
KOLYVAGIN CLASSES FOR HIGHER RANK ELLIPTIC CURVES

Let E be an elliptic curve over Q of conductor N , and let K/Q be an imaginary
quadratic field of discriminant −D for which all prime factors of N are split in
K. Kolyvagin [Kol90] uses the system of Heegner points of conductor m for K
to construct a family of cohomology classes c(m) ∈ H1(K, Ep). Here p is an odd
prime and m is a squarefree integer obeying a certain congruence condition relative
to p. Once the existence of a nonzero Kolyvagin class c(n) is exhibited, there
are strong consequences for the arithmetic of E. The most fundamental example
is Kolyvagin’s original application of the Euler system of Heegner points: if the
extension Q(Ep)/Q has Galois group GL2(Z/pZ), and c(1) does not vanish, then
the group E(K) has rank 1, and the Tate-Shavarevich group X(E/K)p is trivial.
Furthermore, in [Kol91] Kolyvagin conjectures that if such a p is given, then there
will exist a power q = pn and an integer m for which the class c(m) ∈ H1(K,Eq)
is nonzero. Granting this conjecture, he gives a precise description of the structure
of the Selmer group Sel(K, Eq).

The elliptic curve E is modular: let f =
∑

n anqn be the associated newform,
let the sign in the functional equation for E/Q be −ε, and let ϕ : X0(N) → E be
a modular parametrization. We define a Kolyvagin prime to be a rational prime
ℓ - NDp satisfying the following pair of conditions:

(1) ℓ is inert in K
(2) aℓ ≡ ℓ + 1 ≡ 0 (mod p).

These conditions imply that (E(OK/ℓOK) ⊗ Z/pZ)± is cyclic of order p. Let
Ls be the collection of sqarefree products of s Kolyvagin primes. Given n ∈ Ls,
Kolyvagin constructs a class c(n) ∈ H1(K, Ep)(−1)sε.

Let r+ = rkZ E(Q), r− = rkZ EK(Q), so that r = r+ + r− = rkZ E(K). For
simplicity we make the assumption that r− ≤ 1. (Given E/Q, there is always a
field K/Q satisfying the Heegner hypothesis for which r− ≤ 1.)

If ℓ is a rational prime inert in K, we will sometimes use the same symbol ℓ for
the unique place of K lying above ℓ.

Let locℓ : E(K)/p(K) → E(Kℓ)/pE(Kℓ) be the obvious map.

Lemma 0.1. If c(n) = δ(P ) for a rational point P ∈ E(K), then locℓ P = 0 for
every ℓ|n.

Proof. Let Λ be a prime in K[n] lying over ℓOK , and let FΛ be the residue field.
If σℓ is a generator of Gℓ = Gal(K[n]/K[n/ℓ]), then the operator Dℓ =

∑ℓ
i=1 iσi

ℓ

annihilates E(FΛ) ⊗ Z/pZ, because σℓ acts as the identity on the residue field of
Λ and because ℓ(ℓ + 1)/2 ≡ 0 (mod p). Since the kernel of the reduction map
E(K[n]Λ) → E(FΛ) is a pro-ℓ group, this implies that Dℓ annihilates E(K[n]Λ) ⊗
Z/pZ as well. Thus Pn ∈ pE(K[n]Λ).

If P ∈ E(K) and c(n) = δ(P ), it implies that P ∈ pE(K[n]Λ) and therefore the
image of P in E(Fλ) lies in pE(FΛ) = pE(Fℓ2). Thus locℓ P = 0. �

(Remark: Without the hypothesis that c(n) lies in the image of δ, it would not
follow that the localization locλ c(n) vanishes. The above argument shows that
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locΛ δ(Pn) vanishes as an element of H1(K[n]Λ, Ep), but this says nothing about
locℓ c(n) because H1(K, Ep) → H1(K[n]Λ, Ep)Gn is not an isomorphism.)

Assuming that the Kolyvagin system {c(n)} does not vanish, and also assuming
that X(E/K)[p] = 0, one can calculate the Kolyvagin classes c(n) for n ∈ Lr+−1

by studying the localization behavior of the rational points in E(K) at the primes
dividing ℓ. We spell this out in a special case.

Proposition 0.2. Let r+ = 2, r− = 1, and assume that X(E/K)[p] = 0. Assume
the Kolyvagin system {c(n)} does not vanish. For a prime ℓ satisfying the Kolyvagin
condition, we have c(ℓ) ̸= 0 if and only if the linear map locℓ : E(K)/pE(K) →
E(Kλ)/pE(Kλ) has maximal rank. If locℓ does have maximal rank, let P ∈ E(Q)
span the kernel; then up to a scalar we have c(ℓ) = δ(P ).

Proof. First suppose that locℓ : E(K)/pE(K) → E(Kλ)/pE(Kλ) does have max-
imal rank, with kernel spanned by P . Since rkE(K) > 1, c(1) = 0. There-
fore c(ℓ) ∈ Sel(K,Ep)+. Since X(E/K)[p] = 0 there exists P ′ ∈ E(Q) with
c(ℓ) = δ(P ′). We have P ′ ̸= 0 because....? Then Lemma 0.1 shows that locℓ P ′ = 0,
so that up to a scalar P ′ = P as desired.

Now suppose locℓ does not have maximal rank. Write c(ℓ) = δ(P ). We claim
P = 0. Assume otherwise: Let {P,Q} be a basis for E(Q)/pE(Q), and let {R} be
a basis for ED(Q)/pED(Q). Choose a prime ℓ′ for which locℓ′ : E(K)/pE(K) →
E(Kℓ′)/pE(Kℓ′) has kernel exactly ⟨Q⟩. Thus up to a scalar we have c(ℓ′) = δ(Q).
Consider the two classes c(ℓℓ′), δ(R) ∈ H1(K, Ep)−. For each place v of K away
from ℓℓ′ we have ⟨locv c(ℓℓ′), locv δ(R)⟩ = 0 because both classes are finite at v.

We claim ⟨locℓ c(ℓℓ′), locℓ δ(R)⟩ = 0. By hypothesis, the kernel of the localiza-
tion map locℓ : E(K)/pE(K) → E(Kℓ)/pE(Kℓ) is strictly larger than ⟨P ⟩. Thus
locℓ(Q) = 0 or locℓ(R) = 0 (or possibly both). If locℓ(R) = 0 the claim is obvious.
If locℓ(Q) = 0, then since c(ℓ′) = δ(Q) we have that locℓ c(ℓℓ′) is finite and therefore
that it is orthogonal to δ(R) in H1(Kℓ, Ep)−.

By the global reciprocity law, we have ⟨locℓ′ c(ℓℓ′), locℓ′ δ(R)⟩ = 0. Since locℓ′ R
is nonzero by our choice of ℓ′, it follows that locℓ′ c(ℓℓ′) lies in the finite part of
H1(Kλ′ , Ep)−. This implies that locℓ′ c(ℓ) = locℓ′ P = 0, again contrary to our
choice of ℓ′. �

Keep the assumption that r+ = 2 and r− = 1. We calculate the density of Koly-
vagin primes ℓ for which c(ℓ) = 0. This can be computed using the Chebotarev
Density Theorem as follows. Let L = Q(Ep), so that Gal(L/Q) ∼= GL2(Z/pZ). The

image of complex conjugation τ in Gal(L/Q) is conjugate to
(

1
−1

)
, and the

size of the normalizer NGal(L/Q)(τ) in Gal(L/Q) is the order of the split torus
in GL2(Z/pZ), namely (q − 1)2. Since L ∩ K = Q, we have Gal(KL/Q) ∼=
GL2(Z/pZ) × Gal(K/Q). let τKL ∈ Gal(KL/Q) be the image of τ . The Koly-
vagin condition on ℓ is equivalent to the requirement that for any prime λ|ℓ in KL,
a Frobenius element

(
λ

KL/Q

)
∈ Gal(KL/Q) be conjugate to τKL. The density of

such primes is 1/(2(q − 1)2).
Now let M = KL

(
1
pE(K)

)
. We have an isomorphism

Gal(M/KL) ∼= Hom (E(K) ⊗ Z/pZ, Ep) ,
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wherein the image of σ ∈ Gal(M/KL) is the map P 7→ Qσ − Q, where Q ∈ E(M)
satisfies pQ = P . Let V = Hom(E(K) ⊗ Z/pZ, Ep); then V admits a natural
action by the group Gal(KL/Q) ∼= GL2(Z/pZ) × Gal(K/Q). We have the exact
sequence

0 → V → Gal(M/Q) → GL2(Fq) × Gal(K/Q) → 1
which can be split once p-division points of elements of a basis for E(K)⊗Z/pZ are
chosen. Thus Gal(M/Q) is isomorphic to the semidirect product V o Gal(KL/Q),
with group law (v, g)(v′, g′) = (v + g(v′), gg′). Suppose ℓ is a prime satisfying the
Kolyvagin hypothesis, so that

(
λ

KL/Q

)
is conjugate to the image of τ for any prime

λ of KL above ℓ. Let Λ be a prime in M above λ. Since the residue degree of λ/ℓ is

2, we have that
(

Λ
M/Q

)2

=
(

Λ
M/KL

)
∈ V . Furthermore, let ϕλ : E(K)⊗Z/pZ → Ep

be the homomorphism represented by the automorphism
(

Λ
M/KL

)
. (Since M/KL

is abelian, ϕλ does not depend on the choice of Λ.) For P ∈ E(K) we have that
ϕλ(P ) = 0 if and only if locℓ(P ) = 0. Therefore locℓ has maximal rank if and only
if ϕλ does.

Let V max ⊂ V denote the set of linear maps E(K)/pE(K) → Ep which have

maximal rank. Write
(

Λ
M/Q

)
= (v, g) for v ∈ V , g ∈ GL2(Z/pZ). Since g is

conjugate to the image of τ we have g2 = 1 and (v, g)2 = (v + g(v), 1). Thus

c(ℓ) ̸= 0 ⇐⇒
(

Λ
M/KL

)
∈ V max

⇐⇒ = v + g(v) ∈ V max

The subset H ⊂ Gal(M/Q) consisting of all pairs (v, g) having the properties that
g is conjugate to τKL and v + g(v) ∈ V max has cardinality

#H = # ⟨τKL⟩# {v ∈ V |v + τ(v) ∈ V max}

The order of ⟨τKL⟩ is # GL2(Z/pZ)
(p−1)2 . Now consider the set S of v ∈ V for which

v + τ(v) has maximal rank. We have the direct sum decomposition V = V τ=1 ⊕
V τ=−1: therefore #S = #(V τ=1∩V max)#V τ=−1 = (p−1)2× (p−1)p3. Therefore
the density of Kolyvagin primes ℓ for which c(ℓ) ̸= 0 is #H/#Gal(M/Q) = (p +
1)/(2p3). The relative density of such primes from the set of Kolyvagin primes is
(p + 1)(p − 1)2/p3. Interestingly, it is roughly p times as likely for a Kolyvagin
prime ℓ to have c(ℓ) = 0 as it is for c(ℓ) to be any particular class in the image of
E(Q)/pE(Q).
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