢ does.

Let V™ C V denote the set of linear maps E(K)/pE(K) — E, which have
maximal rank. Write (MAW> = (v,g) for v € V, g € GLa(Z/pZ). Since g is
conjugate to the image of 7 we have g = 1 and (v, g)? = (v + g(v),1). Thus

c() #0 = ) € ymax

(M/KL
— =uv+gv) e VM

The subset H C Gal(M/Q) consisting of all pairs (v, g) having the properties that
g is conjugate to 71 and v + g(v) € V™ has cardinality

#H = #<TKL>#{’U S V|’U+T(’U) € Vmax}

%. Now consider the set S of v € V for which

v + 7(v) has maximal rank. We have the direct sum decomposition V = V7=t @
V7T="1: therefore #S = #(VT=1NVmax) LV 7="1 = (p —1)2 x (p— 1)p>. Therefore
the density of Kolyvagin primes ¢ for which ¢(¢) # 0 is #H/# Gal(M/Q) = (p +
1)/(2p?). The relative density of such primes from the set of Kolyvagin primes is
(p+ 1)(p — 1)?/p3. Interestingly, it is roughly p times as likely for a Kolyvagin
prime ¢ to have ¢(¢) = 0 as it is for ¢(¢) to be any particular class in the image of

E(Q)/pE(Q).

The order of (Txy) is
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